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Gutzwiller approximation for indistinguishable interacting Brownian particles on a lattice
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Nonequilibrium Brownian systems can be described using a creation and annihilation operator formalism
for classical indistinguishable particles. This formalism has recently been used to derive a many-body master
equation for Brownian particles on a lattice with interactions of arbitrary strength and range. One advantage of
this formalism is the possibility of using solution methods for analogous many-body quantum systems. In this
paper, we adapt the Gutzwiller approximation for the quantum Bose-Hubbard model to the many-body master
equation for interacting Brownian particles in a lattice in the large-particle limit. Using the adapted Gutzwiller
approximation, we numerically explore the complex behavior of nonequilibrium steady-state drift and number
fluctuations throughout the full range of interaction strengths and densities for on-site and nearest-neighbor
interactions.
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I. INTRODUCTION

Models of interacting Brownian particles on a lattice have
been used to describe a range of nonequilibrium physical sys-
tems including molecular motors [1–3], colloidal particles [4],
and traffic flow [5–7]. A number of models incorporating
different types of particle interactions have been proposed, in-
cluding the asymmetric simple exclusion process (ASEP) [1]
and the zero-range process (ZRP) [8]. Recently, a many-
body master equation for interacting Brownian particles on
a lattice was derived, which generalizes these models to ar-
bitrary interaction strength and range [9]. The many-body
master equation is formulated using an operator formalism
for indistinguishable classical particles. One advantage of this
operator formalism is the ability to exploit solution meth-
ods from quantum many-body physics. In this paper, we
adapt the Gutzwiller approximation used for the quantum
Bose-Hubbard model to treat the case of classical Brownian
particles on a lattice. We then use it to explore the transition
from noninteracting to strongly interacting particles in the
case of on-site and nearest-neighbor interactions.

One of the simplest models of interacting Brownian par-
ticles on a lattice is the ASEP [1]. In the ASEP, there is a
strong repulsive interaction between particles, which prevents
particles from hopping to an occupied neighboring site. Due
to the simplicity of the ASEP, analytical solutions are ob-
tainable, and it has been applied to many systems such as
polymerization of nucleic acids [10,11] and molecular mo-
tors [1,3]. Another model for interacting particles on a lattice
is the ZRP [8,12]. In the ZRP, there is an interaction between
particles on the same site, and this gives rise to hopping rates
that are a function of the number of particles at the departure
site. Important properties of the ZRP are that the nonequilib-
rium steady state has a factorized form and can be mapped
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to the ASEP [8]. The ZRP has many applications including
modeling polymer dynamics [13] and sandpile dynamics [14].
A generalization of the ASEP and ZRP is the misanthrope
process [15], where the hopping rates are a function of the
number of particles at the departure and arrival sites. The mis-
anthrope process has applications in traffic modeling [5,16].

Recently, a many-body master equation describing inter-
acting Brownian particles on a lattice was derived [9]. The
many-body master equation describes particles interacting
via a “top-hat” interaction potential of arbitrary interaction
strength and range and thus generalizes many of the existing
models. The many-body master equation is formulated using
a creation and annihilation operator formalism for classical
particles [17,18] which treats the Brownian particles as indis-
tinguishable bosons. This formalism means that we can no
longer follow the trajectory of an individual particle, but it
helps reveal the collective behavior, which is of interest here.
The many-body master equation is not analytically solvable
in general, and exact numerical solutions quickly become
unviable for large numbers of particles and sites.

In quantum mechanics, the Bose-Hubbard model de-
scribes bosonic quantum particles with on-site interactions
hopping on a discrete lattice [19]. Thus the Bose-Hubbard
model represents an analogous quantum model to the many-
body master equation for Brownian particles. Many methods
have been developed to explore the Bose-Hubbard model,
including Bogoliubov theory [20] and the Gutzwiller approx-
imation [21,22]. In particular, the Gutzwiller approximation
has been used to explore the superfluid-to-Mott-insulator
transition of the Bose-Hubbard model [22] and to demon-
strate the formation of Mott-insulator shells in nonuniform
systems [23]. Because of the formal similarity of the Bose-
Hubbard model to the recently derived many-body master
equation for Brownian particles [9], adapting these methods
to Brownian systems seems promising.

In this paper we show how to adapt the Gutzwiller ap-
proximation from quantum mechanics to the Brownian case.
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Using the adapted Gutzwiller approximation, we then treat the
transition from noninteracting to strongly interacting particles
of the many-body master equation for Brownian systems on a
lattice in the case of on-site and nearest-neighbor interactions.
This has not been explored previously in the literature.

This paper is structured as follows. In Sec. II we briefly
review the operator formalism for classical particles and the
many-body master equation for interacting Brownian particles
on a lattice. In Sec. III we show how to adapt the Gutzwiller
approximation from quantum mechanics to the Brownian
case. In Sec. IV we present results obtained using the adapted
Gutzwiller approximation for the steady-state drift and on-site
number fluctuations of the Brownian system. In particular, we
explore the full range of interaction strengths from noninter-
acting to strongly interacting particles in the case of on-site
and nearest-neighbor interactions. In Sec. V we summarize
the results and comment on possible extensions and future
uses of these methods.

II. MANY-BODY FORMULATION OF BROWNIAN
MOTION

In this section we briefly review the creation and an-
nihilation operator formalism for classical particles [17,18]
and the many-body master equation for interacting Brownian
particles [9]. In the operator formalism for indistinguishable
classical particles [17,18], the state of the system, |P(t )〉,
evolves in time via

d|P(t )〉
dt

= L̂|P(t )〉, (1)

where L̂ is the evolution operator, which we assume to be time
independent. We further assume that a zeroth eigenvalue of L̂
exists, L̂|P0〉 = 0, such that the system has a steady state given
by |P0〉.

For out-of-equilibrium systems, L̂ is not self-adjoint: L̂ �=
L̂†. As a result, the left and right eigenstates of L̂ do not have a
simple relationship with each other [17]. The left eigenstate of
the evolution operator corresponding to the zeroth eigenvalue
is given by

〈Q0|L̂ = 0. (2)

Using the state 〈Q0|, we can define the normalization condi-
tion

〈Q0|P(t )〉 = 1 (3)

and the average of an operator Ô as [17]

〈Ô〉(t ) ≡ 〈Q0|Ô|P(t )〉. (4)

Here, we are most interested in the average of an operator in
the nonequilibrium steady state

〈Ô〉ss ≡ 〈Q0|Ô|P0〉. (5)

The non-self-adjoint nature of the evolution operator and the
definition of the average via Eq. (4) are the key differences
between this formalism and quantum mechanics [17].

