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Nonequilibrium Ising model on a two-dimensional additive small-world network
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In this work, we have studied the Ising model with one- and two-spin flip competing dynamics on a
two-dimensional additive small-world network (A-SWN). The system model consists of an L × L square lattice
where each site of the lattice is occupied by a spin variable that interacts with the nearest-neighbor spins
and it has a certain probability p of being additionally connected at random to one of its farther neighbors.
The dynamics present in the system can be defined by the probability q of being in contact with a heat bath
at a given temperature T and, at the same time, with a probability of (1 − q) the system is subjected to an
external flux of energy into the system. The contact with the heat bath is simulated by one-spin flip according
to the Metropolis prescription, while the input of energy is mimicked by the two-spin flip process, involving
a simultaneous flipping of a pair of neighboring spins. We have employed Monte Carlo simulations to obtain
the thermodynamic quantities of the system, such as the total mF

L and staggered mAF
L magnetizations per spin,

the susceptibility χL , and the reduced fourth-order Binder cumulant UL . We have built the phase diagram for
the stationary states of the model in the plane T versus q, showing the existence of two continuous transition
lines for each value of p: one line between the ferromagnetic F and paramagnetic P phases and the other line
between the P and antiferromagnetic AF phases. Therefore, we have shown that the phase diagram topology
changes when p increases. Using the finite-size scaling analysis, we also obtained the critical exponents for the
system, where, varying the parameter p, we have observed a different universality class from the Ising model in
the regular square lattice to the A-SWN.

DOI: 10.1103/PhysRevE.107.044115

I. INTRODUCTION

In the 1960s, the dynamic behavior of the Ising model
was successfully described by the Glauber [1] and Kawasaki
[2] mechanisms. This instigated interest in the competition
between the Glauber and Kawasaki stochastic process, where
Kawasaki proposes the two-spin exchange and Glauber the
spin-flip mechanism, both to act in the kinetic Ising model
simulating the system relaxing to the lowest energy state. On
the other hand, in a competing dynamic scenario, we have a
system in contact with a heat bath while exposed to an external
energy flux, where the Glauber mechanism is responsible for
simulating the system in contact with the heat bath and the
Kawasaki mechanism is modified to mimic the system ex-
posed to an external energy flux, once the external energy flux
increases the energy of the system. The Kawasaki mechanism
only exchanges the state of two connected spins, these spins
being chosen at random, thus conserving the magnetization,
i.e., the order parameter. Therefore, with that characteristic,
the Kawasaki mechanism is only useful in diffusion problems,
being necessary an additional flipping mechanism, as Glauber
mechanism, to start from a random state and reach an sta-
tionary state with different magnetization as used in Monte
Carlo simulations. This competition can be simulated by the
Glauber process with probability q simulating the system in
contact with a heat bath at a temperature T , and at the same
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time, with probability (1 − q), the Kawasaki process mimics
an input of energy into the system [3]. Each of these dynam-
ical processes singly satisfies the detailed balance condition,
which drives the system toward equilibrium. However, when
both can act in the system, the detailed balance is no longer
satisfied and it is forced out of equilibrium.

The Ising model on a regular square lattice has a univer-
sality class given by a set of critical exponents and a critical
temperature, both well known exactly at the equilibrium state
[4]. Therefore, the stationary nonequilibrium states were ob-
tained by the two competing dynamic processes described
above, and a self-organization is observed by the disappear-
ance of the ordered ferromagnetic F phase in the transition
to the paramagnetic P phase, and identification of the ordered
antiferromagnetic AF phase, as we increase the flow of energy
into the system [5]. However, through the Monte Carlo sim-
ulations (MC) the critical exponents of the system have been
obtained, and because it is a system with the same symme-
try, spatial dimension, and range interactions, the exponents
are the same as at the equilibrium state model and known
exactly [6].

In the same way, Godoy and Figueredo [7,8] investigated
the mixed-spin Ising model with two competing dynamics,
where it is not accepted to exchange spin states between
sublattices with different spin types. Therefore, it is nec-
essary to change the Kawasaki mechanism from the usual
competing dynamics for one that does not exchange the state
of spins in the lattice. This change leads to the use of the
two-spin flip mechanism that now does not depend on an ad-
ditional dynamic in the simulation. In these works that use the
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two-spin flip mechanism, like with the Kawasaki mechanism,
it is used to mimic an input of energy into the system. The
input of energy is made by the form of the transition rate
of the spin states, because a new state is only if it increases
the energy of the system, as would be expected for a system
exposed to an external energy flux, would it be accepted. Thus,
the competing dynamic was made by the one- and two-spin
flip mechanisms, and even with that, they have also obtained
the self-organization phenomena [7]. Based on the critical
behavior of the system, the universality class of the system
is the same as that of the Ising model with only spin-1/2
[8]. Therefore, in the nonequilibrium models, the universality
class of the stationary critical behavior is the same as in
the equilibrium models. All of these works were studied on
regular square lattices.

