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Nonergodic Brownian oscillator: High-frequency response
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We consider a Brownian oscillator whose coupling to the environment may lead to the formation of a
localized normal mode. For lower values of the oscillator’s natural frequency w < w,, the localized mode
is absent and the unperturbed oscillator reaches thermal equilibrium. For higher values of w > @, when the
localized mode is formed, the unperturbed oscillator does not thermalize but rather evolves into a nonequilibrium
cyclostationary state. We consider the response of such an oscillator to an external periodic force. Despite the
coupling to the environment, the oscillator shows the unbounded resonance (with the response linearly increasing
with time) when the frequency of the external force coincides with the frequency of the localized mode. An
unusual resonance (“‘quasiresonance”) occurs for the oscillator with the critical value of the natural frequency
® = w,., which separates thermalizing (ergodic) and nonthermalizing (nonergodic) configurations. In that case,
the resonance response increases with time sublinearly, which can be interpreted as a resonance between the

external force and the incipient localized mode.

DOI: 10.1103/PhysRevE.107.044107

I. INTRODUCTION

Wave localization often occurs as in Anderson localization
due to destructive interference of waves from multiple scat-
terers, but it also can be caused by a single defect of mass
or potential in extended periodic structures [1-6]. Effects of
localized modes on dynamics of the classical Brownian (open)
oscillator were addressed, to the best of our knowledge, only
relatively recently, using the formalism of the generalized
Langevin equation [7-9]. Following Ref. [9], we will refer
to an open oscillator, whose coupling to the thermal bath
may generate a localized mode, as the nonergodic Brownian
oscillator. In the presence of a localized mode, the oscillator
does not reach thermal equilibrium with the bath but evolves
into a cyclostationary state in which the mean values and cor-
relations of dynamical variables oscillate with the frequency
of the localized mode. Cyclostationary stochastic processes
are not stationary and, therefore, manifestly nonergodic.

Compared to other mechanisms of the ergodicity break-
ing [10-15], the formation of localized modes is easier to
connect to specific, albeit often idealized, physical models.
In most of these models the thermal bath is represented by
a lattice [1-6], but that does not appear to be necessary. It was
suggested that wave localization might be important for the
functional dynamics of proteins [16]. The presence or absence
of a localized mode can often be controlled by an experimen-
tally tunable parameter, e.g., the oscillator’s natural frequency
w. For the model discussed in this paper, a localized mode is
formed when w exceeds a certain critical value of ® > w,. By
varying the oscillator frequency, one can engineer a broader
class of nonequilibrium processes which may involve both
ergodic (w < w.) and nonergodic (w > w,) configurations.
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The previous studies of the nonergodic oscillator were
focused on its relaxation and correlation properties in the
absence of external forces. In this paper, we consider the
dynamical response of a nonergodic Brownian oscillator to the
external harmonic force F () = Fysin(2¢). The response
has the form of unbounded resonance when the external fre-
quency 2 equals the frequency of the localized mode. Most
interesting is the response of the oscillator with the critical
natural frequency w, just below the formation of the localized
mode. In that case a resonance response will be shown to
increase with time sublinearly.

II. MODEL

We consider a Brownian oscillator described by the gener-
alized Langevin equation [17,18],

. 2 ! . FO . 1
¥=—wx —[K(t —)x(r)dt + — sin(Qr) + — £(¢),
0 m m

(D

where the noise £(¢) is zero centered and connected to the
dissipation kernel K (¢) by the standard fluctuation-dissipation
relation. The generalized Langevin equation can be rigorously
derived from first principles, and, in contrast to its Markovian
(time-local) counterpart, may hold on the timescale compara-
ble with the relaxation time of the thermal bath. The latter is
important for systems (particularly, viscoelastic) with a broad
hierarchy of relevant timescales [19-21].
We consider a specific dissipation kernel,

wo Ji(wol)
2 t
where J,(x)’s are Bessel functions of the first kind. The
kernel has the absolute maximum at + = 0 and for ¢ > 0 it

oscillates with an amplitude decaying with time as ¢ =%/, For
Fy =0 and w = 0, the generalized Langevin equation with

2
K@) = % Wo(wot) + Ja(wot)] = 2)
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kernel (2) describes Brownian motion of the terminal atom of
a semi-infinite harmonic chain, which is a version of Rubin’s
model [18].