A many-body master equation describing discrete hop-
ping on a deep-well periodic potential has been formulated
in terms of bosonic creation (â†

i ) and annihilation (âi) op-
erators [9]. Similar to quantum mechanics, these operators

describe the creation and annihilation of a Brownian parti-
cle in well (or site) i of the potential and satisfy the usual
bosonic commutation relations [âi, â†

j ] = δi j . The creation
and annihilation operators act on the number state for the
ith site |n〉i in the following way: â†

i |n〉i = √
n + 1|n + 1〉i

and âi|n〉i = √
n|n − 1〉i. The interaction between particles

in the many-body master equation arises from a top-hat in-
teraction potential [9]. The hopping rates in the many-body
master equation are a function of the occupation number of
the departure and arrival sites. In the case of nearest-neighbor
interactions, the many-body master equation describes a par-
ticular type of misanthrope process [15]. In this paper we
only consider the case of nearest-neighbor interactions. The
evolution operator for the many-body master equation is given
by

L̂ =
∑

i

[â†
i+1κ̂

+
i âi + â†

i−1κ̂
−
i âi − â†

i (κ̂+
i + κ̂−

i )âi], (6)

where κ̂+
i and κ̂−

i are the (number-dependent) forward and
backward hopping rates, respectively. For a short-range top-
hat potential, the hopping rates are well approximated by [9]

κ̂+
i ≈ κ+

i e−βi n̂i+1+αi n̂i , (7)

κ̂−
i ≈ κ−

i e−βi n̂i−1+αi n̂i , (8)

where n̂i = â†
i âi is the number operator acting on site i and

κ±
i are the hopping rates for a single particle, which, in the

deep-well limit, are given by Kramers rate. The parameters
αi > 0 raise the bottom of the wells of the effective many-
body potential. This lowers the energy barrier between sites,
which increases the hopping rate. Therefore the αi terms can
be interpreted as a dimensionless quantity representing the
strength of the repulsive on-site interaction between particles.
The βi > 0 terms raise the barrier height between adjacent
wells of the effective many-body potential if the wells are oc-
cupied. This decreases the hopping rate of a particle between
adjacent wells. Therefore the βi terms can be interpreted as
a dimensionless quantity representing the strength of the re-
pulsive nearest-neighbor interaction. The master equation (1)
with time evolution operator (6) has been shown to be equiv-
alent to a next-neighbor misanthrope process and the ASEP
and ZRP in various limits in Refs. [9,24].

Here we consider N particles spread across an M-well
periodic system where we are interested in the nonequilibrium
steady-state drift and on-site number fluctuations. It has been
shown [9] that, in this case, it suffices to use the reduced
evolution operator for a single period, given by

L̂R =
M∑

i=1

[â†
i+1κ̂

+
i âi + â†

i−1κ̂
−
i âi − â†

i (κ̂+
i + κ̂−

i )âi], (9)

with periodic boundary conditions. A continuity equation for
the number of particles at a single site can be obtained using
the “Heisenberg” equations of motion [9]

dn̂i

dt
= −( ĵi − ĵi−1), (10)

where ĵi = â†
i+1κ̂

+
i âi − â†

i κ̂
−
i+1âi+1 is the current operator.
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From the continuity equation, we can derive an equa-
tion for the nonequilibrium steady-state drift as [9]

v = L

N

M∑
i=1

〈 ĵi〉ss, (11)

where L is the period of the potential. Another interesting
parameter for Brownian particle systems is the steady-state
on-site number fluctuations given by

�ni ≡ 〈
n̂2

i

〉
ss − 〈n̂i〉2

ss. (12)

Due to the nonlinear nature of L̂R, the steady state |P0〉,
defined by L̂R|P0〉 = 0, cannot be determined analytically in
general. In Ref. [9] the limiting cases of weak and strong
interactions have been considered, but it is of interest to be
able to explore the transition from noninteracting to strongly
interacting particles. It is possible to solve for the ground
state of L̂R numerically. However, for N particles across M
lattice sites, the number of possible configurations grows as
(N + M − 1)!/[N!(M − 1)!], and thus numerical solutions
are only possible for small systems. Approximation methods
are necessary for larger systems. An approach to this is intro-
duced in the next section.

III. GUTZWILLER APPROXIMATION FOR BROWNIAN
PARTICLES

The Bose-Hubbard model [19] represents an analogous
many-body quantum system to the many-body Brownian mas-
ter equation. The Gutzwiller approximation has been applied
to treating the transition from weak to strong interactions of
the Bose-Hubbard model [22,25,26] and is thus a promising
approach for the Brownian case. In quantum mechanics the
Gutzwiller approximation factorizes the ground-state wave
function as a product of single-site wave functions [22,25].
This neglects correlations between sites and has been shown
to be equivalent to decoupling mean-field treatments [27]. In
the quantum case, the ground-state single-site wave functions
can be solved by evolving an arbitrary initial state forward in
imaginary time until it converges [26], or by using variational
approaches [21]. The Gutzwiller approximation is a numer-
ically efficient method to obtain the ground state for large
systems [26].

In the operator formalism for classical particles, analogous
to the Gutzwiller approximation for the Bose-Hubbard model,
the steady state is approximated as

|P0〉 =
M∏

i=1

|φ0〉i, (13)

where |φ0〉i is the state for site i. The state for a single site is
expanded in terms of the number states n, as

|φ0〉i =
∞∑

n=0

cn
i |n〉i, (14)

where the coefficient cn
i is related to the probability, pn

i , of
n particles occupying site i by pn

i = (ρn/n!)1/2cn
i (see Ap-

pendix A). Analogous to the quantum case, the unknown
coefficients cn

i can be determined by an iterative procedure
that we will describe in Sec. III B.