By using graph theory, Watts and Strogatz quantify the
properties of small-world phenomena as demonstrated in Mil-
gram’s 1967 study [9]. As an underlying assumption of the
Watts-Strogatz model (WS model) [10], vertices of graphs are
sites of networks, and edges are connections between sites of
the networks. By introducing a disorder parameter p, as the
probability of randomly rewiring each one of the connections
in a regular lattice, we can obtain the SWN in specific regions
in the interval 0 < p � 1. The SWN regime is identified in
regions of p where the network possesses local clustering,
C(p), of a regular lattice but at the same time has an aver-
age distance between any two sites, l (p), characteristic of a
random lattice. In addition to the WS model, some variants of
this model were also developed to describe the properties of a
SWN. One of these variants [11] uses a regular square lattice,
and we can add a long-range interaction to each site with a
certain probability p. This leads to a small typical separation,
preserving the clustering property of a regular lattice. While in
the WS model the connections of a regular lattice are rewired,
also called rewiring SWN (R-SWN) [10], the variant where
long-range interactions are added on sites of a regular lattice
is known as additive SWN (A-SWN) [11], and both networks
always preserve the characteristic of C(p) and l (p) of a SWN.

These networks have been used in numerous physical
models since the initial SWN model was put forth [12–16],
including the Ising model in one dimension (1D), 2D, and 3D
for the investigation of the critical phenomena at equilibrium
system [17–24]. According to these findings for the Ising
model, an order to the disorder phase transition is established
for T �= 0 with 0 < p � 1, and it is seen that the addition of
long-range interactions changes the critical behavior of the
system.

For the interesting behavior of the Ising model at the equi-
librium SWN, its investigation was also carried out about the
nonequilibrium phase transitions by the competing dynamics:
analytically in 1D [25], by MC simulations in 2D [26], and
by the Gaussian model in 3D [27]. In all of these works
they have been using the competition between the Glauber
and Kawasaki dynamics and have no conclusions about the
mean-field critical behavior observed at the equilibrium Ising
model on a SWN [18,20–22,24,28]. However, the AF-P and
F-P phase transitions are in 2D and 3D systems, characteristic
of the self-organization phenomena, and they are observed in
all of the other systems at the nonequilibrium state by the
competing dynamics.

In the present work, we have investigated the Ising model
in a two-dimensional A-SWN, where each site of the network
is occupied by a spin variable spin-1/2 that can assume values
±1. We limit by 1 the number of long-range interactions
that each site can receive with probability p and divide the
network into two sublattices; each new interaction created
should connect these sublattices. The system is in a nonequi-
librium regime by competing between two dynamic processes
that do not conserve the order parameter: With competition
probability q, the one-spin flip process simulates the system
in contact with a heat bath at temperature T , and with compe-
tition probability 1 − q the two-spin flip process mimics the
system subjected to an external energy flux into it. Therefore,
the system is studied at the nonequilibrium regime due to
competing dynamics. We verified the phase transition between
the AF and F ordered phases to the P disordered phase, and if
the system is in this A-SWN regime, then it exhibit the same
mean-field critical behavior observed at equilibrium systems
with long-range interactions by the A-SWN, see Ref. [28].
The behavior of the phase transitions, phases diagrams, and
critical exponents by finite-size scaling theory (FSS) analysis
also are described and compared with those of Ref. [28].

This work is organized as follows: In Sec. II, we describe
the model, the network, and the motion equations for the
nonequilibrium Ising model. In Sec. III, we present the MC
simulation method used. The behavior of the phase transi-
tions, phase diagrams, and critical exponents by FSS analysis
is described in Sec. IV. Finally, in Sec. V, we present our
conclusions.

II. MODEL

The Ising model with N = L2 spins σi = ±1 on a regu-
lar square lattice L × L, periodic boundary conditions, and a
nearest-neighbor ferromagnetic interaction of strength J has
been studied in this work [see Fig. 1(a)]. On the other hand,
with a certain probability p, we can add one long-range inter-
action Jik to each site of that regular square lattice. We divided
the system into two sublattices to add the long-range inter-
actions Jik , in which one sublattice plays the role of central
spins, while the other sublattice contains the spins in which the
central spins can connect to beyond their nearest neighbors.
Thus, to choose a long-range interaction Jik for a site i, the
sublattice of i will be the sublattice of the central spins, and
then we choose randomly a site k from another sublattice. If
site k is not one of the nearest neighbors already naturally
coupled with i, then we picked a random number 0 < r < 1,
and if r � p (with p predefined), then we couple the site k to
the neighbors of site i, and for the site k we couple the site i to
its neighbors. The attempt to add a long-range interaction Jik

is made once to each site that does not have a long-range inter-
action Jik in the network, and as result, we have a network with
an average coordination number z = 4 + p. Therefore, we
have the following examples: (i) for p = 0, i.e., the probability
of adding a long-range interaction Jik to any site on the lattice
is zero, and therefore we have a regular square lattice [see
Fig. 1(a)] and (ii) for p = 0.5, we are in the A-SWN regime
because in addition to the conservation of C(p), and we also
have an average short path length between network sites,
through the shortcuts created by the long-range interaction
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(a) (b) (c)

FIG. 1. Schematic representation of the system and the A-SWN. The blue (dark gray) square dots indicate the sites on one of the sublattices,
the white square dots are the sites on the other sublattice, the solid black lines are the nearest-neighbor interactions J between pairs of spins,
and the blue-dashed lines are long-range interaction Jik added to the network with a certain probability p. (a) For p = 0, (b) for p = 0.5, and
(c) for p = 1.

Jik added between the sublattices, see Fig. 1(b); finally, for
p = 1, all sites on the network have a long-range interaction
Jik connecting the two sublattices, and consequently, it is the
network with the shortest typical separation between the sites
on the network, see Fig. 1(c).

