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Nonstationary but quasisteady states in self-organized criticality
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The notion of self-organized criticality (SOC) was conceived to interpret the spontaneous emergence of long-
range correlations in nature. Since then many different models have been introduced to study SOC. All of them
have a few common features: externally driven dynamical systems self-organize themselves to nonequilibrium
stationary states exhibiting fluctuations of all length scales as the signatures of criticality. In contrast, we have
studied here in the framework of the sandpile model a system that has mass inflow but no outflow. There is no
boundary, and particles cannot escape from the system by any means. Therefore, there is no current balance, and
consequently it is not expected that the system would arrive at a stationary state. In spite of that, it is observed
that the bulk of the system self-organizes to a quasisteady state where the grain density is maintained at a nearly
constant value. Power law distributed fluctuations of all lengths and time scales have been observed, which are
the signatures of criticality. Our detailed computer simulation study gives the set of critical exponents whose
values are very close to their counterparts in the original sandpile model. This study indicates that (i) a physical
boundary and (ii) the stationary state, though sufficient, may not be the necessary criteria for achieving SOC.
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I. INTRODUCTION

An externally driven, nonlinear system with open bound-
aries is key in the prescription of a self-organized critical
system [1]. The driving instrument adds intermittent mass
(or energy) to the system in the form of tiny particles. The
dynamics is nonlinear since the rule does not allow the local
accumulation of particles indefinitely [2–5]. This is incorpo-
rated using a cutoff in the particle number, beyond which the
particles get distributed. This way the system responds to the
external drive to minimize the effect of the drive that creates
inhomogeneity in particle density. The mass distribution takes
place in a “domino” process and creates a series of activity in
the form of an avalanche. Eventually, all these activities sub-
side due to spreading of particles through the self-organizing
diffusion process and also by flushing out of particles from
the system across the boundary. The system continues to be
driven ever after, repeatedly [6–9].

Thus, in their original prescription [1] Bak et al. designed
such a nonequilibrium system with a steady inflow of mass
through the driving process and outflow through the boundary.
As a result, a stationary state sets in when these two currents
balance each other. In this state the avalanches in the system
are observed to be of all lengths and time scales, which are
considered to be the signatures of the long-range spatiotem-
poral correlations and appearance of the critical state in the
system [10,11].

It was claimed that the steady flow of particle current
through the system and the settling of the system in a sta-
tionary state are the necessary conditions to achieve the
self-organized criticality (SOC) state. After a careful look,
however, one realizes that since the ratio of the numbers of
boundary to bulk sites becomes very small in the limit of
asymptotically large systems, there may be little effect of the
boundary in this problem. It had been observed that indeed an

increasing number of avalanches remain confined to the bulk
as the system sizes become larger which are not touched by
the boundary. This is because the probability distribution of
linear extent (diameter) of the avalanches is also observed to
decay as a power law [12].

This observation leads us to argue that the presence of a
physical boundary and establishing a stationary state under
the external drive may not be the absolutely necessary criteria
to achieve self-organized criticality. In particular, no current
balance to attain the stationary state is really required. In the
following we describe that even on an infinite system without
a boundary the system can in fact self-organize to a nearly
steady state. We devise a model system using the frameworks
of the well-known sandpile models of SOC [13–16], where
such a nonstationary but quasisteady state in the bulk is pro-
duced.

II. THE MODEL

We construct a growing sandpile on an infinite square
lattice which we consider as the x-y plane. Sand particles
are dropped one by one only at the origin of the coordinate
system. When a particle is dropped, some activity is generated
in the system through the hard core collision process follow-
ing the dynamical rule of the non-Abelian stochastic sandpile
model [11]. A collision is said to take place if more than one
particle share a lattice site at the same time when each particle
selects one neighbor site randomly with uniform probability
and moves there. As time evolves, the number of collisions
initially grows, reaches a maximum, and then decreases, and
eventually this activity dies after some time. Such a state is
referred to as the “passive state” when no particle moves. The
next particle is then dropped again at the origin. Therefore,
the addition of a single sand particle takes the system from
one passive state to another passive state through a sequence
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FIG. 1. At the origin (marked by the red circle) of the infinite
square lattice N = 4096 particles have been dropped one by one. The
distribution of particles (black square symbols) in the final passive
state has been shown. Apart from a thin outer interface, the bulk of
the system has a nearly constant density of particles.

of activities. This entire set of activities together is called an
“avalanche.” Different avalanches create different impacts to
the system, and their strengths are measured by the size of
the avalanches. Most commonly, the size s of an avalanche is
measured by the total number of collisions that take place in
the entire avalanche.