The special feature of the kernel (2) is that its spectral
density p(v) has a finite upper bound wy,

p(v) = /OwK(t)cos(vt)dt = %m 0(wo —v), (3)

where 6(x) is the step function. That is known to be a condi-
tion for the formation of a localized mode whose frequency
w, lies outside the spectrum w, > wy [1-4]. Thus, the un-
perturbed oscillator has three characteristic frequencies w, wy,
and w,. The first two, w and wy, are explicitly present in the
Langevin equation, whereas the third w, is not and can be
viewed as a hidden parameter. One may expect a singular
response when the external frequency €2 coincides with (or
is close to) one of the three characteristic frequencies. Since
the localized mode frequency lies in the interval w, > wy, the
model shows most interesting results for the high frequency
response at 2 > wy. We will limit ourselves to that case. The
response properties at lower frequencies 2 < w( require a
somewhat different mathematical approach (see a remark in
the Conclusion) and will be considered elsewhere.

As far as only the first moments of the coordinate and
its derivatives are concerned, the stochastic nature of the
generalized Langevin equation and the fluctuation-dissipation
relation are redundant. By averaging Eq. (1) one gets for
the average displacement g(z) = (x(¢)) the integrodifferential
equation,

L _/fK L R
§=-w'q (1 = 1) g(r)de + 2 sin(@1), ()
0

which is totally deterministic. This equation was the sub-
ject of several recent studies, particularly for the case of
the fractional oscillator with a power-law dissipation kernel
K(t) ~t7 [22,23]. Solutions, whereas showing a number of
new interesting features, were still found to satisfy general
expectations of the linear response theory and typical experi-
mental setups: They involve transient terms, which die out at
long times and a steady-state solution, which oscillates with
the frequency of the external field and a time-independent
amplitude. As shown below, for a nonergodic oscillator the
solution may have a very different structure.

We assume that for + < O the external force is zero and
the oscillator at t = 0 is in thermal equilibrium with the bath.
This implies zero initial conditions g(0) = ¢(0) = 0. Then the
solution of Eq. (4) in the Laplace domain reads

1. -
G(s) = —G(s)Fex(s), (&)
m

where the Laplace transforms of the Green’s function G(¢) and
the external force are

1 Q

Gis)=———>——, Fx(&)=F——=. (6
(<) 52+ sK(s) + o? ®) '+ ©

In the time domain, solution Eq. (5) has the form of the
convolution,

q(t) = i / G(t — 1) sin(Qt) dT. @)
0

0
m

This expression is general; peculiarities of the model reside
in the specific form of the Green’s function G(¢). Substituting
the Laplace transform of kernel (2),

K(s) = 3(y/s* + @} —s) 8)

into Eq. (6) for G(s) one gets
2

s2+s1/sz+a)g+2w2

The inversion of this transform can be expressed in terms of
standard functions only for special values of the oscillator
frequency w, see Eq. (15) below. For arbitrary w, the Green’s
function in the time domain G(¢) can be expressed in an inte-
gral form inverting G(s) by evaluating a relevant Bromwich
integral on the complex plane. As shown in Ref. [9], for
the given model, there is a critical value of the oscillator
frequency,

G(s) =

©)

we = wo/N2 = 0.707wy, (10)
which separates two types of the system’s behavior,
G,(1), if o < we,

G@t)= _ . (1D
G.(t) + Go sin(wyt), if v > w..

For w < w,, a localized mode is not formed, and the Green’s
function involves only the ergodic component,

Gult) = 4  (Usin(xwot)x~1—x2dx
o (1 —4A2)x2 4424

Two Jo
where A denotes the dimensionless oscillator frequency in
units of wy. We will also use the notation A, for the dimen-
sionless critical oscillator frequency,

, 12)

Ae = wc o = 1/3/2. (13)

A =w/wy,

One can verify that G,(¢) for any A nonmonotonically and
slowly decreases and vanishes at long times. We will refer to
settings with o < w, (A < A.) as ergodic configurations. One
can show that the oscillator in ergodic configurations reaches
thermal equilibrium at long times [9]. The Green’s function
G(t) has also the meaning of the (normalized) correlation
function (x(0)x(¢z)) [9]. The asymptotic behavior G.(t) — 0
corresponds to the asymptotic fading of correlations and re-
laxation to thermal equilibrium.

