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Conversion of stable crystals to metastable crystals in a solution
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Using a Becker-Döring-type model including cluster incorporation, we study the possibility of conversion of
stable crystals to metastable crystals in a solution by a periodic change of temperature. At low temperature, both
stable and metastable crystals are assumed to grow by coalescence with monomers and corresponding small
clusters. At high temperature, a large amount of small clusters produced by the dissolution of crystals inhibits
the dissolution of crystals, and the imbalance in the amount of crystals increases. By repeating this process, the
periodic temperature change can convert stable crystals into metastable crystals.
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I. INTRODUCTION

Among many possible crystal structures, the most stable
structure is realized and metastable structures disappear in
equilibrium. An exceptional case is chiral crystals, which have
two stable structures that are thermodynamically equivalent.
When the most stable structure is chiral, it is inevitable that
both left- and right-handed crystals exist in equilibrium. In
2005, Viedma demonstrated the conversion of a racemic mix-
ture of chiral sodium chlorate crystals into homochiral crystals
by grinding crystals in a solution [1]. The chirality conversion
by grinding is also possible in conglomerate forming chiral
molecules that racemize in a solution [2,3]. In contrast with
Ostwald ripening observed in the process of relaxation to
equilibrium, it is called Viedma ripening (VR). Several years
later, some researchers showed a similar phenomenon with
periodic temperature change [temperature cycling (TC)] of
a solution. The boiling of a solution with powder crystals is
a simple way to realize TC [4,5]. More quantitative exper-
iments were performed with controlled temperature change
of a solution [6,7]. One of the important features of VR and
TC is the exponential amplification of an initial small crystal
enantiomeric excess during the conversion.

From the theoretical analysis [8] of chemical reactions
that bring complete homochirality, it is likely that important
factors to realize a homochiral state in VR and/or TC are
also nonlinear autocatalysis and recycling of the product.
Nonlinear autocatalysis increases the asymmetry in the ratio
of two enantiomers and the product is recycled to produce
the dominant enantiomer. In a VR and/or TC experiment, the
enhancement of the dissolution of crystals by grinding crystals
and/or increasing temperature corresponds to the recycling
process. Then, the question is what processes in crystalliza-
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tion correspond to the nonlinear autocatalytic process. Several
mechanisms for VR have been proposed, such as the chi-
ral cluster incorporation in crystallization [9], the catalytic
surface reaction [10], the mutual inhibition [11] based on
the Frank model [12], and the secondary nucleation by the
shear stress of the flow [13]. The chiral cluster incorporation
is adopted for the explanation of VR in various approaches:
the simple rate equation [9,14–18], the time change of the
crystal size distribution such as a Backer-Döring (BD) model
[19–23] and a population balance (PB) model [24], and Monte
Carlo simulation [25,26]. The cluster incorporation mecha-
nism developed in BD-type models also explains the chirality
conversion by TC for achiral and chiral molecules [22,27].
For the crystallization of chiral molecules, simple molecular
incorporation without clusters described by a PB model re-
produces the chirality conversion in TC [28,29]. There is no
common view on the mechanism of TC at the moment [30].

While the essential process in TC for chirality conver-
sion is still not very clear, the chirality conversion by TC
is completely different from the relaxation to equilibrium.
The results of TC can be interpreted as the system chooses
one state from two thermodynamically equivalent states. The
final state is determined by the initial state and dynamics of
the system. Here, a simple question arises: Is it possible to
choose an energetically unfavorable state from two thermo-
dynamically inequivalent states in TC? A recent experiment
with the combination of VR and TC shows an extraordinary
phenomenon in which stable racemic crystals are converted to
metastable chiral crystals [31]. In a numerical study, the con-
version to the metastable phase crystals by VR is confirmed
[32]. These results show that the conversion of the phase of
crystals (hereafter called phase conversion) is possible by the
simple methods, and that even metastable phase crystals win
if the growth rate of metastable crystals becomes larger than
that of stable phase crystals.
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FIG. 1. Schematics of our model. “Crystals” means clusters whose size is larger than is and do not coagulate with other “crystals.”