III. RESULTS OF THE STOCHASTIC SANDPILE

In the passive state, a lattice site is either occupied by one
particle or it is vacant. Typically occupied sites are randomly
distributed on the lattice (Fig. 1). Sometimes the origin may
also be occupied by one particle. Therefore, when a particle is
dropped at the origin, it is likely that a collision takes place,
which then triggers an avalanche. If some of the neighboring
sites are also occupied, there would be further collisions at
these sites and a cascade of collisions results.

We first characterize the passive state by the variation of
particle density after dropping N particles one at a time at the
origin. The density ρ(r, N ) is the average number of particles
at a site located at a distance r from the origin. When we plot
ρ(r, N ) against r in Fig. 2(a) for the three different values of
the total number N = 212, 214, and 216 of particles dropped,
we observe a flat bulk region for all N . In this region, the
particle densities are nearly the same, though there is a very
small but systematic N dependence. We find the average bulk
density ρ(N ) = ρ(∞) − AN−x1 , where ρ(∞) = 0.6835 and
x1 = 0.484 are found. For this reason we say the bulk of the
system has reached the quasi-steady state.

As the distance r from the origin increases, the bulk region
is followed by an interface where the particle density grad-
ually decreases and finally vanishes. This interface shifts to
larger r values as N increases. The steepness of the fall of
density profile increases on increasing N . We define a half
radius r1/2(N ) where the density is half of its average bulk
value ρ(N ). On plotting (not shown) r1/2(N ) against N on
a double logarithmic scale, we find r1/2(N ) = 0.6829N0.50

on the average. We use it in Fig. 2(b) for a scale transfor-

0 50 100 150 200
r

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

ρ(
r,

N
)

N = 2
12

N = 2
14

N = 2
16

-4 -2 0 2 4

(r - 0.6829N
0.50

)/N
0.04

0.0

0.2

0.4

0.6

ρ(
r,

N
)

(a)

(b)

FIG. 2. (a) The particle densities ρ(r, N ) in the passive state
at a distance r from the origin have been plotted after dropping
N particles one by one at the origin. (b) The same data of
(a) have been plotted again after scaling the x axis by (r −
0.6829N0.50)/N0.04. The three plots collapse nicely on top of one
another.

mation r − r1/2(N ). It makes all three curves pass through
nearly the same point, but their slopes at this point are dif-
ferent. To make them collapse on one another, we have to
scale the x axis by N−0.04. Therefore, we finally plot again
ρ(r, N ) against (r − 0.6829N0.50)/N0.04 to obtain a nice data
collapse.

The next question we ask is how the particle density in
the bulk is maintained as the system evolves. Other than a
constant inflow of particles at the origin, and since no particle
goes out of the system by evaporation or by other means, it is a
fully conservative system. These particles only get themselves
distributed to the larger space through the diffusive collision
process, but they maintain the bulk density, and consequently
the interface of the particle system moves outwards.

To see this point in more detail we consider a circle C of
radius R centered at the origin, situated well inside the bulk
region created by dropping N particles. Now we continue to
drop �N particles at the origin, one at a time again, and ob-
serve the flux of the particle current through the circle. There
are collisions at sites both inside and outside that are adjacent
to the circle. Therefore, for each particle addition at the origin,
some particles cross the circle from inside to outside, where
as other particles come to the inside from outside. In an actual
simulation, we mark all sites inside the circle and keep the
outer sites as unmarked. Corresponding to each avalanche, we
count how many particles jumped from marked to unmarked
sites, which constitutes the flux of outflow current f (t, out).
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FIG. 3. (a) The out flux f (t, out) through a circle of radius R =
32 centered at the origin per particle addition has been plotted against
time t between N and N + �N , with N = 214 and �N = 212. For
each avalanche there is an influx f (t, in) in general which is found to
be of the same order as f (t, out) and therefore it has not been plotted.
(b) The net outward flux f (t, out) − f (t, in) has been plotted. It is
observed that most of the time it is positive, i.e., outward, whereas
less frequently it is inward as well. The red line shows the average
net flux on this interval, which is very close to unity due to unit rate
of particle addition.