A similar approach has been applied previously to classical
interacting particle systems where is it known the exact steady
state has a factorized form, such as the ZRP [28]. In general
the steady state will not have a factorized form; however,
it is often a good approximation in the large-system limit.
Assuming a factorized form of the steady state is sometimes
referred to as a product-measure ansatz [28,29]. In this paper,
we refer to this as the Gutzwiller approximation because, in
the operator formalism, the factorized steady state is identical
to the Gutzwiller approximation of quantum mechanics, and
we solve for this steady state using methods that are analogous
to those in the quantum case.

In the operator formalism for classical particles, the left
eigenstate is not the adjoint of the right eigenstate, so we also
need to approximate the left eigenstate as a product of single-
site states

〈Q0| =
M∏

i=1

〈q0|i. (15)

An effective single-site evolution operator is found by av-
eraging over the operators acting on neighboring sites

L̂eff
i =

∏
m �=i

〈q0|mL̂R

∏
m′ �=i

|φ0〉m′ . (16)

For simplicity, for the remainder of this paper, we consider
the uniform case where αi = α, βi = β, and κ±

i = κ±. In this
case, in the steady state, each site is in an identical state. Under
these assumptions we derive the effective evolution operator
for site i of the form

L̂eff
i = (κ+ + κ−)(γ ′

1eαn̂i âi − γ1â†
i eαn̂i âi )

+ (κ+ + κ−)(γ2â†
i e−βn̂i − γ ′

2e−βn̂i ), (17)

where we have introduced the parameters

γ1 = 〈q0|me−βn̂m |φ0〉m, (18)

γ ′
1 = 〈q0|mâ†

me−βn̂m |φ0〉m, (19)

γ2 = 〈q0|meαn̂m âm|φ0〉m, (20)

γ ′
2 = 〈q0|mâ†

meαn̂m âm|φ0〉m. (21)

The ith state |φ0〉i then satisfies L̂eff
i |φ0〉i = 0. We will

demonstrate a method of self-consistently solving this non-
linear equation in Sec. III B below. We also require that the
left eigenstate satisfies 〈q0|iL̂eff

i = 0. This last requirement is
satisfied by taking the left eigenstate to be the coherent state

〈q0|i = 〈0|e√
ρâi , (22)

where ρ = N/M is the steady-state density of particles. Note
that L̂R [Eq. (9)] conserves particle number and thus 〈Q0|,
where 〈Q0|L̂R = 0, must have a fixed number. However, un-
der the Gutzwiller approximation, 〈q0|i cannot have a fixed
number of particles due to particle hopping between sites, and
Eq. (22) allows for these number fluctuations.

From Eq. (22) it follows that 〈q0|i is the left eigenstate of
the creation operator: 〈q0|iâ†

i = √
ρ〈q0|i. Therefore the pa-

rameters γ ′
1 and γ ′

2 simplify to γ ′
1 = √

ργ1 and γ ′
2 = √

ργ2.
The effective single-site evolution operator (17) simplifies to

L̂eff
i = (κ+ + κ−)(

√
ρ − â†

i )(γ1eαn̂i âi − γ2e−βn̂i ). (23)
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From this form of the evolution operator it is easy to see that
〈q0|iL̂eff

i = 0 with 〈q0|i given by Eq. (22).
Using the Gutzwiller approximation of the left and right

states in Eqs. (13) and (15), it follows that the steady-state
average of an operator of the form Ô = ∏

j ô j is

〈Q0|Ô|P0〉 =
M∏

i=1

〈q0|iôi|φ0〉i. (24)

Using the Gutzwiller approximation, the expression for the
drift per particle in Eq. (11) becomes

v = L

N

M∑
i=1

[κ+
i 〈q0|i+1â†

i+1e−βi n̂i+1 |φ0〉i+1〈q0|ieαi n̂i âi|φ0〉i

− κ−
i 〈q0|i−1â†

i−1e−βi n̂i−1 |φ0〉i−1〈q0|ieαi n̂i âi|φ0〉i]. (25)

In the uniform case, under the above simplifying assumptions,
this can be written as

v =v0
γ1γ2√

ρ
, (26)

where v0 is the single-particle drift given by L(κ+ − κ−) [9].
Similarly, the steady-state on-site number fluctuations are
given by

�ni = 〈q0|in̂2
i |φ0〉i − 〈q0|in̂i|φ0〉2

i (27)

= ρ〈q0|iâ2
i |φ0〉i + √

ρ〈q0|iâi|φ0〉i − ρ〈q0|iâi|φ0〉2
i . (28)

A. Comparison with mean-field approaches

It has been shown that applying the Gutzwiller approxi-
mation to the Bose-Hubbard model gives similar results to
decoupling mean-field approaches [27]. A similar result also
holds for the Brownian case. Let us assume that the state of
the system can be factorized as Eq. (13) for all time, i.e.,

|P(t )〉 =
M∏

i=1

|φ(t )〉i, (29)

and that Eqs. (15) and (22) also hold. Taking the average of
the continuity equation, Eq. (10), with these assumptions we
arrive at

dρi

dt
= κ+

√
ρ(〈e−βn̂i〉〈eαn̂i−1 âi−1〉 − 〈e−βn̂i+1〉〈eαn̂i âi〉)

+ κ−
√

ρ(〈e−βn̂i〉〈eαn̂i+1 âi+1〉 − 〈e−βn̂i−1〉〈eαn̂i âi〉),
(30)

where we have used ρi = 〈n̂i〉 and 〈âi〉 = ρi/
√

ρ. The last
relation results from ρi = 〈n̂i〉 = 〈â†

i âi〉 = √
ρ〈âi〉, which fol-

lows from Eq. (22).
In the noninteracting limit (β = α = 0), we find

dρi

dt
= κ−ρi+1 + κ+ρi−1 − κ+ρi − κ−ρi (31)

as expected. In the limit where β 
 1, α = 0, and there is at
most one particle per site, the many-body master equation re-
duces to the ASEP. For β 
 1, the term e−βn̂i is zero if site i
is occupied. Therefore the average 〈e−βn̂i 〉 is the probability of
zero particles on site i: 〈e−βn̂i〉 = 1 − ρi. In this limit, Eq. (30)

reduces to

dρi

dt
= −κ+ρi(1 − ρi+1) + κ−ρi+1(1 − ρi )

+ κ+ρi−1(1 − ρi ) − κ−ρi(1 − ρi−1). (32)

This is the same result found using mean-field treatments
of the ASEP [30]. Equations (31) and (32) thus provide a
connection between the Gutzwiller method and mean-field
approaches.