Thus, as the regular structure in p = 0 remains unaltered
[Fig. 1(a)], we have a high local clustering for any value of
p, and conform we increase p, the long-range interaction Jik

is added to the network, creating shortcuts between the sites
that in the regular lattice, p = 0, would be more distant, con-
sequently decreasing the typical distance l (p) of the network.
The l (p) scales linearly l (p → 0) ∼ L/2 and logarithmically
l (p → 1) ∼ ln(L1.77), where these regimes referred to the
“large-world” and “small-world,” respectively. The crossover
between these regimes occurs when the average number of
shortcuts is about 1, or in other words, we can say in the
SWN regime when p � 2L−2 [5]. So, our study is based on
p � 0.25 values, where the A-SWN is found and the decay of
l as a function of p is less pronounced, i.e., having roughly the
same value of l .

The ferromagnetic Ising spin energy is described by the
Hamiltonian of the form:

H = −J
∑
〈i, j〉

σiσ j −
∑
〈i,k〉

Jikσiσk, (1)

where J is the nearest-neighbor ferromagnetic interaction and
Jik is the long-range interaction on the A-SWN. The first sum
is over all the pairs of nearest-neighbor spins on the regular
square lattice and the second sum is made over all the pairs of
spins (i, k) connected through long-range interaction on the
A-SWN. Here we always are considering Jik = J = 1.

We are dealing with the nonequilibrium Ising model and in
a SWN, being the time evolution of the states of the system
governed by two competing dynamical processes: one simu-
lating the contact of the system with a heat bath at temperature
T , with the one-spin flip process and probability q to occur,
and at the same time but with probability (1 − q) to occur,
the system is subjected to an external flux of energy into the
system with the two-spin flip process, where in addition to
flipping the chosen spin, it simultaneously flips one of its
randomly chosen neighbors.

Let us call p({σ }, t ) the probability of finding the system
in the state {σ } = {σ1, . . . , σi, . . . , σ j, . . . σN } at time t , the

motion equation for the probability states evolve in time ac-
cording to the master equation

d

dt
p({σ }, t ) = qG + (1 − q)V, (2)

where qG represents the process of relaxation of the spins in
contact with a heat bath at temperature T , favoring the lowest
energy in the system, and (1 − q)V represents the process in-
dependent of the temperature, where the energy of the system
increases by one external flow of energy into it. G and V are
described by

G =
∑
i,{σ ′}

[W (σi → σ ′
i )p({σ }, t )

− W (σ ′
i → σi )p({σ ′}, t )], (3)

V =
∑

i, j,{σ ′}
[W (σiσ j → σ ′

i σ
′
j )p({σ }, t )

− W (σ ′
i σ

′
j → σiσ j )p({σ ′}, t )], (4)

where {σ ′} denotes the spin configurations after the spin flip-
ping, W (σi → σ ′

i ) is the transition rate between states in the
one-spin flip process, and W (σiσ j → σ ′

i σ
′
j ) the transition rate

between the states in the two-spin flip process, with the order
parameter being conserved in none of the dynamic processes.

If 0 < q < 1, then the two dynamics processes have non-
null probability to be chosen and act in the system, the detailed
balance is not satisfied, and it is forced out of equilibrium. As
these processes favor the states of higher and lower energy
of the system, with the competition it is possible to find
stationary states for the order parameter in the AF, F, and P
phases. It is worth noting that to reach the stationary state in
the AF phase was of fundamental importance to use the Jik

between the sublattices because of the antiparallel ordering in
which this phase is characterized.

III. MONTE CARLO SIMULATIONS

Let (k, l ) and (k′, l ′) be the coordinates of a site in our
two-dimensional SWN and one of your neighbors, respec-
tively. The periodic boundary conditions were used in all our
simulations. Starting the initial state of the system with all
spins aligned in the same direction, a new configuration is
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generated by the following the Markov process: For a given
temperature T , competition probability q, and additive prob-
ability p, we choose a random spin from the lattice, i.e., we
choose a coordinate k and l at random. Then we generate a
random number ξ between zero and 1, and if ξ � q, then we
choose the one-spin flip process. In this process, the flipping
probability is dependent on W (σkl → σ ′

kl ), which is given by
the Metropolis prescription as follows:

W (σkl → σ ′
kl ) =

{
exp(−�Ekl/kBT ) if �Ekl > 0

1 if �Ekl � 0
, (5)

where �Ekl is the change in the energy after flipping the
spin σkl → σ ′

kl , kB is the Boltzmann constant, and T is the
absolute temperature, and thus the new state is accepted if
�Ekl � 0, and in the case of �Ekl > 0 we choose another ran-
dom number 1 < ξ1 < 0 and if ξ1 � exp(−�Ekl/kBT ), then
the new state is also accepted, but if none of the conditions
are satisfied, then we do not change the state of the system.
On the other hand, if ξ > q, then the two-spin flip process
is chosen. In this case, in addition to the spin σkl , we also
randomly choose one of its neighbors σk′l ′ , which can be
either the nearest neighbor or the farthest neighbor coming
from a Jik . In this process, the two spins chosen are flipping
simultaneously, and for that the two-spin flip probability is
dependent on W (σklσk′l ′ → σ ′

klσ
′
k′l ′ ), which is given by

W (σklσk′l ′ → σ ′
klσ

′
k′l ′ ) =

{
0 if �Ekl,k′l ′ � 0
1 if �Ekl,k′l ′ > 0, (6)

where �Ekl,k′l ′ is the change in the energy after flipping the
spins σkl and σk′l ′ . Thus, in this process, the new state is just
accepted if �Ekl,k′l ′ > 0.