Similarly, the number of particles that jumped from unmarked
to marked sites constitute flux of the inflow current f (t, in).

In Fig. 3(a) we have shown the variation of f (t, out) for
�N = 4096 time units after dropping N = 214 particles. In
almost all avalanches f (t, in) is smaller than f (t, out) but
of the same order; occasionally, however, f (t, in) is larger.
Therefore, we do not plot the variation of f (t, in), which al-
most looks the same, but plot the net flux f (t, out) − f (t, in)
against time in Fig. 3(b), which is mostly positive, but some-
times negative too. The average net flux 〈 f (t, out) − f (t, in)〉
over the entire interval is very close to its exact value unity
and has been marked using the red line.

Similarly, for any finite volume within the bulk region
like the circle C the flux of outflow and inflow currents must
balance on the average. No particle leaves the system on an
infinite lattice, the system only self-organizes itself and parti-
cles spread out through the collision process. Within the circle
C the system tries to achieve the steady state of constant den-
sity, but it never succeeds in finite time, it only approaches its
asymptotic value as N increases. In Fig. 4(a) we have plotted
ρ(N, R), which is the average particle density within C during
the time interval N to N + �N . On extrapolation it gives
the density 0.6866 in the asymptotic limit of N → ∞. This
shows that even the core of the bulk region has not become
completely steady but it has attained a quasi-steady state and
slowly approaches its asymptotic state.

A similar conclusion can also be drawn by looking at the
probability distribution D[ f (out), N, R] of the outward fluxes
f (out) from the same circle C calculated within the time
interval �N after first skipping an initial time N [Fig. 4(b)]. It
has been observed that on increasing N the distribution shifts
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FIG. 4. (a) The average particle density ρ(N, R) within the circle
C of radius R measured within the time interval between N and
N + �N has been plotted against N−0.3331 and is extrapolated to
ρ(∞, R) = 0.6866. (b) Probability distribution of D[ f (out), N, R] of
the outward flux f (out) across the same circle for every particle ad-
dition at the origin within the time interval between N and N + �N
has been plotted against f (out). When N is increased from left to
right, the distribution is enlarged and larger values of the outward
fluxes become more probable. In both plots N = 214, 215, ..., 219 and
�N = 215.

to the larger out flux regime and there is no trace of the dis-
tribution reaching a steady time-independent form. This study
shows that the bulk of the system does not reach a true steady
state in finite time but slowly approaches its quasisteady form.

Now we would like to explore whether this self-organized
state is critical or not. For that we have to check whether
there are fluctuations of all length scales present in the system.
Accordingly, we have defined the avalanche sizes s and life
times T in the following way. When a particle is dropped at
the origin, it creates a sequence of activities in the system. The
lattice sites where particle collisions take place are updated
synchronously. Let the intraavalanche time be denoted by T .
The list of collision sites at time T are updated to create the
same list at time T + 1. The avalanche is finished when the
length of the list shrinks to zero. The total number of time
steps T is the lifetime of the avalanche and the total number
of collisions s is the avalanche size. Initially, their magnitudes
are very small, but they gradually grow and soon become quite
large. In Fig. 5(a) we have shown the variation of the size
s(t ) of the avalanche created by dropping the t th particle at
the origin. The time series is for a single run when a total
of N = 215 particles have been dropped. Next we average the
avalanche size over many different runs and plot the average
avalanche size 〈s(t )〉 against t on a double logarithmic scale
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FIG. 5. (a) Plot of size s(t ) of the avalanche created by dropping
the t th particle at the origin for a single run of N = 215 particles.
(b) The average value of the avalanche size 〈s(t )〉 has been plotted
against time t on a log - log scale, and the slope of the straight line
fitting the curve is 0.988.

in Fig. 5(b). The slope of the curve for large time is found
to be 0.988, which indicates that the avalanche size possibly
increases linearly with time.