B. Self-consistent numerical method

In this section we illustrate a numerical method to self-
consistently solve for |φ0〉i, i.e., solve for the coefficients ci

n in
Eq. (14). Let us assume a time-dependent evolution operator
of the form

L̂eff
i (t ) = (κ+ + κ−)(

√
ρ − â†

i )[γ1(t )eαn̂i âi − γ2(t )e−βn̂i ],
(33)

where we have defined the time-dependent quantities

γ1(t ) = 〈q0|ie−βn̂i |φ(t )〉i, (34)

γ2(t ) = 〈q0|ieαn̂i âi|φ(t )〉i. (35)

In principle, we can determine the steady state |φ0〉i by evolv-
ing an arbitrary initial state forward in time via Eq. (33)
evaluating the parameters γ1(t ) and γ2(t ) at each time. Math-
ematically, we have

|φ0〉i = lim
t→∞ |φ(t )〉i = T lim

t→∞ exp

{∫ t

0
dsL̂eff

i (s)

}
|φ(0)〉i,

(36)
where T is the time-ordering operator.

A numerical algorithm to implement this process in dis-
crete time is as follows. An initial state is chosen such that it
gives the density 〈q0|in̂i|φ(1)〉i = ρ. Using the effective evolu-
tion operator (33), the state is propagated forward in time by

|φ̃( j+1)〉i = exp
[
�tL̂eff

i

(
γ

( j)
1 , γ

( j)
2

)]|φ( j)〉i, (37)

where j is the number of iterations, �t is a sufficiently small
time step (i.e., smaller than the inverse of the largest entry
in the evolution operator), and |φ̃( j+1)〉i is an un-normalized
state. The state is normalized by

|φ( j+1)〉i = |φ̃( j+1)〉i

〈q0|φ̃( j+1)〉i
, (38)

such that 〈q0|φ( j+1)〉i = 1.
For each iteration, the parameters γ

( j)
1 and γ

( j)
2 are evalu-

ated using the state |φ( j)〉i. The state |φ( j)〉i is self-consistently
evolved forward according to Eq. (37) until it converges to a
steady state. The convergence criterion used in this paper is∣∣∣∣∣1 − γ

( j)
2

γ
( j+1)

2

∣∣∣∣∣ < ε, (39)

where ε � 1 is the convergence threshold. In the simulations
in this paper, ε = 10−10. This self-consistent approach only
requires us to evaluate the state at a single site and therefore
provides an efficient numerical method to obtain results for
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large systems. Once we have found the steady state, we can
use Eqs. (26) and (27) to evaluate quantities of interest.

IV. NUMERICAL RESULTS

In this section we present results obtained using the
adapted Gutzwiller approximation. First we consider the cases
where α = 0 and β = 0 separately, before considering the
more general case where α �= 0 and β �= 0. Finally, we com-
pare the system behavior with the behavior of the quantum
Bose-Hubbard model.

A. α = 0 case

When α = 0 and β > 0, there is a repulsive interaction
between particles in the ith site and neighboring (i ± 1)
sites. The weakly interacting (β � 1) and strongly interacting
(β 
 1) regimes of the many-body master equation have been
explored analytically in Ref. [9]. We begin by comparing the
Gutzwiller method with these results.

For ρ < 1, in the limit β 
 1, the many-body master
equation reduces to an operator formulation of the ASEP [9].
Analytical expressions for the ASEP drift and number fluctu-
ations are [9]

v = v0
(1 − ρ)

(1 − 1/M )
, (40)

�ni = ρ(1 − ρ). (41)

In addition, a Bogoliubov method has been used to obtain an-
alytical expressions in the weakly interacting regime (β � 1,
α � 1) in the limit of a large number of particles (N 
 1).
Analytical expressions for the steady-state drift per particle
and the number fluctuations in this limit are given by [9]

v = v0 + v0ρ(α − β ), (42)

�ni = ρ[1 − ρ(α + β )]. (43)

Figure 1 shows a comparison between the Gutzwiller results
and these two limiting cases. The results obtained via the
Gutzwiller approximation not only agree well with the ana-
lytical expressions in both limits, but also provide values for
the transition between these limits.

For small system sizes, it is possible to find the exact
steady state |P0〉, where L̂R|P0〉 = 0, numerically. We next
compare the Gutzwiller results at a fixed density with exact
numerical calculations at the same density ρ = N/M but dif-
ferent numbers of sites. Figure 2 shows the drift and number
fluctuations in the case where α = 0. In this case, both the drift
and number fluctuations decrease with increasing interaction
strength. Figure 2 also shows that the exact numerical calcula-
tions for the drift (number fluctuations) decrease (increase) as
M increases, with the Gutzwiller results representing a lower
(upper) bound. Unfortunately, we are not able to treat larger
system sizes using the exact approach; however, these results
align with our expectation that the Gutzwiller approximation
corresponds to the large-system limit (M 
 1 and N 
 1).

Using the Gutzwiller approximation, we can explore the
behavior of the drift and number fluctuations for a range of
densities and interaction strengths. In Fig. 3, we show plots of
the steady-state drift and number fluctuations as a function of

FIG. 1. Plots of (a) steady-state drift and (b) on-site number fluc-
tuations obtained via the Gutzwiller approximation (solid line). For
comparison, results obtained from a Bogoliubov method [Eqs. (42)
and (43)] (dotted line) and results from the ASEP [Eqs. (40) and (41)]
(dashed line) in the M 
 1 limit are also shown. Parameters used are
κ+/κ− = 1.2, ρ = 0.5, L = 1, and α = 0.

β with α = 0. In this case, the steady-state drift and number
fluctuations decay exponentially to asymptotic values with
increasing interaction strength. For ρ � 1 the drift decays to
zero for large interaction strengths but tends to a finite value
for ρ < 1. The number fluctuations only decay to zero in the
large-interaction limit if ρ is an integer. These results will be
explored in more detail below. The large-interaction limit with
densities greater than 1 is often referred to as the asymmetric
simple k-exclusion process [31].

In Fig. 4, we show a contour plot of the drift and on-site
number fluctuations as a function of density and β for α =
0. Figure 5 shows more details of how the drift and number
fluctuations vary with ρ for specific values of β.