In this paper, we study the phase conversion by TC in a
solution which contains the stable and the metastable phase
crystals. We discuss the mechanism of the phase conversion
in detail.

II. MODEL

For the investigation of the phase conversion by TC, we
use a generalized BD model with incorporation of clusters in
crystallization. The original BD model describes the change
of the cluster size distribution through monomers [33–35].
Our generalizations of the BD model are (i) introduction of
the stable and the metastable crystal phases and (ii) cluster
incorporation into crystals of the same phase, as schematically
shown in Fig. 1. In our model, the stable and metastable
phases are characterized by the following two parameters:
the equilibrium number of monomers (solubility) [36] and
the interfacial energy. Although two sets of parameters are
necessary for the stable and the metastable phases, we assume
that the interfacial energies of both phases are the same.
This setting ensures that the metastable phase crystals are
always energetically unfavorable for any given size. The sol-
ubilities of the stable phase neq

1,s and the metastable phase
neq

1,m are related to the difference in the chemical potential:
�μm − �μs = kBT ln(neq

1,s/neq
1,m ) < 0, where �μγ is the dif-

ference in chemical potential between the γ -phase crystal
and the solution, kB is the Boltzmann constant, and T is
temperature. Hereafter, we call neq

1,s/neq
1,m(< 1) the solubility

ratio.
For the generalization (ii), the acceptable incorporation

process depends on the cluster size i. Small clusters, whose
size is smaller than is, can be incorporated into clusters and
crystals (we call small clusters simply clusters). Large clus-
ters, whose size is larger than is, cannot be incorporated into
other crystals (we call large clusters simply crystals).

In the numerical calculation, we investigate the time
change of the number ni,γ , where γ = m and γ = s represent
the metastable phase and the stable phase. The change of ni,γ

by incorporation of a monomer or other clusters is given by
σi, jni,γ n j,γ , where the incorporation rate σi, j is proportional
to the collision cross section of the size i and j, i.e., σi, j =
ai2/3 j2/3 with a coefficient a. The change by dissolution is
λ

γ

i, jni,γ , where the dissolution rate λ
γ

i, j of the j-mer from the
i-mer is determined from the detailed balance condition,

λ
γ
i, jn

eq
i,γ = σi− j, jn

eq
i− j,γ neq

j,γ , (1)

where neq
i,γ is the equilibrium Boltzmann distribution and we

have assumed that σi, j is independent of γ for simplicity. The
Boltzmann distribution is given by the solubility neq

1,γ and the
free energy of an i-mer,

neq
i,γ = neq

1,γ exp[−ᾱ(i2/3 − 1)], (2)

where ᾱ corresponds to the interfacial energy divided by kBT .
Change of the number of monomers by the incorporation and
dissolution process is written as

∂n1

∂t
= −2σ1,1(n1)2 +

∑
γ=s,m

[
−

imax−1∑
j=2

σ1, jn1n j,γ

+ 2λ
γ

2,1n2,γ +
imax−1∑

j=2

λ
γ

j+1, jn j+1,γ

]
. (3)

The number of monomers is denoted by n1(= n1,m = n1,s )
because monomers are common. For simplicity, it is assumed
that a dimer formed by the coalescence of monomers belongs
to the stable or the metastable phase with equal probability.
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Change of the number of clusters with 2 � i � is is written as

∂ni,γ

∂t
=

[(i+1)/2]∑
j=1

(
σ ′

i− j, jni− j,γ n j,γ − λ
γ
i, jni,γ

)

−
imax−i∑

j=1

[
(σi, j + δi, jσi,i )ni,γ n j,γ − λ

γ

i+ j, jni+ j,γ
]
, (4)

where σ ′
i, j is defined as

σ ′
i, j =

{
σ1,1/2 if i = j = 1
σi, j otherwise, (5)

δi, j is the Kronecker delta, and imax is the maximum size of
crystals preset in our numerical calculation. Change of the
number of crystals with i > is is

∂ni,γ

∂t
=

min{is,[(i+1)/2]}∑
j=1

(
σi− j, jni− j,γ n j,γ − λ

γ

i, jni,γ
)

−
is,i+ j�imax∑

j=1

(
σi, jni,γ n j,γ − λ

γ
i+ j, jni+ j,γ

)
. (6)

We periodically change temperature T of the system. The
temperature profile is simple: T is constant and low in the first
half of the period P and high in the second half. The solubility
neq

1,γ at low temperature is smaller than that at high tempera-
ture. The effective interfacial energy ᾱ at low temperature is
larger than ᾱ at high temperature. A weak temperature depen-
dence of the constant a in the incorporation rate is ignored.