We have calculated the probability distributions D(s, N )
and D(T, N ) of the sizes and lifetimes of the avalanches, re-
spectively, when a total of N particles are dropped. In Fig. 6(a)
we have plotted D(s, N ) against s for three different N values,
namely, 212, 214, and 216, and the avalanche size data have
been collected over many independent runs. The plots exhib-
ited the characteristics of power law distributions measured in
finite systems. On the double logarithmic scale they have the
linear region in the middle leading to a bending and sharp fall
at some high-value cutoff size sc(N ). The linear regions have
slopes of ∼1.200, 1.226, and 1.231, respectively, for the three
N values. The cutoff size increases with N by approximately
the same amount on the log-log scale when N is increased
by the same factor. This implies sc(N ) ∼ Nα , where α is the
scaling exponent to be determined. Further, we have done
a finite-size scaling analysis in Fig. 6(b). We observe that
the distribution D(s, N ) scales nicely using suitable powers
of N , like

D(s, N )Nβ ∝ G(s/Nα ), (1)

where G(x) is the scaling function such that G(x) → x−τ for
x << 1 and G(x) → constant for x � 1. The limiting distri-
bution D(s) = limN→∞ D(s, N ) ∝ s−τ must be independent
of N , which leads to τ = β/α. To try this finite size scaling
analysis we have scaled the x axis by s/N1.38 and the y axis
as D(s, N )N1.77. We have tuned the scaling exponents and
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FIG. 6. (a) The probability distributions D(s, N ) of the sizes of
avalanches have been plotted against the avalanche size s for N
particles dropped one by one. The data have been collected over one
million runs in each case. (b) The same data of (a) have been plotted
again after scaling D(s, N )N1.77 against s/N1.38, yielding the value of
the avalanche size exponent τ = 1.77/1.38 ≈ 1.28.

selected these values for the best fit. Therefore, this scaling
analysis gives τ = 1.77/1.38 ≈ 1.28. A similar analysis for
the lifetime distribution yields

D(T, N )NβT ∝ GT (T/NαT ), (2)

where αT = 0.77, βT = 1.15, and τT = 1.494. The average
values of avalanche size and lifetimes are found to grow like
〈s(N )〉 ∼ N and 〈T (N )〉 ∼ N0.41.

To check if these results are consistent with the model
of an ordinary finite size sandpile we have studied the same
system having a fixed open boundary. On an L × L system,
the particles have been dropped one by one only at the center
of the lattice. In this model, the collisions which take place on
the boundary may throw particles outside the system if these
directions are randomly selected. Consequently, the stationary
state corresponds to the balance of inflow and outflow currents
of sand particles. The avalanche sizes have been measured for
different system sizes L, namely, 65, 129, and 257. Again,
a data collapse analysis has turned out to be very successful
when D(s, L)L3.46 have been plotted against s/L2.72 (figure not
shown). This implies the exponent τ is 3.46/2.72 ≈ 1.272,
which matches very well with the value 1.28 of the same
exponent in the infinite system.

In the original sandpile model [11] the steady state is
robust with respect to the choice of the initial state to start
with, which is the signature of the self-organizing dynamical
process. Consequently, the particle density in the steady state
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FIG. 7. Relaxation of N particles dropped simultaneously at the
origin at time T = 0. (a) The number Ns(T, N ) of active sites at
the intraavalanche time T first sharply increases to a maximum and
then gradually decreases to zero. (b) The same data of (a) have
been plotted again after scaling the axes by N to obtain a nice data
collapse. The scaled curve fits to the generalized gamma distribution.

is independent of the density of particles in the initial state.
Here also we see the same phenomenon. In another study we
add all N particles together at the origin. When such a system
evolves to the passive state, we find the density profile indis-
tinguishable from the density profile of the first version when
particles were dropped one by one at the origin. Therefore,
the nearly same bulk density for all three N values exhibits
the signature of self-organization by the dynamical process of
this model. These results indicate that even without using a
fixed boundary for the mass outflow and current balance, the
system can achieve the self-organized state.