Repeating the Markov process N times, we have one Monte
Carlo Step (MCS). In our simulations, for p �= 0, we have
waited for 2 × 104 MCS for the system to reach the stationary
state for all the lattice sizes. We used more 5 × 103 MCS to
calculate the thermal averages of the quantities of interest.
The average over the samples was done using 25 independent
samples for any lattice. On the other hand, for the case p = 0,
we needed to wait for 5 × 105 MCS to reach the equilibrium
state, and more 3 × 105 MCS to calculate the thermal average,
only over one sample.

The measured thermodynamic quantities in our simula-
tions are the total magnetization per spin mF

L , the staggered
magnetization per spin mAF

L , the magnetic susceptibility χL,
and the reduced fourth-order Binder cumulant UL:

mF
L = 1

N

[〈∑
kl

σkl

〉]
, (7)

mAF
L = 1

N

[〈∑
kl

(−1)(k+l )σkl

〉]
, (8)

χL = N

kBT
[〈m2〉 − 〈m〉2], (9)

UL = 1 − [〈m4〉]
3[〈m2〉2]

, (10)

where [. . .] denotes the average over the samples, 〈. . .〉 is the
thermal average over the MCS in the stationary state, and m

can be mF
L or mAF

L in Eqs. (9) and (10). The lattice sizes from
L = 24 to L = 256 are simulated and the data are analyzed
via FSS. These Eqs. (7), (8), (9), and (10) obey the following
FSS relations in the neighborhood of the stationary critical
point λC :

mL = L−β/νm0(L1/νε), (11)

χL = Lγ /νX0(L1/νε), (12)

UL = U0(L1/νε), (13)

where ε = (λ − λC )/λC and λ can be T or q. Here m0, χ0,
and U0 are scaling functions, where β, γ , and ν are the
critical exponents related to magnetization, susceptibility, and
the length correlation, respectively. The derivative of Eq. (13)
with respect to the parameter λ gives us the following scaling
relation:

U ′
L = L1/ν

λC
U ′

0(L1/νε). (14)

We have determined the critical exponent relations β/ν,
γ /ν, and ν from the slope of a log-log plot of mL(λC ), XL(λC ),
or U ′

L(λC ) versus lattice size L, respectively. We also have
used another alternative method to estimate the values of
the critical exponents and the data collapse from the scaling
functions.

IV. RESULTS AND DISCUSSIONS

In this section, we illustrate and discuss the results of the
magnetic properties of the Ising model on a 2D A-SWN at
the nonequilibrium regime by the two competing dynamics.
For the study about the critical behavior and phase tran-
sitions at the nonequilibrium system, it was convenient to
fix the temperature T and additive probability p and to use
the competition parameter q as a variable to transit between
the ordered to disordered phases in the regions of T and p
of the phase diagram. This is convenient because the two-spin
flip mechanism is independent of the temperature T , and in the
present work we do not have used p as a variable to identify
the phase transitions.

Before studying the thermal phase diagrams, we will
present the best results for the behavior of thermodynamic
quantities and critical point values. These results were ob-
tained where most sites have the same coordination number
z = 5. Therefore, in Fig. 2, we have shown one of the best
results for the thermodynamic quantities obtained in the sta-
tionary state as a function of q for fixed p = 0.75 and T = 1.
We can see the self-organization in the system by finding an
AF phase, which is represented in the staggered magnetization
mAF

L . This is because for low values of q we have the transition
between the AF to P phases [see Fig. 2(a)] and from this
P phase to the ordered F phase [see mF

L in Fig. 2(b)] as we
decrease the flow of energy into the system (q → 0). For these
magnetizations, we also have their respective reduced fourth-
order Binder cumulants, U AF

L [Fig. 2(c)] and U F
L [Fig. 2(d)]

beyond the magnetic susceptibilities χAF
L [Figs. 2(e)] and χF

L
[Fig. 2(f)].

The thermodynamic quantities for the other p values in the
A-SWN regime, such as p = 0.25, p = 0.5, p = 0.75, and
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FIG. 2. Thermodynamic quantities in the phase transitions of the
nonequilibrium system, with p = 0.75, T = 1, and lattice sizes L
shown in the figures. (a) Staggered magnetization mAF

L , (c) and (e) the
Binder cumulant U AF

L and the staggered susceptibility χAF
L , respec-

tively. (b) Total magnetization mF
L of the system is represented, the

Binder cumulant U F
L (d), and the total susceptibility χF

L (f). The error
bars in the magnetization are smaller than the size of the symbols, so
for a better interpretation of the results, these were omitted.

p = 1, have also been computed. In the order to compare the
behavior during phase transitions, we also exhibited the same
thermodynamic quantities in the conventional square lattice
Ising model, p = 0, in Fig. 3. These result can see in details
for the mAF

L and mF
L in Figs. 3(a) and 3(b), respectively, U AF

L
in Fig. 3(c) and U F

L in Fig. 3(d), in addition to χAF
L in Fig.

3(e) and χF
L in Fig. 3(f). We have presented only the smaller

(L = 24) and the larger (L = 256) linear lattice size and they
are enough so that we can observe the finite-size behavior and
the critical point change qc as we increase p. On the other
hand, for the calculation of qc, we have used all six lattice
sizes of the system.