The parameters in our numerical calculation are as follows:
The constant in the incorporation rate is a = 1. In the low
temperature, the solubility of the metastable crystals is neq

1,m =
10−2 and the effective interfacial energy is ᾱ = 5. In the high
temperature, neq

1,m = 1.5 × 10−2 and ᾱ = 0.5. The period of
the temperature cycle is P = 10. The total mass is conserved
and normalized: n1 + ∑

i>1,γ ini,γ = 1. The maximum crystal
size is imax = 1000 and the maximum cluster size is is = 10.
The initial condition is that all monomers are in crystals and
they have the same size i = 500.

III. NUMERICAL RESULTS AND DISCUSSION

The state of the system is indicated by the relative crys-
tal mass difference between the stable and the metastable
crystals,

φ = Mm − Ms

Mm + Ms
, (7)

where the mass of γ -phase crystals is defined by

Mγ =
imax∑
i>is

ini,γ . (8)

We call φ the excess parameter in the present paper.
We demonstrate the conversion of the stable crystals to the

metastable crystals by TC when the difference in solubility is
small. The time change of the excess parameter φ with the
solubility ratio neq

1,s /neq
1,m = 0.99 is shown in Fig. 2. When

the initial condition is φ(0) = 0.05 (open triangle in Fig. 2),
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FIG. 2. Time change of the excess parameter φ. Open triangle:
φ(0) = 0.05; filled inverted triangle: φ(0) = 0.01. The dotted line
shows φ = 0.

all stable crystals are converted to metastable crystals. When
the initial condition is φ(0) = 0.01 (filled inverted triangle
in Fig. 2), all metastable crystals are converted to the stable
crystals.

In the previous work [32], it was shown that the phase
conversion of the stable crystals to the metastable crystals
is possible by VR. Using similar parameter values of the
solubilities and the interfacial energies (see Fig. 4 in [32]), the
conversion by TC is faster than that by VR. In an experiment
of the chirality conversion, the conversion time of TC is about
20 times shorter than that of VR [37]. Our result is consistent
with the experimental result, although a direct correspondence
between the theoretical and the experimental parameter values
cannot be made.

In our result shown in Fig. 2, the initial excess parameter
φ(0) is amplified exponentially in time. The behavior of the
excess parameter is similar to that of the crystal enantiomeric
excess of chiral crystals during VR and TC. However, the
metastable phase crystals can win only when φ(0) is above
a critical value.

Figure 3 shows the crystal mass distributions ini,γ at t =
500, 1000, 1500. The corresponding time change of the ex-
cess parameter φ is shown with open triangles in Fig. 2. Red
(light-gray) and blue (dark-gray) areas represent mass distri-
butions of the metastable crystals and the stable crystals. The
initial crystal distribution is ini,m = 0.525δi,500 and ini,s =
0.475δi,500, with the initial excess parameter φ(0) = 0.05. In
the initial relaxation (t � 50), the crystals dissolve rapidly
due to undersaturation. Then, the distribution takes a mono-
tonically decreasing form at the end of the high temperature
period, as shown in Fig. 3(a). Thereafter, the mass differ-
ence increases as the whole distribution gradually spreads
[Fig. 3(b)]. Finally, the metastable crystals dominate the sys-
tem and the stable crystals disappear completely [Fig. 3(c)].