In Figs. 4(a) and 5(a) we see that for ρ > 1 the drift tends
to zero for large β. The drift also approaches zero faster for
larger densities. For ρ > 1 the neighboring site will be occu-
pied. This means that when β 
 1, the hopping rates given by
Eqs. (7) and (8) will be very small resulting in approximately
zero drift.

Figures 4(b) and 5(b) show the behavior of the number
fluctuations as a function of β and ρ. The general trend is
for the fluctuations to increase with density. However, in the
limit β 
 1, the number fluctuations go to zero for integer
densities. These integer values of density also have a strong in-
fluence on the number fluctuations for densities close to these
values, creating “fingers” of density with reduced fluctuations.
Note that despite the drift going to zero for ρ � 1 in the β 
 1
limit, the on-site number fluctuations are in general nonzero
except at integer densities.

To understand the number fluctuations further, we compare
the number state distribution pn

i [see Eqs. (14) and (A9)] for
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FIG. 2. Plots of results evaluated via the Gutzwiller approxima-
tion (solid black line) compared with results evaluated via an exact
numerical method (solid colored lines). (a) shows the steady-state
drift per particle, and (b) shows the steady-state on-site number
fluctuations. In both cases these are plotted as a function of β for
a lattice with a density of ρ = 0.5 and with M = 4 (yellow), M = 6
(blue), and M = 8 (red). Parameters used are κ+/κ− = 1.2, L = 1,
and α = 0. For (a) the dashed lines show the ASEP limit given by
Eq. (40). The black dashed line shows the case where M → ∞.

FIG. 3. Plots of (a) the steady-state drift per particle and (b) the
number fluctuations calculated via the Gutzwiller approximation for
systems with various densities. In all cases, α = 0 and the different
densities used are as follows: ρ = 0.25 (solid line), ρ = 0.5 (dashed
line), ρ = 1 (dash-dotted line), and ρ = 1.5 (dotted line). The pa-
rameters used are L = 1 and κ+/κ− = 1.2.

FIG. 4. Contour plots of (a) the steady-state bulk drift and (b) the
number fluctuations calculated via the Gutzwiller approximation as a
function of the density and the nearest-neighbor interaction strength
β. The parameters used are L = 1, α = 0, and κ+/κ− = 1.2.

an integer and noninteger density as the interaction strength
increases. Figures 6(a)–6(c) show the case for a noninteger
density, and Figs. 6(d)–6(f) show the case for an integer den-
sity. In the integer case, the state converges to a single number

FIG. 5. Plots of (a) the steady-state drift per particle and (b) the
number fluctuations calculated via the Gutzwiller approximation for
systems with various densities. In all cases, α = 0 and the different
values for β used are as follows: β = 1 (solid line), β = 1.5 (dashed
line), β = 2.5 (dotted line), and β = 7 (dash-dotted line). The pa-
rameters used are L = 1 and κ+/κ− = 1.2.
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FIG. 6. Plots of the number state distribution calculated using
the Gutzwiller approximation with various interaction strengths. In
(a)–(c), ρ = 2.5, and in (d)–(f), ρ = 2. The values shown for β

are (a) β = 0, (b) β = 2, (c) β = 10, (d) β = 0, (e) β = 2, and (f)
β = 10. Parameters used are α = 0 and κ+/κ− = 1.2.

state with increasing β. This results in the zero number fluctu-
ations we observed in Fig. 4(b). In contrast, in the noninteger
case, for large β the state of the system becomes a near-equal
distribution of two number states, and as a result, the number
fluctuations cannot be zero.

B. β = 0 case

In the case where β = 0 and α > 0 in Eqs. (7) and (8), the
repulsive interactions only occur between particles occupying
the same lattice site, and the many-body master equation re-
duces to the ZRP. Let us first compare the Gutzwiller
approximation at a specific density with exact numerical cal-

FIG. 7. Plots of the number state distribution for an arbitrary
site calculated using the Gutzwiller approximation (bars) and the
exact numerical method (crosses) with various interaction strengths.
Density values shown are (a)–(c) ρ = 0.5 (exact: M = 8, N = 4),
(d)–(f) ρ = 1 (exact: M = 7, N = 7), and (g)–(i) ρ = 1.5 (exact:
M = 6, N = 9). Interaction strengths shown are α = 0 [(a), (d), and
(g)], α = 2 [(b), (e), and (h)], and α = 5 [(c), (f), and (i)]. Other
parameters are β = 0 and κ+/κ− = 1.2.

FIG. 8. Plots of the steady-state on-site number fluctuations eval-
uated via the Gutzwiller approximation (solid black line) compared
with results evaluated via an exact numerical method (solid colored
lines). The densities shown are (a) ρ = 0.5, (b) ρ = 1, and (c) ρ = 2.
The system sizes used for the exact solutions in (a) are M = 4
(yellow), M = 6 (blue), and M = 8 (red), in (b) are M = 3 (yellow),
M = 5 (blue), and M = 7 (red), and in (c) are M = 3 (yellow),
M = 4 (blue), and M = 5 (red). Parameters are κ+/κ− = 1.2, L = 1,
and β = 0.

culations at the same density. Figure 7 shows the number state
distribution for three different densities and three different
interaction strengths. The results show a smoothly increasing
suppression of the number fluctuations with increasing α, very
similar to the case considered in Sec. IV B for increasing β

and α = 0. The Gutzwiller results display the same qualitative
behavior as the exact solutions. Although not shown in this
plot, agreement improves with increasing M (at the same
density and α), consistent with the Gutzwiller results being
the large-system limit.

The number fluctuations calculated via the two methods
provide a more quantitative comparison (see Fig. 8). In line
with the discussion in Sec. IV A, for integer values of density
the number fluctuations tend to zero with large α, whereas,
for ρ = 0.5, they tend to a finite value. Figure 8 shows that
the exact solutions for the number fluctuations (at the same
density and α) increase with increasing M, with the Gutzwiller
results providing an upper bound.