In order to evaluate the qc, we have employed two meth-
ods. First, we obtained by extrapolating the susceptibility
discontinuity to when L → ∞, which returns qc(∞), using
finite lattice sizes 24 � L � 256, in the plot of maximum
susceptibility as a function of 1/L. Second, we obtained by
the crossing of the Binder cumulant curves for the different
lattice sizes L. In Fig. 4 the values of q are displayed where
the susceptibility has its maximum value, χmax

L , as a function
of 1/L for the values of p selected. We also have the best fit
of the points, which is a linear fit, and for the extrapolation,
when L → ∞, we have the estimated of qc by using the linear
coefficient, i.e., we have made the infinite-size extrapolation
in according to q(χmax

L ) − qc(∞) = αL−1. By extrapolation,
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FIG. 3. Thermodynamic quantities as a function of q, for dif-
ferent values of p as indicated in the figures. We fixed the value
of T = 1, and for lattice sizes L = 256 (black curves), and L = 24
[red (light gray) curves]. (a) Staggered magnetization mAF

L ; (c) and
(e) the Binder cumulative U AF

L and staggered susceptibility χAF
L ,

respectively. (b) Total magnetization mF
L of the system is represented,

the Binder cumulant U F
L (d), and the total susceptibility χF

L (f).

the critical points qc(∞) in the transition between the AF-P
phases are represented in Fig. 4(a) and the transition between
the F-P phases are represented in Fig. 4(b).

The critical point values using magnetic susceptibility data,
qχ

c , and their respective errors are exhibited in Table I for
the transition between the AF-P phases, and in Table II for
the transition between F-P phases. In these transitions, we
also have used the crossing of the Binder cumulant curves in
the selected lattice sizes 24 � L � 256 to obtain the another
estimate for the critical points, qU

c , and the characterization
of the second-order phase transition in the system [30–33].
qU

c are shown in Table III and in Table IV for AF-P and F-P
phase transitions respecively. The critical points obtained in
both methods are equivalent.

TABLE I. Critical competition probability qc, based on the ex-
trapolating of the susceptibility discontinuity and in the AF-P phase
transition, for T = 1.

p qχ
c β/ν γ /ν ν

0 0.00149 ± 0.0001 0.16 ± 0.05 1.77 ± 0.03 1.04 ± 0.09
0.25 0.03966 ± 0.002 0.46 ± 0.07 1.07 ± 0.06 1.07 ± 0.03
0.5 0.07176 ± 0.003 0.45 ± 0.04 1.06 ± 0.04 0.96 ± 0.09
0.75 0.09062 ± 0.002 0.46 ± 0.03 1.04 ± 0.02 1.02 ± 0.05
1.0 0.09774 ± 0.002 0.48 ± 0.02 1.05 ± 0.02 1.06 ± 0.08
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FIG. 4. Extrapolation of the critical transition probability qc ob-
tained for linear lattice sizes 24 � L � 256 and for different values
of p as indicated in the figures. (a) The points in the transition
between AF-P phases are represented, and (b) the points in the
transition between the P-F phases. The values of critical transi-
tion probabilities qc(L → ∞) can be seen in Table I and Table II,
respectively.

With the critical point values, we built the phase diagram
which shows the regions on the plane of T versus q, where
the F, P, and AF phases are found. The phase diagrams are
presented in Fig. 5, for different values of p, where we can

TABLE II. Critical competition probability qc, based on the ex-
trapolating of the susceptibility discontinuity and in the F-P phase
transition, for T = 1.

p qχ
c β/ν γ /ν ν

0 0.964 ± 0.002 0.11 ± 0.02 1.67 ± 0.09 1.06 ± 0.09
0.25 0.917 ± 0.002 0.47 ± 0.06 1.01 ± 0.06 0.96 ± 0.09
0.5 0.895 ± 0.001 0.46 ± 0.02 1.04 ± 0.02 0.96 ± 0.09
0.75 0.883 ± 0.002 0.46 ± 0.01 1.06 ± 0.01 0.99 ± 0.06
1.0 0.880 ± 0.001 0.49 ± 0.01 1.0 ± 0.02 1.03 ± 0.04

FIG. 5. Phase diagrams with different background colors for the
phase transitions between the AF-P and P-F phases and for different
values of p as indicated in the figures. The black lines are just a
guide for the eye in the second-order phase transitions and the black
square dots are critical points calculated. The color map refers to the
magnetization of the system, mAF

L and mF
L , as indicated in the color

bars.

see the greater the probability of adding Jik , the greater the
region where we find the ordered phases.

Now, in order to better understand the behavior of these
phases (see Fig. 5), we can relate these ordered phases to
dynamics used in the competition. The AF phase, observing
the q axis, is found when q → 0 and the order parameter
mAF

L → 1 (see the figures on the left side in Fig. 5), i.e., when
the two-spin flip dynamic prevails in the competition. This
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TABLE III. Critical competition probability qc, based on the crossing of the fourth-order Binder cumulant curves and in the AF-P phase
transition, for T = 1. The effective dimension is given by hyperscaling relation deff = 2β/ν + γ /ν.