Next, we have studied how this system evolves start-
ing from such an initial condition. Specifically, after adding
N particles at time T = 0 at the origin of the infinite square
lattice, we study how the system relaxes as the time T in-
creases. At time T = 1, each particle jumps to one of the
neighboring sites, selecting it randomly. In the next time step
they again jump to their nearest neighbors. In general, col-
lision dynamics is followed, i.e., at any intermediate time if
there are more than one particle at a site at a time, then all
particles randomly jump to the neighboring sites. As before,
this dynamics stops only when there is no active site present
in the system, i.e., the system reaches a passive state.

Two quantities are measured. At any arbitrary intermediate
time T we count the number Ns(T, N ) of active sites, i.e.,
sites which have more than one particle at that time. It is
observed that Ns(T, N ) first grows, reaches a maximum, and
then decays to a passive state when there is no activity at all.
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FIG. 8. Relaxation of N particles dropped simultaneously at the
origin at time T = 0. (a) The number Na(T, N ) of active particles at
the intraavalanche time T initially sharply decreases and then slowly
vanishes, leading to the passive state. (b) The same data of (a) have
been plotted again after scaling both the axes by N to obtain a nice
data collapse. The scaled curves fit nicely to the shifted Gaussian
[Eq. (4)].

The numbers of such active sites have been averaged over a
large number of independent runs to obtain 〈Ns(T, N )〉. In
Fig. 7(a) we have plotted 〈Ns(T, N )〉 against T for N = 212,
214, and 216. As N becomes larger, the height of the peak as
well as the duration of the avalanche increases. In Fig. 7(b)
we plot again the same data but after scaling the axes. We
have plotted 〈Ns(T, N )〉/N against T/N and get a nice data
collapse. To find its functional form we find that the scaled
curve fits best to a generalized gamma distribution function:

y = a0(x/a1)ζ exp[−(x/a1)η], (3)

where y = 〈Ns(T, N )〉/N , x = T/N , and the best fitted param-
eters are a0 = 0.456, a1 = 0.234, η = 0.63, and ζ = 1.484.

Secondly, we have measured how the number of active
particles Na(T, N ) decays with time T and finally vanishes. As
time progresses the particles spread to a larger region, where
they hardly get other particles to collide and therefore become
more and more inactive. In Fig. 8(a) we show the plot of the
average number of active particles 〈Na(T, N )〉 against T for
N = 212, 214, and 216. Initially each curve decays fast, but then
it slows down and finally vanishes when the passive state is
reached. In Fig. 8(b) we scale the axes and plot 〈Na(T, N )/N〉
against T/N , which again gave a nice collapse of the data. The
best fitted form of this collapsed plot is the shifted Gaussian,

y = a0 exp[−a1(x + a2)2], (4)
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(a) (b)

(c) (d)

Point fed BTW sandpile on the infinite lattice

FIG. 9. A total of N = 215 particles have been dropped one by
one only at the origin of the infinite square lattice. The final stable
state height configuration has been drawn representing sand column
heights 0, 1, 2, and 3 by color dots: black (1477), blue (1532), green
(4032), and gray (7724), respectively. (a) Sites of height 0 only,
(b) sites with heights 0 and 1, (c) sites with heights 0, 1, and 2, and
finally (d) sites with heights 0, 1, 2, and 3.

where y = 〈Na(T, N )/N〉, x = T/N , and the best fitted param-
eters for N = 216 are a0 = 1.21, which is decreasing towards
unity on increasing N ; a1 = 5.94, which is increasing; and
a2 = 0.18, which is also gradually decreasing to zero.

IV. RESULTS OF THE DETERMINISTIC SANDPILE

Next, we perform a similar study for the deterministic Bak,
Tang, and Wiesenfeld (BTW) sandpile model [1,17] on the
infinite square lattice, and as before, we drop sand particles
one by one only at the origin. As per the rule of the BTW
sand pile, the sand column of height h(i, j) becomes unstable
only when it exceeds a predefined height z − 1. An unstable
sand column topples and redistributes sand particles as

h(i, j) → h(i, j) − z

h(i ± 1, j ± 1) → h(i ± 1, j ± 1) + 1

and z = 4 is chosen for the square lattice.
We first notice that since the dynamics is entirely de-

terministic, the underlying symmetries of the square lattice
determine the particle distribution patterns. In Fig. 9 the par-
ticle distribution patterns have been displayed after dropping
N = 215 particles one by one at the origin. The final stable
configuration has fourfold symmetry. For clarity we have
shown four figures with sites of heights (a) 0 only; (b) 0 and
1; (c) 0, 1, and 2; and (d) 0, 1, 2, and 3.