For w > w,, as Eq. (11) shows, the localized mode is de-
veloped, and the Green’s function involves both ergodic and
nonergodic components. The latter does not vanish at long
times but rather oscillates with the localized mode frequency
wy. The localized mode amplitude Gy and frequency w, of
the nonergodic component are given by the following expres-
sions [9]:

8A2—4 222
m, Wy = m wy. (14)
In settings with w > w. (A > A.), which we refer to as noner-
godic configurations, correlations do not vanish at long times.
The oscillator does not reach thermal equilibrium, but evolves
to a cyclostationary state whose statistics oscillate with fre-
quency w.

wy Go =

044107-2



NONERGODIC BROWNIAN OSCILLATOR: ...

PHYSICAL REVIEW E 107, 044107 (2023)

For two values of the oscillator frequency, w = wy/2 and
o = w,, both corresponding to ergodic configurations, the
inverse transform of Eq. (9), or the integral expression (12),
can be compactly expressed in terms of Bessel functions,

w%l.]z(a)ot) if = wy/2,

G@t)=G.(1) =1, J1(wut)
o

15)

if w = w,.

One observes that for the critical configuration (w = w,) the
Green’s function decays slower. That feature can be viewed
as a precursor of the localized mode formation and leads to
conspicuous response properties.

III. RESPONSE OF CRITICAL CONFIGURATION:
QUASIRESONANCE

The most appealing type of response, which we refer to as
quasiresonance, occurs when the oscillator frequency has the
critical value and the external force frequency is equal to the
cutoff frequency of the bath spectrum,

® = w,, Q = wp. (16)

The Green’s function, according to Eq. (15), takes the form
G@t) = w% Ji(wt). Substituting it into Eq. (7) and taking into
account Kapteyn’s integral,

t
/ Ji(7) sin(t — t)dt = sin(t) — tJy(t), 17
0
see Ref. [24] and the Appendix, immediately yields
2F .
q(t) = ——{sin(wor) — wot Jo(wot )} (18)
mao,

0

Here, the first term is the anticipated steady-state solution
oscillating with the frequency of the driving force Q = w (re-
markably, with a zero phase shift). The second term, however,
is quite unexpected. Instead of being transient, it oscillates
with an amplitude increasing indefinitely in time as /7. Such a
resonancelike (quasiresonance) behavior is in drastic contrast
to that of the normal damped and fractional oscillators when
the resonance solution is stationary, and its amplitude is finite.

One may view the configuration with w = w, as a crit-
ical phase where the localized mode is incipient, and its
frequency coincides with the cutoff frequency of the bath
spectrum, lim;_,,, w, = wy, see Eq. (14). Unperturbed prop-
erties of such a phase show no signs of any anomalies, except
a slower decay of the Green’s function. However, the dynam-
ical response to the force with the frequency of the incipient
localized mode 2 = wy, is singular. One might suggest the
following interpretation. Recall that the Green’s function is
also the correlation function (x(0)x(¢)). The slower decay of
correlations in the critical configuration signifies the slower
heat exchange between the system and the heat bath. As a
result, the system receives energy from the external source
with the rate higher than the rate of heat dissipation into the
heat bath, which makes the response to increase with time
indefinitely. This interpretation, however, is somewhat super-
ficial and does not fully catch the subtlety of the result. It does
not explain the sublinear increase of the response with time.
Also, applying the similar reasoning to the normal damped

oscillator, one might expect that for a sufficiently small dissi-
pation coefficient the resonance response would increase with
time indefinitely. That, however, is not the case.