p qU
c β ν(mAF ) γ ν(χAF ) deff

0 0.00145 ± 0.00004 0.125 ± 0.03 1.0 ± 0.05 1.75 ± 0.04 1.0 ± 0.05 2.00 ± 0.21
0.25 0.0390 ± 0.0009 0.46 ± 0.06 0.96 ± 0.06 1.06 ± 0.05 1.0 ± 0.05 2.02 ± 0.29
0.5 0.0715 ± 0.0006 0.44 ± 0.05 1.0 ± 0.05 1.05 ± 0.03 1.0 ± 0.04 1.93 ± 0.24
0.75 0.0921 ± 0.0007 0.48 ± 0.04 0.98 ± 0.06 1.05 ± 0.06 1.0 ± 0.04 2.03 ± 0.31
1.0 0.0978 ± 0.0004 0.48 ± 0.03 1.02 ± 0.06 1.06 ± 0.06 0.98 ± 0.04 2.02 ± 0.23

is because, in the dynamic that simulates the system with an
external energy flow into it, the change in the spin states is
only accepted if it increases the energy of the system. Consid-
ering the Hamiltonian model, Eq. (1), the state of the highest
energy to which the dynamics lead the system is the one where
the spins are aligned antiparallel. The antiparallel order also
can be achieved through the A-SWN, because if we analyze
locally, the antiferromagnetic phase occurs when a central
spin is in the up (down) state, and its neighbors, to whom it is
connected, are in the down (up) state. Extending this analysis
to the entire network, an ordering of this type only occurs
when we have well defined what are the central spins and
what sites they can connect to; otherwise, completely random
long-range interactions can connect two distant sites in the
network that the highest local energy configuration of one of
these is unfavorable to the local antiparallel ordering of the
other site, thus making it impossible to obtain the stationary
state with an AF phase in the system. In this context, the F
phase is found in the limit that q → 1 and the order parameter
mF

L → 1 (see the figures of the right side in Fig. 5), i.e., when
the one-spin flip dynamic prevails. This dynamic is responsi-
ble for simulating the system in contact with the heat bath at
temperature T and favors the lowest-energy state through the
thermal equilibrium, in which all spins have the same state
following the Hamiltonian system, so, if we wanted to, we
could treat them without the sublattices in the A-SWN regime.
On the other hand, when none of the dynamics prevails, i.e.,
between the extremes of the probability q value, not one of
the expected order phase types is found in the system. Thus,
we have most of the values of q, the P phase in the system is
found, where both mAF

L → 0 and mF
L → 0. Another important

observation is that the phase diagram topology changes when
p increases, but the phases do not disappear.

After the presentation of the phase diagrams by exploiting
the thermal variations of the order parameters, the Binder
cumulant, and the magnetic susceptibility, we can now study

the critical behavior of these quantities in the vicinity of the
phase transitions using the FSS method to evaluate some crit-
ical exponents of the model. Therefore, to obtain the critical
exponents, we also used two methods, both referring to the
FSS method, using the scale relations of Eqs. (11), (12), and
(14). One of the methods refers to the value of the thermody-
namic quantities at the critical point, in which when we make
a log-log plot of the value of these quantities as a function
of L. Using the scale relations, we obtain ratios between the
critical exponents through the slope of the line of best fit
of those points. In Fig. 6, the behavior of thermodynamic
quantities near the critical point can be seen as a function of
L in the log-log plot. In Figs. 6(a) and 6(b) we were able to
find the ratio −β/ν in the AF-P and F-P phase transitions,
respectively, using the scaling relation of the Eq. (11), through
the slope in the linear fit of the points for each selected value
of p, as indicated in the figures. The same can be done using
the scaling relation of Eq. (12); however, the critical exponent
ratio is γ /ν and obtained by the slope of the linear fits of Figs.
6(c) and 6(d) for the different values of p and in the AF-P
and F-P phase transitions, respectively. Finally, to the ratios
between the exponents obtained previously, it is useful to use
the scaling relation of Eq. (14), in which with the data of the
Binder cumulant derivative we obtain information related to
the critical exponent of correlation length, ν. Here they were
obtained from the linear fit of the curves of Figs. 6(e) and 6(f)
for the different p values and AF-P and F-P phase transitions,
respectively. It is worth noting that as our interest is in the
slope of the log-log plot, we changed the linear coefficients
of the straight lines to separate the lines, thus making it easier
for the reader to see the fits. All the ratios between the values
of the critical exponents obtained by the log-log plot of the
scaling relations can be seen in Table I for the AF-P phase
transitions and in Table II for the F-P phase transitions.

Another method used to obtain the critical exponents is
through the scaling functions in Eqs. (11), (12), and (14)

TABLE IV. Critical competition probability qc, based on the crossing of the fourth-order Binder cumulant curves and in the F-P phase
transition, for T = 1. The effective dimension is given by hyperscaling relation deff = 2β/ν + γ /ν.

p qU
c β ν(mF ) γ ν(χF ) deff

0 0.965 ± 0.0004 0.125 ± 0.02 1.0 ± 0.05 1.70 ± 0.07 1.01 ± 0.03 1.95 ± 0.20
0.25 0.917 ± 0.0009 0.45 ± 0.05 1.0 ± 0.05 1.05 ± 0.05 1.0 ± 0.04 1.95 ± 0.26
0.5 0.895 ± 0.0008 0.46 ± 0.04 0.95 ± 0.07 1.05 ± 0.04 1.0 ± 0.04 2.02 ± 0.12
0.75 0.883 ± 0.0005 0.47 ± 0.03 1.0 ± 0.06 1.04 ± 0.06 1.0 ± 0.05 1.98 ± 0.23
1.0 0.879 ± 0.0006 0.49 ± 0.04 1.0 ± 0.07 1.02 ± 0.05 0.99 ± 0.06 2.00 ± 0.26
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FIG. 6. (a) and (b) the best fit of the staggered mAF
L and total mF