Although the number fluctuations are exponentially sup-
pressed with increasing α > 0, the coupling rate has an
exponential dependence on number [see Eqs. (7) and (8)]
which reverses this effect leading to the possibility of large
drifts. Figure 9 shows the drift for three different densities
corresponding to the parameters in Fig. 8. There are three dif-
ferent regimes of behavior corresponding to the cases ρ < 1,
ρ = 1, and ρ > 1 shown in Figs. 9(a), 9(b), and 9(c). When
ρ < 1, the drift calculated via the exact numerical approach
tends to a finite value for large α. The exact results show that
the drift (at the same density and α) increases with increas-
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FIG. 9. Plots of the steady-state drift per particle evaluated via
the Gutzwiller approximation (solid black line) compared with re-
sults evaluated via an exact numerical method (solid colored lines).
The densities shown are (a) ρ = 0.5, (b) ρ = 1, and (c) ρ = 2. Note
that in (c) the y axis has a logarithmic scale. The system sizes used
for the exact solutions in (a) are M = 4 (yellow), M = 6 (blue), and
M = 8 (red), in (b) are M = 3 (yellow), M = 5 (blue), and M = 7
(red), and in (c) are M = 3 (yellow), M = 4 (blue), and M = 5 (red).
Other parameters are κ+/κ− = 1.2, L = 1, and β = 0.

ing M, again with the Gutzwiller results providing an upper
bound. For ρ = 1, the exact results tend to a finite value given
by

v

v0
= M (44)

for large α. In this case, unlike the exact solution, the
Gutzwiller solution diverges for large α. However, within the
confines of the discrete master equation model (more on this
below), this result is consistent with the Gutzwiller approxi-
mation being the large-system limit, as Eq. (44) will tend to
infinity in this case. For ρ > 1 the exact solution grows expo-
nentially with α. The exponential growth rate also increases
with M, with the Gutzwiller approximation providing an up-
per bound. Although not shown, the Gutzwiller approach
also agrees with the Bogoliubov results (42) and (43) in the
α � 1 limit. While the number fluctuation (see Fig. 8) and
number distribution (see Fig. 7) results are consistent with the
interpretation that the Gutzwiller approximation represents
the large-system limit, due to small differences in the state
leading to large changes in the drift, away from the α � 1
limit the Gutzwiller approximation does not reproduce the
trends seen in the drift from exact numerical solutions (see
Fig. 9) for any values of ρ for the small numbers of sites we
have been able to simulate.

We can understand the physical origin of the ρ � 1 drift
behavior of the master equation by considering the original
top-hat potential. Increasing α with ρ � 1 raises the bot-

FIG. 10. Plots of (a) the steady-state drift per particle and (b) the
number fluctuations calculated via the Gutzwiller approximation for
systems with various densities. In all cases, β = 0 and the different
densities used are as follows: ρ = 0.25 (solid line), ρ = 0.5 (dashed
line), ρ = 1 (dash-dotted line), and ρ = 1.5 (dotted line). The pa-
rameters used are κ+/κ− = 1.2 and L = 1.

tom of the potential well, effectively lowering the barrier to
hopping and leading to an increased drift. It is, of course,
not physically possible for the drift to keep increasing with
interaction strength, and at some point the wells will become
so shallow that the discrete master equation is no longer a
valid description [9]. Thus the physics of the diverging drift
in Fig. 9 is of no interest as some other physical phenom-
ena will take over once α is large enough. Determining the
point at which the discrete master equation breaks down (and
the behavior beyond this point) is beyond the present master
equation treatment.

In Fig. 10 we summarize results obtained using the
Gutzwiller approximation for the ZRP for easy comparison
with the β = 0 case from Sec. IV B. Figure 10(a) shows that
the steady-state drift per particle increases from the nonin-
teracting drift as the on-site interaction strength α increases.
For ρ < 1, the drift approaches a finite value in the limit
α 
 1. For ρ � 1, the drift increases exponentially with inter-
action strength. The steady-state number fluctuations, shown
in Fig. 10(b), decrease as the interaction strength increases.
This holds for all values of the density despite the fact that
the drift increases with α in some cases. In fact, the number
fluctuations have the same behavior with increasing α (β = 0)
as they have with increasing β (α = 0) [see Fig. 3(b)]. This
behavior will be explored further below.

C. General case: α �= 0 and β �= 0

More generally, α and β will both be nonzero. Let us
first consider the number fluctuations. Comparing Figs. 3(b)
and 10(b), one can see that the number fluctuations have the
same dependence on α as on β. In fact, it is possible to show
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that for a fixed density the Gutzwiller state depends only on
the sum of these two parameters, α + β (see Appendix), and
thus they have the same impact on the number fluctuations.
One consequence of this is that the number state distribution
shown in Fig. 6 and the plots in Figs. 4(b) and 5(b) hold with
the replacement β → α.

The drift’s dependence on α and β is more complicated.
As an example, although the number fluctuations in Figs. 3(b)
and 10(b) are the same, the corresponding drifts shown in
Figs. 3(a) and 10(a) are very different.

As a further example, Fig. 11(a) shows the drift in the
case α = β. This demonstrates a zero gradient for small β

[in agreement with Eq. (42)] and then an exponential decay
to a finite value, except for the integer density case. In line
with previous results in Secs. IV B and IV A, the drift goes
to a finite value in the limit of large interactions for ρ < 1.
However, unlike the α = 0 case (cf. Fig. 3) the drift does
not go to zero for β 
 1 when ρ > 1, and unlike the β = 0
case (cf. Fig. 3) the drift does not diverge for α 
 1 when
ρ > 1. This demonstrates the competition between these two
interaction processes in the α �= 0 and β �= 0 case.

To further understand the drift behavior in the ρ � 1 case,
we plot the drift as a function of both α and β in Fig. 12. This
shows that when α/β < 1, we get the usual α = 0 behavior
where the drift decays exponentially to zero for increasing
interaction strength. Similarly, when α/β > 1, the drift in-
creases exponentially with interaction strength. Only in the
special case where α/β = 1 does the drift tends to a finite
(density dependent) value for large interaction strengths.