Since after dropping every four particles the origin be-
comes active, therefore there are a total of N/4 avalanches
when N particles are dropped. As more and more particles
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FIG. 10. The cumulative probability distribution P(s, N ) of the
avalanche sizes of the BTW model where sand particles have been
dropped only at the origin. (a) The distribution P(s, N ) has been
plotted against the avalanche size s for three different values of N .
(b) A nice data collapse of the same data is observed when we have
plotted P(s, N )N0.48 against s/N1.46. This analysis implies that the
avalanche size exponent τ = 1 + 0.48/1.46 ≈ 1.328.

are dropped, the avalanche sizes become gradually larger.
On calculating the probability distribution of the avalanche
sizes D(s, N ), we find the data to be very much fluctuating.
Therefore, we consider the cumulative probability distribu-
tion P(s, N ), i.e., the probability that a randomly selected
avalanche has size s or larger. This integrated distribution is
much smoother as displayed in Fig. 10(a) for N = 212, 214,
and 216. In addition, we execute a finite size scaling here
as well. In Fig. 10(b) we have plotted P(s, N )N0.48 against
s/N1.46 and obtain a nice collapse of the data. This implies
that the avalanche size exponent τ = 1 + 0.48/1.46 ≈ 1.33.

To check if this avalanche size exponent matches with the
same system but with a boundary, we have studied the same
BTW model on an L × L square lattice having the center at the
origin. As in the ordinary BTW model, particles are dropped
outside the boundary, the only difference here being that the
system is fed by dropping particles at the origin only. In the
stationary state, avalanche sizes are measured for a long time
and the cumulative probability distribution P(s, L) has been
calculated for L = 65, 129, and 257. A finite size scaling plot
of P(s, L)L against s/L2.9 exhibited a good data collapse (not
shown here), yielding τ = 1 + 1/2.9 ≈ 1.34. Therefore, the
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avalanche size distribution exponents for the single-site-fed
BTW model on a square lattice with or without boundaries
very well match (1.33 against 1.34) each other.

Finally, for the same system we have estimated the proba-
bility PL that an arbitrary avalanche reaches the boundary in
the steady state starting from the center of the L × L lattice.
That means PL is the fraction of avalanches that dropped
at least one particle outside the system. Our numerical esti-
mation gives PL ∼ L−0.82. We recognize this exponent to be
the same as the cumulative probability distribution P(ξ ) ∼
ξ 1−τξ of the linear extent ξ of the avalanches, and therefore
τξ ≈ 1.82 [12].

V. THE SUMMARY

To summarize, we have found a way to generate the self-
organized critical state without a physical boundary. In the
original models of SOC the physical entity, mass or energy for
example, can drop out of the system through such a boundary.
Here we have studied a growing sandpile where particles have
been injected one by one at the origin of the infinite square
lattice. The addition of each particle creates an avalanche
of activities in the system, which eventually dies down and
the system returns to a new passive state. This passive state
is not only self-organized but also critical since it exhibits
long-range correlations of all length scales. Since there is no
boundary, the data are found to be very well behaved.

In contrast to the original prescription of Bak et al. [1]
we observe that a steady flow of particle current through the
system where the average fluxes of global inflow and the
global outflow balance each other may not be an absolutely
necessary criterion. Instead, only the external drive that injects
an inflow current so that the particles only get scattered within
the system as per the dynamical rules of the model is sufficient
to ensure the self-organized criticality in the system. It is
also true that the balance of the outward flux and inward
flux of particles through any arbitrarily defined fixed volume
within the bulk of the system is always maintained. Because
of the particle number conservation and the self-organizing
dynamical process, a quasisteady particle density in the bulk
is maintained.

A similar study with an Abelian stochastic sandpile where
only two particles are transferred in a collision is under
progress.
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