L

magnetization curves in the critical point as a function of the different
values of L in the log-log plot, respectively, for the AF and F phases,
in which the slopes we obtained the ratio β/ν between the critical
exponents. (c) and (d) in the AF and F phases, we have the best fit of
the staggered χAF

L L and total χF
L susceptibility curves at the critical

point as a function of L, and the slopes have given us the ratio γ /ν.
The critical exponent ν, we have obtained by the slope of the best fit
of the Binder cumulant derivative U AF

L and U F
L at the critical point, as

represented in (e) and (f) for the AF and F phases, respectively. The
critical exponents obtained by this method for the AF phase can be
seen in Table I and in Table II for the F phase.

around the critical point. For this, we isolate the scale function
and plot it in a log-log plot through the curves of mLLβ/ν

and χLL−γ /ν as a function of |ε|L1/ν , resulting in a single
curve for all lattice sizes L if we have the correct critical
exponents and critical points adjusted in the scaling relations.
In this method, the data collapse can also be obtained in a plot
that does not have the axes on the logarithmic scale, but the
asymptotic behavior that relates to the critical exponents are
not present. We can obtain the critical exponents because the
data collapse in the vicinity of the critical point depends on
the correct critical exponents of the system to occur, and, in
this way, we adjust them to obtain the best data collapse in
the criticality. Consequently, the exponents involved in this
data collapse are the critical exponents of the system. All
values of the critical exponents obtained by data collapse of
the scaling relations can be seen in Table III for the AF-P
phase transitions (β, ν(mAF), ν(χAF), γ ) and in Table IV for
the F-P phase transitions (β, ν(mF), ν(χF), γ ).

In Fig. 7, we have shown the data collapse for the scal-
ing functions of magnetization, Fig. 7(a), and for magnetic
susceptibility, Fig. 7(b), for the AF-P phase transition, with
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FIG. 7. Data collapse by FSS analysis for (a) staggered magne-
tization mAF

L and (b) susceptibility χAF
L for different values of L as

indicated in the figure and fixed p = 0.75. (c) and (d) the data col-
lapse for mAF

L and χAF
L , respectively, but for all values of p, in which

the critical exponents were obtained using the best data collapse for
all lattice sizes, and here we only display the lattice sizes L = 24 [red
(light gray) symbols] and L = 256 (black symbols). The ε parameter
is set to ε = (q − qc )/qc. The dashed lines represent the asymptotic
behavior of the scale functions. The values of the critical exponents
β, γ , ν(mAF

L ), and ν(χAF
L ) of the best data collapse can be seen in

Table III.

p= 0.75, which was the best data collapse obtained. In this
phase transition, we also plotted for all values of 0 � p � 1.0,
as can be seen in Fig. 7(c) and 7(d), the scaling function
of magnetization and magnetic susceptibility, respectively,
showing the best data collapse for the selected p values but
displaying only the lattice sizes L = 24 [red (light gray) sym-
bols] and L = 256 (black symbols) for the best differentiation
between the collapsed curves.

However, in the F-P phase transition, the figures that
present the best data collapse, for p = 0.75, are Fig. 8(a)
for the magnetization scaling function, and Fig. 8(b) for the
magnetic susceptibility scaling function. We also have calcu-
lated for all values of 0 � p � 1.0, but also only displaying
here two lattice sizes, L = 24 [red (light gray) symbols] and
L = 256 (black symbols), and they can be found in Figs. 8(c)
and 8(d) for the magnetization and the magnetic suscepti-
bility scaling functions, respectively. The critical exponents
obtained by this method, data collapse, can be found in
Table III for AF-P phase transitions and in Table IV for phase
transitions from F to P.

In both methods, we obtained very approximate values
for the critical exponents for the selected p values. The best
results shown here are based on data collapse; this is due to
the fact that for p = 0 the values of the critical exponents are
closer to the values of the Ising model on the regular square
lattice, which they are known by exact solution and MC simu-
lation, β = 1/8, γ = 7/4, and ν = 1. On the other hand, when
we increase the additive probability p, we also increase the
number of Jik added to the system, and, thus, it is convenient
to use the scaling relations of systems that can have mean-field

044115-8



NONEQUILIBRIUM ISING MODEL ON A … PHYSICAL REVIEW E 107, 044115 (2023)

-4 -2 0 2
-2

-1

0

1

2

3

ln
[m

LF
 L

/
]

(a)
 = 

 =  - 

-6 -4 -2 0 2

ln[| |L1/ ]

-4

-2

0

2

4

ln
[m

LF
 L

/
]

(c)  = 

 =  - 

-6 -4 -2 0 2 4
-6

-4

-2

0

ln
[

LF
 L

-
/

]

(b)

 = -
L=24
L=32
L=64
L=96
L=128
L=256

-10 -5 0

ln[| |L1/ ]

-10

-5

0

ln
[

LF
 L

-
/

]

 = -

(d)

p=1
p=0.75
p=0.5
p=0.25
p=0

FIG. 8. Data collapse by FSS analysis for (a) total magnetization
mF

L and (b) susceptibility χF
L for different values of L as indicated

in the figure and fixed p = 0.75. (c) and (d) the data collapse for
mF

L and χF
L , respectively, but for all values of p, in which the critical

exponents were obtained using the best data collapse for all lattice
sizes, and here we only display the lattice sizes L = 24 [red (light
gray) symbols] and L = 256 (black symbols). The ε parameter is
set to ε = (q − qc )/qc. The dashed lines represent the asymptotic
behavior of the scale functions. The values of the critical exponents
β, γ , ν(mF ), and ν(χF ) of the best data collapse can be seen in
Table IV.