To investigate the process in one temperature cycle, the
time change of the excess parameter in the 51st period is plot-
ted in Fig. 4(a). The low temperature period is 500 � t < 505
and the high temperature period is 505 � t < 510. The dotted
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FIG. 3. The crystal mass distribution at (a) t = 500 (φ = 0.18), (b) t = 1000 (φ = 0.65), and (c) t = 1500 (φ = 1). The initial distribution
is ini,γ = δi,500(1 ± φ)/2 with φ = 0.05. Red (light-gray) and blue (dark-gray) areas represent the masses of metastable crystals and stable
crystals.

line shows the magnitude of the excess parameter φ at the
beginning of the 51st period, and, at the end of the cycle,
φ slightly increases compared to the beginning. Both types
of crystals grow thanks to the supersaturation of monomers
and clusters which have been supplied in the high temperature
period. It is necessary to calculate the supersaturation in order
to determine which crystal is more favorable for growth. How-
ever, the conventional definition of supersaturation using the
number of monomers is inadequate because of the presence
of cluster incorporation. Instead, we use the growth rate of a
given size crystal as the degree of saturation. The growth rate
v

γ

i of a size i-mer of the phase γ is defined by the rate of
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FIG. 4. Time change of (a) the excess parameter φ and (b) the
incorporation 


γ

100 and the dissolution �
γ

100 of a crystal of the size
i = 100 [see Eq. (9)] in the 51st period. The low temperature period
is 500 � t < 505 and the high temperature period is 505 � t < 510.
The dotted line shows the magnitude of the excess parameter at
t = 500. Open diamonds and filled squares represent 


γ

100 for the
metastable crystals and the stable crystals, respectively. Open in-
verted triangles and filled triangles represent �

γ

100 for a metastable
crystal and a stable crystal, respectively.

incorporation and dissolution of the monomers and clusters,

v
γ

i =
is∑

j=1

j
(
σi, jn j,γ − λ

γ

i, j

) ≡ 

γ

i − �
γ

i , (9)

where 

γ

i and �
γ

i represent the sum of the incorporation
terms jσi, jn

γ

j and the sum of the dissolution terms jλγ

i, j ,
respectively. The conventional relation between the supersat-
uration and the growth rate is obtained when is = 1.

Figure 4(b) shows 

γ

100 (squares and diamonds) and �
γ

100
(triangles and inverted triangles) in the same 51st period.
Open and filled symbols represent the data for the metastable
and the stable phase crystals, respectively. As the growth
rate is the difference between the incorporation 


γ

100 and the
dissolution �

γ

100, the stable and the metastable crystals grow at
low temperature (500 � t < 505) and dissolve at high temper-
ature (505 � t < 510). In the low temperature period, there
is no significant difference in the growth rates. In the high
temperature period, crystals dissolve and the excess parameter
increases. Figure 4(b) shows that the metastable crystals are
more difficult to dissolve than the stable crystals because the
incorporation contribution of the metastable crystal 
m

100 is
more than that of the stable crystal 
s

100, while the dissolution
contributions �

γ

100 are not so different. This is because the
term �

γ

100 related to dissolution is independent of the cluster
size distribution since we have assumed that the solubility of
the metastable phase is not much different from that of the
stable phase. The term 


γ

100 related to growth depends on
the number of monomers and clusters. The difference of the
magnitude of the incorporation term is caused by the clusters
since monomers are common in our model. Even when the
crystals dissolve at high temperature, the incorporation term
contributes to the net growth rate. If the amount of crystals is
larger, the amount of small clusters becomes larger. For the
metastable phase crystals, the net dissolution rate is smaller
than that of the stable phase crystals due to the abundant
amount of the corresponding small clusters. As a result, the
excess parameter φ increases at high temperature and its value
is larger than that at the beginning of the period, as shown in
Fig. 4(a). By repeating this process, the metastable crystals
prevail and the stable crystals completely vanish.