IV. RESPONSE OF SPECIAL ERGODIC CONFIGURATION

Another special setting when the response can be expressed
in a compact analytical form is (w = wp/2, Q = wp). The
Green’s function is given by the first expression in Eq. (15),
which can also be presented as

2
G(t) =G.(1) = w_O[Jl (wot) + J2(wot)]. (19)

Substituting this into Eq. (7) and taking into account inte-
gral (17) and its generalization [25],

/Ol J3(z)sin(t — t)dt = —tJo(t) +6J1(t) — 3 sin(¢), (20)
which also can be expressed as

fot J3(t)sin(t — t)dt =tJy(t) +4J:(t) — 3 sin(z), (21)
yields

4Fy .
q(1) = —= {sin(wot — ) + 2J1(wo1)}. (22)
mwyj

The structure of this solution is similar to that for the normal
damped oscillator. The first term is the steady-state solution
which oscillates with the frequency of the external force
2 = wy. The second term is a transient vanishing at long
times. Notable features are as follows: (1) a slow decay of
the transient term, and (2) the phase shift 7 of the steady-state
term is the same as for the undamped oscillator. Recall that
for the normal damped oscillator the phase shift reaches the
value 7 only in the limit Q2 — oo.

V. RESPONSE OF GENERAL ERGODIC
CONFIGURATIONS

Let us consider the response of general ergodic (sub-
critical) configurations with w < w.. The Green’s function
has only an ergodic component G(¢t) = G,(¢). Substituting
Eq. (12) for G.(¢) into Eq. (7), changing the integration order,
and integrating over T one obtains

F
qt) = —=(—A sin(Q) + ¢ (1)}, (23)
mwo

where the amplitude A and transient ¢(¢), both dimensionless,
are given by the integral expressions,

_ 4 ! x2V/1 — x2dx o
N ;/0 [(1 = 422)x2 4+ 404](A2 — x2)’ (24
_4A : x+/1 — x2 sin(xwot )dx

o) = ?/0 [(1 — 422)x2 + 4A4](A2 —xz)' (25)

Here, A stands, as above, for the dimensionless oscillator
frequency, and A denotes the dimensionless external force
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frequency both in units of the cutoff frequency wy,

A=w/wy, A =Qwy. (26)

The considered domain (w < w., 2 = wgy) corresponds to
A<y A1)

For the strict inequality A > 1, the integrands in the above
expressions have no singularities, so the integrals converge.
For A =1 and A # A., the integrands have an integrable
singularity at the upper integration limit, and the integrals still
converge. For the special case (A = A, A = 1), the integrals
diverge at the upper integration limit, and the above expres-
sions are not valid. That case, however, was already described
in Sec. III by another method.

Excluding the special case (A = 1., A = 1), the integral
expression Eq. (24) for the amplitude A can be worked out to
the explicit form

A 2

A2+ AVAT T =222

Equation (25) for ¢(¢) is reduced to a more explicit form

apparently only for (A = 1/2, A = 1), which is one of the

two special settings considered above. For that case, Eqs. (25)

and (27) give ¢(t) = 8J1(wpt) and A = 4, and Eq. (23) recov-
ers Eq. (22).

According to Eq. (27), for the considered domain (A <

Aes A = 1) the amplitude A is positive. Then, we can write
the result (23) as

27)

K
q(t) = —{A sin(Qt — ) + p(1)). (28)
ma)O

Recall again that the phase shift 7 is a property similar to that
of the undamped oscillator for 2 > w, whereas for the normal
damped oscillator the phase shift reaches 7 only in the limit
Q> ow.

One can verify that, for A < A., the term ¢(¢) given by
Eq. (25) is transient and vanishes at long times. Then, the
asymptotic solution is given by the steady-state term, oscil-
lating with the frequency of the external force,

A .
qt) — 5 sin(Qr — ) ast — oo. 29)

mwg
However, the decays of the transient ¢(¢) is slow, and it is get-
ting slower as A — A.. As a result, there is a significant time
interval, whose duration increases, in fact diverges as A — A,
when ¢(t) oscillates with an almost constant amplitude. Then,
the solution ¢(¢) is governed by the interplay of two oscillating
terms in Eq. (28). As a result, the solution, during a long albeit
finite time interval, has not a harmonic form (29) but instead
shows a beat pattern. For a fixed value of A close to A, the beat
period tends to increase when A — 1. In the limits A — A,
and A — 1 the initial increasing section of the first beat has
the infinite duration, and the solution takes the quasiresonance
form Eq. (18). The tendency is shown in Fig. 1.