critical behavior by the prediction that we have a system above
the Ising model upper critical dimension, d = 4, in the A-
SWN regime. To do that, it is enough in the scaling relations,
Eqs. (11), (12), and (14), to substitute the linear length L of
the lattice by the total number of spins in the system, L2 = N .
By doing this, as predicted, are obtained approximately the
mean-field critical exponents β = 1/2, γ = 1, and ν = 1/2.
The behavior of both the critical exponents for p = 0 and the
A-SWN regime (0 < p � 1) were represented in Fig. 9(a) for
the AF-P phase transition and in Fig. 9(b) for the F-P phase
transition.

The critical exponents are not independent of one another
but related by simple scaling laws, as is the case with the
hyperscaling law deff = 2β/ν + γ /ν, in which we have as a
result the effective dimension deff of the system. With this law,
we see that the system has approximately the same critical
exponents in the A-SWN regime, as we are returned that
deff

∼= 4.0 with the mean-field critical exponents, and deff
∼=

2.0 for p = 0, following the data in the Tables III and IV,
obtained with the scale relations of Eqs. (11), (12), and (14).

The universality class can be defined by the set of expo-
nents in the phase transition, as in the case of the second-order
phase transitions, in which systems that are very different
from each other can share the same set of critical exponents.
In general, these systems share the same spatial dimension,
symmetries, and ranges of interactions. Here, following the
set of critical exponents obtained at p = 0, we have the same
universality class of the equilibrium Ising model in the regular
square lattice. However, in the A-SWN regime (0 < p � 1),
we have long-range interactions in the system, and, due to its
consequent set of critical exponents, the system belongs to the
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(b) F
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FIG. 9. (a) Representation of the critical exponents presented in
Tables III and I for the critical behavior of the system in the AF-P
phase transition, taking into account the mean-field scale relation-
ships for the A-SWN regime (0 < p � 1). (b) Representation of the
critical exponents presented in Tables IV and II for the system in
the F-P phase transition, also using the mean-field scale relations
in the A-SWN regime (0 < p � 1). In both figures, we have the
comparison with the mean-field critical exponents (MF) by the dotted
lines, γ = 1.0 and β = ν = 0.5.

mean-field universality class. By comparing with the results
obtained for the Ising model in the two-dimensional A-SWN
at the thermodynamic equilibrium regime [24,28], we see that
both the nonequilibrium model and the equilibrium model
have the same universality class, the mean-field universality
class, in stationary critical behavior.

V. CONCLUSIONS

In this work, we have developed MC simulations to study
the thermodynamic quantities and the critical behavior of the
nonequilibrium Ising model on a 2D A-SWN. By using the
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one- and two-spin flip competing dynamics we reach the
stationary state of the system at the nonequilibrium regime.
We have found two types of phase transitions, from P to
AF and from P to F phases, when the two-spin flip dynamic
prevails in the system and when the one-spin flip prevails in
the system, respectively. To find the phases we have used the
total and staggered magnetizations per spin, and its respective
susceptibility and reduced fourth-order Binder cumulant, both
as a function of the competition parameter q. With the last two
quantities we obtained the critical points of the system and
we built the phase diagrams of the system. We have observed
that increasing the coordination number of the network by
adding long-range interactions to our A-SWN, with addition
probability p, we also increase the regions of the ordered
phases on the diagram.

Here we could have used the Kawasaki mechanism in-
stead the two-spin flip mechanism, because we only have
one type of spin in the lattice. If we had used the Kawasaki
mechanism, then the phases diagram undergoes a modifica-
tion, and now, that dynamic prevailing in the competition,
the magnetization and, consequently, the ordered phases of
the system will depend on its temperature. This dependence
with the temperature is due to the one-spin flip mecha-
nism, which favors the lowest-energy state, and in lower
temperatures all spins are parallel, i.e., always have the F
phase, and only have the possibility of the AF phase in high
temperatures [26].

Through the FSS arguments, we calculated the critical
exponents β, γ , and ν of the system, and for the A-SWN
regime (0 < p � 1) we obtained the same exponents of a
system with mean-field critical behavior, except for p = 0,

where, as expected, we obtained the critical exponents of the
Ising model in a regular square lattice. Thus, in the A-SWN
regime, we have concluded that the nonequilibrium system is
in the mean-field universality class, as the equilibrium system
in the A-SWN [24,28]. That equivalence between the critical
behavior of the equilibrium and nonequilibrium models was
already predicted and observed in other systems [4–8]. It
is also important to specify that our results concerning the
regions of the phase diagram based on the changes in the
critical points, and the mean-field behavior, is in agreement
with the observed behavior of disorder with shortcuts added
to the Ising model in a SWN [12,18,20–22,24,28].

The change in the critical behavior is directly related to
the network structure of the system, more specifically, in the
study of the free scale networks, it is shown that the criticality
of systems is very dependent on the degree distribution of the
network [29]. If the fourth moment of the degree distribu-
tion in the network is convergent, then a critical mean-field
behavior is observed in the system; otherwise, the existence
and kind of criticality is decided by the number of the more
connected sites in the network. For that, due the fact that
our network has a bimodal distribution, its fourth moment
is convergent and explains the critical mean-field behavior
obtained in our work.
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