We search the parameter range where the energetically
unfavorable metastable phase can win the stable phase in TC.
Figure 5 shows the example of the flow diagram in a mass
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FIG. 5. Flow diagram from various initial conditions (Mm +
Ms = 1) with φ(0) = 0.2, 0.28, 0.3, 0.4 for the solubility ratio
neq

1,s/neq
1,m = 0.9. The two stable fixed points are located at (0.69,0)

(open red circle) and (0,0.73) (filled blue square). The unstable
fixed point and the critical value of the parameter are located at
(0.39,0.17) (magenta cross) and (0.645, 0.355) (filled black triangle),
respectively.

space at the beginning of the low temperature period for the
solubility ratio 0.9, whose magnitude is relatively smaller than
the solubility ratio 0.99 used in Fig. 2 to make the initial
bias of the distribution clearer on the flow diagram. In our
initial condition, all molecules are in crystals: Mm + Ms = 1.
When the TC starts, both types of crystals dissolve and the
masses of crystals decrease. After a rapid initial relaxation,
passing by either side of the unstable fixed point, the sys-
tem reaches one of the stable fixed points. From the two
flow lines of φ(0) = 0.28 and 0.30, the critical value of the
parameter φ∗ = 0.29 with respect to the initial condition is
found. If φ(0) > φ∗, all stable crystals disappear and only
metastable crystals remain. The final state is characterized
by the excess parameter φ(∞) ≡ φm

s = 1. If φ(0) < φ∗, the
metastable crystals disappear and the stable crystals remain,
that is, φ(∞) ≡ φs

s = −1. The crystal mass at the stable fixed
point of the stable phase is larger than that of the metastable
phase owing to the solubility. The two flow lines with φ(0) =
0.28 and 0.30 are parallel during the initial relaxation, but
their directions become opposite at the unstable fixed point
(0.39, 0.17). The unstable fixed point in the mass space is
characterized by the excess parameter φu = 0.39.

From the flow diagram for various solubility ratios, the
phase conversion diagram is obtained as shown in Fig. 6.
Black triangles show the critical value φ∗ in the initial con-
dition. The critical value φ∗ increases linearly with decreasing
the solubility ratio. However, the critical value φ∗ vanishes
around the solubility ratio neq

1,s/neq
1,m � 0.74 because the stable

fixed point φm
s and the unstable fixed point φu disappear.

The stable crystals prevail in the final state starting from any
initial condition if the solubility ratio is less than the value,
neq

1,s/neq
1,m � 0.74, because the stable fixed point related to the
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FIG. 6. The phase conversion diagram shows the final phase for
the given solubility ratio and the initial excess parameter φ(0). In the
red area and the blue area, the final phase is metastable and stable,
respectively. Black triangles, open circles, blue squares, and yellow
crosses represent φ∗, φm

s , φs
s , and φu, respectively. Lines are guides

for the eyes.

stable phase crystal φs
s is always present. This behavior of φ

is the subcritical pitchfork bifurcation.

IV. SUMMARY

We investigated the conversion from the stable phase crys-
tals to the metastable phase crystals by simple temperature
cycling with the use of the generalized BD model. During
TC, crystals grow at low temperature and dissolve at high
temperature. When crystals dissolve, the majority metastable
crystals yield a larger amount of clusters, which prevent the
dissolution of the majority crystals through the large incorpo-
ration term 


γ

i . At the end of one cycle, the excess parameter
is amplified. From the flow diagram in the mass space for
various solubility ratios, the phase conversion diagram is con-
structed. If the solubility ratio neq

1,s/neq
1,m decreases, the initial

relative amount of the metastable crystals required for the
metastable phase to become dominant is large. The critical
initial excess parameter φ∗ increases linearly and makes a
jump to φ∗ = 1 because the stable fixed point related to the
metastable phase crystals vanishes. The behavior of φ corre-
sponds to the subcritical pitch fork bifurcation.

To the best of our knowledge, there is no experimental
result that directly matches our scheme. We believe that ex-
perimental verification would be possible if the difference
in solubility between the stable and metastable crystals is
small. Although the VR + TC experiment of aspartic acid
crystals has succeeded in converting stable racemic crystals
into metastable chiral crystals [31], the experimental system
is different from our model due to the molecular compositions
of the stable and the metastable phase crystals. A theoretical
study of the phase conversion of aspartic acid crystals is now
underway.
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