The density dependence of the drift in the α = β case
is shown in Fig. 11(b). This shows suppressed drift close
to integer values of density. This suppression becomes more
pronounced as interaction strength increases. A simple cal-
culation helps us to understand the origin of this behavior.
In the limit where β 
 1 and the density is n � ρ � n +
1, the number fluctuations of the Gutzwiller state are sup-
pressed, and we can approximate the state by only two number
states:

|φ0〉i ≈ cn
i |n〉 + cn+1

i |n + 1〉. (45)

The two unknown coefficients cn
i and cn+1

i can be determined
from the normalization condition and the density. Details of
these calculations are given in Appendix. The state (45) results
in the number fluctuations

�ni = (ρ − n)(1 + n − ρ), (46)

which reflects the dash-dotted line shown in Fig. 5(b).
The state (45) also leads to a drift of the form

v = v0e−(β−α)n (1 + n)

ρ
(ρ − n)(1 + n − ρ). (47)

If β 
 α, then we get the result

v =
{

0, n � 1
v0(1 − ρ), n = 0.

(48)

This is consistent with the dash-dotted line shown in Fig. 5(a).
However, if β ∼ α, then the on-site and nearest-neighbor
interactions partially cancel, allowing hopping to occur for
noninteger n. The case where α = β is shown in Fig. 11(b).

FIG. 11. Plots of the steady-state drift per particle evaluated via
the Gutzwiller approximation with α = β. In (a) the densities shown
are as follows: ρ = 0.25 (solid line), ρ = 0.5 (dashed line), ρ = 1
(dash-dotted line), and ρ = 1.5 (dotted line). In (b) the values for
β shown are as follows: β = 1.5 (dotted line), β = 2 (dash-dotted
line), β = 3.5 (solid line), and β = 10 (dashed line). The parameters
used are L = 1 and κ+/κ− = 1.2.

The numerical results show excellent agreement with Eq. (47)
for β � 6.

We can interpret these results as follows. Because β 
 1
suppresses hopping between sites, the number fluctuations be-
come zero for integer densities. However, due to the nonzero
probability of occupying a second number state, they remain
finite for noninteger densities. When β ∼ α, although number

FIG. 12. Contour plots of the steady-state drift (logarithmic
scale) calculated via the Gutzwiller approximation as a function of
the on-site, α, and nearest-neighbor, β, interaction strength. The
parameters used are L = 1, ρ = 1.1, and κ+/κ− = 1.2.
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fluctuations are still suppressed, the finite number fluctuations
at noninteger densities allow a limited type of hopping to
occur [essentially hopping that keeps the number difference
between two sites, n̂i − n̂i±1, constant, cf. Eqs. (7) and (8)],
and a finite drift is observed. Note that a different interpre-
tation is needed away from the β 
 1 limit. In this case, the
approximation given by Eq. (45) becomes invalid for calculat-
ing the drift (similar to the β = 0 case studied in Sec. IV B) as,
in this case, number states with small coefficients can make a
large contribution to the drift.

D. Comparison with the Bose-Hubbard model

It is interesting to contrast the behavior of this Brown-
ian system with the behavior of the quantum Bose-Hubbard
model. The Bose-Hubbard Hamiltonian in one dimension is
given by [22]

Ĥ = −J
∑

i

(â†
i âi+1 + â†

i+1âi ) + 1

2
U

∑
i

n̂i(n̂i − 1), (49)

where J is the hopping matrix element for the neighboring
sites i and i + 1 and U is the strength of an on-site interaction.

The ground state of the system is given by Ĥ |ψ0〉 = ε0|ψ0〉,
where ε0 is the lowest eigenvalue. The ground-state behavior
of this system is interesting. In the limit of strong on-site
interactions, U/J → ∞, the Bose-Hubbard model demon-
strates a Mott-insulator phase at integer densities. In the limit
of weak interactions, U/J → 0, the Bose-Hubbard model
demonstrates a superfluid phase where atoms freely tunnel
between sites. The Gutzwiller approximation has been used
to explore the transition between the Mott-insulator and su-
perfluid phases [22].

This has superficial similarities to the current Brownian
system. For instance, in the limit of strong repulsive interac-
tion, β 
 1, α = 0, the Brownian system behaves similarly to
the Mott-insulator phase of the Bose-Hubbard model, in that,
the nonequilibrium steady-state drift goes to zero for ρ � 1. In
the limit of weak interactions, β � 1, α = 0, the many-body
master equation shows analogous behavior to the superfluid
phase seen in the Bose-Hubbard model, in that the drift has a
finite value in this case.

However, there are fundamental physical differences be-
tween the two many-body systems. Most importantly, the
tunneling between neighboring sites occurs via a different
physical process in each case. In the quantum case, at low
temperature, the hopping rate J describes a quantum tun-
neling process between neighboring sites. In contrast, κ±
describes thermally induced hopping over neighboring barri-
ers. When interactions occur in the Brownian case, they affect
the hopping rates (by effectively raising or lowing neigh-
boring barriers), and this is captured in the number operator
dependence of the hopping rates κ±(n̂i, n̂i±1). In contrast, the
Bose-Hubbard model displays pure on-site interactions via the
interaction strength U .

These fundamental differences are evident in the many-
body behavior. In particular, in the Bose-Hubbard model,
interactions reduce number fluctuations, which reduce hop-
ping and therefore superfluidity. In contrast, in the Brownian
case, the relation between the drift and number fluctuations
is more complicated, with large drift sometimes being associ-

ated with small number fluctuations (see Fig. 10) and small or
zero drift sometimes occurring when number fluctuations are
large (see Fig. 3).

V. SUMMARY

The recently derived master equation for interacting Brow-
nian particles on a lattice provides an opportunity to explore
the behavior of this system for the whole range of interaction
strengths. This master equation is not analytically solvable
in general, and exact numerical solutions quickly become
impossible for large numbers of states and particles. Exploit-
ing the similarity of the many-body master equation to the
Bose-Hubbard model, we have adapted the Gutzwiller ap-
proximation used for the quantum Bose-Hubbard model to the
Brownian case. This has enabled us to explore the full range
of interaction strengths in the Brownian master equation for
large systems.

The results obtained using the adapted Gutzwiller approx-
imation reduce to the ASEP in the limit of strong repulsive
nearest-neighbor interactions (and density less than 1) and
agree with analytical solutions in the noninteracting and
weakly interacting cases.

