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Graham has shown [Z. Phys. B 26, 397 (1977)] that a fluctuation-dissipation relation can be imposed on a
class of nonequilibrium Markovian Langevin equations that admit a stationary solution of the corresponding
Fokker-Planck equation. The resulting equilibrium form of the Langevin equation is associated with a nonequi-
librium Hamiltonian. Here we provide some explicit insight into how this Hamiltonian may lose its time-reversal
invariance and how the “reactive” and “dissipative” fluxes loose their distinct time-reversal symmetries. The
antisymmetric coupling matrix between forces and fluxes no longer originates from Poisson brackets and the
“reactive” fluxes contribute to the (“housekeeping”) entropy production, in the steady state. The time-reversal
even and odd parts of the nonequilibrium Hamiltonian contribute in qualitatively different but physically
instructive ways to the entropy. We find instances where fluctuations due to noise are solely responsible for
the dissipation. Finally, this structure gives rise to a new, physically pertinent instance of frenesy.
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I. INTRODUCTION

A Langevin equation is a stochastic differential equa-
tion describing generic mesoscopic dynamics driven by both
systematic and stochastically fluctuating forces [1]. The con-
cept is suitable for slow degrees of freedom coupled to a
large number of fast degrees of freedom that can be sub-
sumed into a “noisy” stochastic force. There are multiple ways
to derive Langevin equations from microscopic descriptions
[1,2]. In equilibrium, the deterministic part of the dynamics
is governed by an effective (i.e., typically coarse grained)
Hamiltonian. It therefore relies on a crucial feature of equilib-
rium dynamics, namely that the coarse-graining, by which one
exploits the scale separation between the slow systematic and
fast stochastic degrees of freedom, leads one to a free energy
governing the slow variables that itself obeys Hamiltonian
symmetries. In this case, the stochastic noise strength can
moreover be fully specified mesoscopically, by a fluctuation-
dissipation relation (FDR) [3–5] that obliges the fast degrees
of freedom to act as an effective thermostat for the slow
variables, so that the solutions obtained for the latter from
the Langevin equation coincide with those from the classical
Gibbs ensembles, at late times. In this framework, dissipative
and reactive (reversible/conservative) contributions can be
clearly distinguished.

Traditionally, the FDR is thus intimately associated with
thermal equilibrium [3–5] and its failure with a loss of equi-
librium. Indeed, a set of Langevin equations describing a
generic nonequilibrium system is not obliged to obey Hamil-
tonian dynamics nor any FDR. However, the FDR has time
and again been generalized to nonequilibrium conditions—
pars pro toto we here refer to Refs. [6–15], and references
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therein. Interestingly, Graham [16] and later, inspired by his
work, Eyink et al. [17] gave a formal procedure to extend the
FDR to generic nonequilibrium mesoscopic Markov systems,
whenever the existence of a stationary solution of the associ-
ated Fokker–Planck equation (FPE) can be taken for granted.
In principle, it provides a formal effective Hamiltonian-like
structure reminiscent of a potential of mean force [18], given
by the logarithm of said stationary solution of the FPE, to
which we want to refer as the nonequilibrium Hamiltonian
(NH). As we recall and explicitly lay out in the following,
the nonequilibrium Langevin equations rephrased in terms of
this NH have the same structure as in equilibrium. The NH
is a Lyponov function for the Langevin dynamics around the
steady state, so that the latter is unique and stable [16]. The
resemblance of the equations with the equilibrium structure,
including a formal FDR, naturally raises the question, where
the condition of nonequilibrium got hidden? As pointed out
in Refs. [16,17], it is hidden in the symmetry under time
reversal of the dynamical equation. Here, we dwell deeper into
this question and, through an exactly solvable model (stud-
ied widely in active matter), demonstrate how “dissipative”
and “reactive” parts of the nonequilibrium Langevin equa-
tions violate the familiar equilibrium time-reversal signatures.
Additionally we show that the time-reversal even and odd part
of the NH contribute to the entropy production in qualitatively
different ways. Apart from being a Lyponov function for a
given steady state, the (negative) NH is also related to the en-
tropy and the excess heat produced in a quasistatic operation
turning it into another steady state [19]. This provides multiple
reasons to study the effect of perturbing the NH. Unlike the
usual practice for nonequilibrium systems, where perturbing
forces are directly added to the equations of motion (which
can be understood as a force balance), here the perturbing
force appears in the NH with a special coupling [16]. In this
context, we establish the link to frenesy [20,21], which is a
measure of the “undirected” currents in a system.
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More precisely, we show that, in such equilibriumlike
Langevin equations, the nonequilibrium condition manifests
itself in the following ways:

(1) The NH need not be time-reversal invariant.
(2) The antisymmetric couplings do not arise from Pois-

son brackets.
(3) The “reactive” currents also produce entropy. Simi-

larly, fluctuations from the steady state, due to the noise, can
produce entropy (“active/dissipative” fluctuations).

We also make the following important observations:
(1) The parts of the NH with different time-reversal signa-

tures contribute in qualitatively different ways to the entropy
production.

(2) The NH opens a new meaningful way to perturb the
system and hence provides a second interesting instance of
excess frenesy, beyond the usual one. We also point out that
this perturbation can be used to derive a variant of, the Harada-
Sasa relation [22].