VI. RESPONSE OF NONERGODIC CONFIGURATIONS

Consider now the oscillator with natural frequency w >
w.. The localized mode now is fully developed, and the
Green’s function, according to Eq. (11), involves the harmonic
(nonergodic) term Gy sin w,t. In that case, one may anticipate

A=0.7, A=1.05

1=0.7, A=1.025

2=0.7, A=1.005

\
0 100 200
ot

FIG. 1. The average coordinate ¢(t), in units of gy = Fy/ (mw(z))
for ergodic configurations with the dimensionless oscillator fre-
quency of A = w/wy = 0.7 (just below the critical value of A, =
1/+/2 2 0.707) and three values of the dimensionless external fre-
quency A = Q/w,. At longer times, the beat pattern dies out, and
q(t) takes the steady-state form Eq. (29). The plot at the bottom is
close to that for the quasiresonance solution Eq. (18).

the response to be similar to that of the undamped oscillator
with the natural frequency w,, showing the resonance at Q =
ws. The expectation is confirmed by the calculations below.

For nonergodic configurations with w > w,, the Green’s
function has now both ergodic and nonergodic (periodic) com-
ponents G(t) = G.(t) + Gp sin(w,t). Substituting this into
Eq. (7), taking into account Eq. (12) for G,(¢), changing the
integration order, and integrating over t yields the result for
q(t). We write it as

q(1) = qe(t) + Gne(t), (30)

where the first and second terms come from the ergodic and
nonergodic components of the Green’s function, respectively.
The ergodic term g,.(t) coincides with the response of the
ergodic configuration given by Eq. (28),

K
qge(r) = —02{A sin(Qr — ) + @(1)}, 3L
ma)o

where A and ¢(t) are still given by integral expressions (24)
and (25). However, for the given domain (A > A., A > 1),
expression (24) for A is reduced not to Eq. (27), but to a more
involved form

A 20422 — 1)(A% — AVAZ — 1) — 422
T (AR = D)@A —4a2A2 A2
At A = Ay = 41*/(42* — 1) both the numerator and the de-

nominator are zero, and the expression has to be extended by
continuity,

(32)

1
202402 — DX — 1)

One observes that the amplitude A behaves qualitatively sim-
ilar to that for ergodic configurations Eq. (27). For any fixed

A(Ng) = Alirr{l\ A= (33)
— N0
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value of 1 > A., the amplitude A as a function of A monoton-
ically decreases and shows no maximum (no resonance) near
A=A (2 =w).

The function ¢(¢) in Eq. (31) is still given by Eq. (25).
One can verify numerically that for the given domain it is
transient, i.e., dies out at long times. However, as for the
subcritical case of A < A., the decay time of ¢(¢) is getting
longer and diverges when A — A, and A — 1. As a result,
the ergodic component ¢,.(t) behaves similar to the solution
for ergodic configurations with A < A.. For A close to A, and
A close to 1, g.(¢) shows on a shorter timescale beats patterns
similar to those illustrated in Fig. 1. In the limit A — A
and A — 17 the duration of the first beat diverges and g, (t)
takes the quasiresonance form (18). For a finite A — A, > 0,
q.(t) evolves on a longer timescale to the steady-state solution
oscillating with frequency 2.

Consider now the the nonergodic term g,.(¢) in Eq. (30).
Substituting the nonergodic component of the Green’s func-
tion Gy sin w,! into Eq. (7) yields

Fy, Gy 1

Gne(t) = m[ﬁ sin(wxt) — w, sin(§2t)] (34)
for Q # w,, and
FyGy |: 1 . :|
Gre(t) = — sin(2¢) — t cos(2t) 35)
2m | Q

for Q = w,. Those are exactly the expressions for the re-
sponse of the undamped oscillator with the natural frequency
wy, describing beat patterns for Q # w, and unbounded reso-
nance for Q = w,.

The total response q(t) = q.(t) + gn(t) is determined by
the interplay of both ergodic and nonergodic components and
shows a variety of beat patterns for 2 # w, and unbounded
resonance for 2 = w,. Of special interest is the asymptotic
case (A > Af, A — 11) when both components on a long
timescale show the resonancelike behavior, g.(¢) ~ tJy(wt)
and ¢,,.(t) ~ t cos(wot). The case is illustrated in Fig. 2.