We used the adapted Gutzwiller approximation, to map the
nonequilibrium steady-state drift and number fluctuations for
both on-site and nearest-neighbor interactions across the full
range of interaction strengths and densities ρ. The number
fluctuations tend to finite values with increasing interaction
strength except for “fingers” of strongly suppressed fluc-
tuations close to integer values of density, independent of
whether the interactions are on-site or nearest-neighbor ones.
For ρ < 1, the drift decays to a finite value with increas-
ing interaction strength. For ρ � 1 the drift tends to zero
for increasing interaction strength when nearest-neighbor in-
teractions dominate and grows exponentially when on-site
interactions dominate. In the special case when the nearest-
neighbor and on-site interactions have a similar magnitude,
the drift tends to a finite value for strong interactions except
for regions of strongly suppressed drift close to integer values
of density. These last results may have application in areas
where the misanthrope process has been applied, such as
traffic modeling [5,16].

The approach described here can be straightforwardly ex-
tended to treat longer-range interactions, higher dimensions,
and nonuniform systems. In this paper we have not considered
“attachment” and “detachment” [1,32]; however, the annihila-
tion and creation formalism lends itself to incorporating these
processes.

The accuracy of the results obtained using the adapted
Gutzwiller approach could be explored by comparison with
results from Monte Carlo simulations, similar to the quantum
case [33]. Using Monte Carlo simulations, we should be able
to obtain results for systems with more particles and sites than
using numerical diagonalization. This would be particularly
valuable to improving the comparisons between finite-sized
systems and the Gutzwiller approximation shown in Figs. 2, 8,
and 9.

More broadly, this work provides an illustration of using
the formal similarity between a many-body classical system
and an analogous quantum system to exploit solution methods
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developed over many decades for quantum systems [19]. The
formulation of the interacting Brownian system in terms of
creation and annihilation operators makes the adoption of
these methods particularly straightforward. Due to the broader
interest in nonequilibrium Brownian systems, such as in the
field of active matter [34–36], for example, this could be a
fruitful approach.
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APPENDIX: GUTZWILLER STATE

In this Appendix we present some partial analytical results
for the Gutzwiller state. Equation (23) can be written in the
factorized form L̂eff

i = L̂iR̂i, where

L̂i = (κ+ + κ−)(
√

ρ − â†
i ), (A1)

R̂i = (
γ1eαn̂i âi − γ2e−βn̂i

)
. (A2)

Due to this factorization the ground state of the system can be
written as R̂i|φ0〉i = 0 or(

γ1eαn̂i âi − γ2e−βn̂i
)|φ0〉i = 0. (A3)

Rearranging, we can write this as

e(α+β )n̂i âi|φ0〉i = γ2

γ1
|φ0〉i. (A4)

It is straightforward to show that the operators Âi = esn̂i âi

and Â†
i = â†

i e−sn̂ satisfy bosonic commutation relations:
[Âi, Â†

i ] = 1. We can thus conclude that the |φ0〉i must be a
coherent state with respect to the operator Âi, and we can write

|φ0〉i = N−1 exp

{
γ2

γ1
â†

i e−(α+β )n̂

}
|0〉i, (A5)

where N is determined by the normalization condition
〈q0|φ0〉i = 1. Equation (A5) represents only a partial analyti-
cal solution as γ1 and γ2 need to be determined by some other
means; however, it does provide information about the form
of the state. In particular, since the density is given by

〈q0|in̂i|φ0〉i = ρ, (A6)

this fixes the remaining unknown parameter, the ratio γ2/γ1.
Thus the form of Eq. (A5) tells us that for a fixed density the
Gutzwiller ground state depends only on the sum α + β.

Equation (14) expands the Gutzwiller state in terms of
number states. It is interesting to see how the coefficients cn

i
relate to the probability of occupying the nth number state.
Following from the definition of the average (5), the prob-
ability of occupying the nth number state is given by the
expectation value of |n〉〈n|, i.e.,

pn
i = 〈q0|n〉i〈n|φ0〉i, (A7)

where, from Eq. (14), we can recognize cn
i = 〈n||φ0〉i. From

the number representation of the coherent states and Eqs. (A5)
and (22) we can determine

〈q0|n〉i =
√

ρn

n!
, (A8)

〈n|φ0〉i = N−1 1√
n!

(
γ2

γ1

)n

exp

{
−1

2
(α + β )n(n − 1)

}
.

(A9)

Combining, we find

pn
i = N−1 1

n!

(√
ργ2

γ1

)n

exp

{
−1

2
(α + β )n(n − 1)

}
, (A10)

where the normalization coefficient N−1 ensures that∑
n pn

i = 1. When β = α = 0, this reduces to the Poisson
number distribution characteristic of a coherent state: pn

i ∝
ρn/n!. For nonzero interaction strengths, the exponential fac-
tor leads to a reduction in number fluctuations.

Let us consider the case where β 
 1. In this case,
Eq. (A9) suggests, and Fig. 6 shows, that the number fluc-
tuations are suppressed. In this case, assuming a density n �
ρ � n + 1, we can approximate the Gutzwiller state by just
the two number states |n〉 and |n + 1〉 as shown in Eq. (45).
The two unknown coefficients can be determined from the
normalization 〈q0||φ0〉i = 1 and the density given by Eq. (A6).
This gives the result

|φ0〉i =
√

n!

ρn

⎧⎨
⎩(1 + n − ρ)|n〉 +

√
1 + n

ρ
(ρ − n)|n + 1〉

⎫⎬
⎭.

(A11)

We can use Eq. (A11) to evaluate γ1 and γ2 via Eqs. (18)
and (20). We find

γ1 = e−βn[(1 + n − ρ) + (ρ − n)e−β], (A12)

γ2 = eαn

√
ρ

[n(1 + n − ρ)e−α + (1 + n)(ρ − n)]. (A13)

Equation (A9) can be used to show that these results are
consistent with the form of Eq. (A5) in the strong-interaction
limit. Combining Eqs. (A12) and (A13) via Eq. (26) and
dropping terms that are small when β 
 1, we get the drift

v = v0

ρ
e−(β−α)n(1 + n − ρ)[n(1 + n − ρ)e−α

+ (1 + n)(ρ − n)]. (A14)

In both cases of interest, β 
 α or β ∼ α, this reduces to
Eq. (47).

Using Eq. (A11), we can also calculate the quantity

〈n̂2〉 = n2(1 + n − ρ) + (1 + n)2(ρ − n) (A15)

= ρ − n(1 + n), (A16)

which can be combined with 〈n̂〉 = ρ to give the number
fluctuations shown in Eq. (46).
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