VII. CONCLUSION

The response properties of an open oscillator with a well-
developed localized mode with frequency w, are similar to
those of an isolated oscillator with the natural frequency w,.
In particular, when the frequency of the external force 2
coincides with w,, the oscillator, instead of evolving into a
steady state, shows an unbounded resonance. Superficially,
this might come as a surprise since the equation of motion (4)
involves a dissipation term (which usually smooths out reso-
nance singularities) and because the equation does not involve
the frequency w, explicitly. However, from a more educated
point of view, which we tried to develop in this paper, the
unbounded resonance at 2 = w, is hardly unexpected, con-
sidering that the localized mode does not exchange energy
with the thermal bath and, thus, behaves as an isolated os-
cillator.

More subtle is the result for the critical value of the os-
cillator natural frequency w. when, according to Eq. (11),
the localized mode is incipient. In that case, even though the
localized mode does not affect characteristics of the unper-
turbed system, the dynamical response may have a singular

A()=0g(t)+qne(t)

‘
0 100 200
@t

FIG. 2. The response functions for a nonergodic configura-
tion with A =0.72 and A = 1.005. Top: the ergodic component
q.(t), Eq. (31). Middle: the nonergodic component g,,(t), Eq. (34).
Bottom: the total solution, g(t) = g.(t) + ¢..(t). The ergodic and
nonergodic components oscillate with amplitudes which increase
with time as +/7 and ¢, respectively.

quasiresonance form (18), which has no analog or counterpart
in other open oscillator models. Although only a specific
dissipation kernel (2) was considered here, one may expect
similar results for other kernels whose spectral density has a
finite upper bound.

Although the presented results are exact, it might be of
interest to verify and extend them with numerical simula-
tions. As we already mentioned, the generalized Langevin
equation with the kernel (2) describes a terminal atom of
a semi-infinite harmonic chain subjected to an external har-
monic potential and driven by an external periodic force.
Figure 3 shows the simulation results for the quasiresonance
response of the oscillator coupled to the finite chain of n
atoms. The dependence of the response on the size of the
thermal bath may be of interest for biochemical applications
when both a system and a bath correspond to degrees of
freedom of a single macromolecule [16,19,20]. Simulation
shows that for n of an order of 100 or more the quasiresonance
response is practically indistinguishable from the result (18)
for the infinite bath. For smaller n the amplitude of oscillations
as a function of time is nonmonotonic, yet on the long run the
response increases with time indefinitely.

We have already noted in Ref. [9] that the parametric
transition between ergodic (w < w,.) and nonergodic (0 > w,)
configurations resembles a phase transition of the second
kind. From that perspective, the quasiresonance response of
the configuration with @ = w, can be viewed as a critical
phenomenon, and the exponent 1/2 in the asymptotic form
of Eq. (18), g(t) ~ t'/? cos(wgt — 7 /4), can be interpreted as
a critical exponent.

In this paper, we considered the response only at high-
frequency Q2 > wy. For the low-frequency response at Q <
wp, or A < 1, the integral expressions (24) and (25) for A and
@(t) diverge and are not valid. One can show that the results
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FIG. 3. Simulation results for the quasiresonance set up (v = @,
2 = wp) when the bath is represented by a finite harmonic chain
of n = 10, 20, and 30 atoms. As n increases further, the simulation
results quickly converges to Eq. (18).

can be extended for the low-frequency response merely by
defining the improper integrals in Egs. (24) and (25) in the
sense of Cauchy principal value. The justification, however,
requires a more involved technique and will be addressed in a
future publication.

APPENDIX

The integral (17),
I(t) = / Ji(t)sin(t — t)dt (A1)
0

can be evaluated as follows. The Laplace transform of J; (¢) is

- 1
Ji(s) = LI} = , (A2)
: ! 2+ s/ + 1+ 1
and the convolution (A1) in the Laplace domain has the form
- 1
I(s) = L{U@)} = - (A3
24+ D2 +svs2+14+1)
In terms of partial fractions, it can be written as
Ts) 1 s 1 . d 1 (A4)
5) = — = _——.
241 (24132 s2+1 dsis2+1
Then, using the property,
d d .
L{uf@)} = ——L{f (O} = = f(s), (A5)
ds ds

and taking account the transform of the Bessel function

L{Jo(t)) = 1/4/s* + 1, one finds
1(t) = sin(t) — tJo(2). (A6)

This is Eq. (17) of the main text.
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