The paper is organized as follows: in Sec. II we recall the
structure of equilibrium Langevin equations, Sec. III sum-
marizes Graham’s work [16] and establishes the structural
similarity between Langevin equations with nonequilibrium
steady states and equilibrium Langevin equations. In Sec. IV,
we analytically solve the FPE corresponding to a linear
nonequilibrium Langevin equation to explicitly reveal this
equilibriumlike structure. We discuss its interesting features,
and, in Sec. V, apply this formalism to a much studied model
in the physics of soft active matter, namely so-called active
Ornstein–Uhlenbeck particles (AOUPs) [23]. In Sec. VI, the
role of different parts of NH in the entropy production is
studied. Finally, Sec. VII provides the link to frenesy in this
context and a comparison with previous studies [21].

II. EQUILIBRIUM STRUCTURE

We construct equations of motion for dynamical variables
C with positionlike and momentumlike components Q and
P , respectively, even and odd under time-reversal (hereafter
denoted by T ). We allow C to be finite or infinite dimen-
sional, depending on whether we are dealing with a system
parameterized in terms of particle degrees of freedom or with
a spatially extended system described by a stochastic field
theory. In particle systems in thermal equilibrium, Q and P
normally refer to canonically conjugate variables, but in more
strongly coarse-grained formulations [24], and in particular
in generalized nonequilibrium Langevin systems, they do not
have to, nor do they need to have the same number of com-
ponents. The stochastic equations of motion describing the
thermal equilibrium dynamics of C are [1,24–26]

∂tC = −(� + W ) · ∂CH + T ∂C · W + ξ, (1)

where H (C) is the effective Hamiltonian, � is a symmetric
matrix of dissipative couplings between the variables that
governs the FDR,

〈ξ(t )ξ(t ′)〉 = 2T �δ(t − t ′) , (2)

and W is an antisymmetric matrix of reactive couplings.
For brevity, we are using the notation for discrete degrees of
freedom, which can however straightforwardly be upgraded
for the case that C is supposed to be a field variable; e.g., the

term W · ∂CH would read∫
dx′Wμν (x, x′)

δH

δCν (x′)
(3)

(summation over ν implied).
Terms involving W must have, component by component,

the same signature under T as ∂tC, and those involving �

must have the opposite T -signature. Thus, the QQ and PP
components of the matrix � must themselves be even under
T , while its QP and PQ components must be odd. In equi-
librium, W is identified with the Poisson bracket between the
dynamical variables as discussed later in this section [24,25].

Standard derivations of generalized Langevin equa-
tions [2,24,25,27] require the additional term T ∇C · W in
Eq. (1) for the steady state to be ∝ e−H/T . While it vanishes
in familiar equilibrium Langevin equations [28], there are
natural instances in active matter where it is nonzero [29].
Moreover, when � depends on C, the noise term in Eq. (1)
is multiplicative. It then produces a spurious drift. For the
steady-state distribution to remain e−H/T , we must then in-
clude, as a counter term, the additional drift T (∇C · � − αg ·
∇Cg), in Eq. (1), where g · g = 2� [26], and the continuous
parameter α ∈ [0, 1] parameterizes different physical inter-
pretations of the noise. Similarly, WPP should be odd under
T and therefore suitably P-dependent.

For an equilibrium system, the reactive (reversible) term
emerges from the Poisson bracket of the variable with the
Hamiltonian [24,25]:

∂tCμ = {H, Cμ} ≡ −Wμν∂Cν
H. (4)

The antisymmetric coupling matrix Wμν = −Wνμ =
{Cμ, Cν} has the structure of a Poisson bracket of the
dynamical (field) variables. And, again, an extra term
∂μWμν is required in the reactive part to attain a Boltzmann
equilibrium distribution. Hydrodynamic Poisson brackets are
usually calculated directly from a microscopic model [30] or
indirectly inferred from symmetries [31].

In general, the above effective Hamiltonian structure, and
hence the clear identification of reactive and dissipative
currents, breaks down for nonequilibrium systems, which nat-
urally raises the question how much of it can be rescued for the
special subclass of Markov systems that admit nonequilibrium
steady states (NESS).

III. GRAHAM’S EQUILIBRIUMLIKE STRUCTURE

Graham [16] and later, inspired by his work, Eyink
et al. [17] gave a formal procedure how to write nonequi-
librium Markovian equations in an equilibriumlike form, in
which Eqs. (1) and (2) still pertain. In particular, Eyink
et al. pointed out that the “dissipative” (symmetric) coupling
governing the strength of the noise correlation actually es-
tablishes a FDR of the first kind, as discussed further below.
Here we summarize the results that are useful for our present
purpose. Namely, a general Langevin equation (for discrete
degrees of freedom)

Ċμ = Jμ(C) + gi
μ(C)ξi, (5)
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where

〈ξi(t )ξ j (t
′)〉 = 2δi jδ(t − t ′) Qμν (C) = gi

μ(C)gi
ν (C) (6)

can be written as

Ċμ = −(
Qμν + La

μν

)
∂Cν

φ + ∂Cν
La

μν + gi
μ(C)ξi, (7)

with antisymmetric couplings La
μν ≡ Fμνe−φ , where Fμν itself

is antisymmetric and defined by

rμP0(C) ≡ ∂Cν
Fμν. (8)

We now clarify this notation. First, φ ≡ ln P0(C) is the log-
arithm of the steady-state solution P0(C) of the associated
Fokker–Planck equation corresponding to Eq. (5), namely,

∂t P(C, t ) = −∂Cμ
[Jμ(C)P(C, t ) − Qμν (C)∂Cν

P(C, t )]. (9)

Following the equilibrium paradigm [24], the deterministic
flux Jμ(C) is broken into “dissipative” and “reactive” con-
tributions, dμ(C) and rμ(C) ≡ Jμ(C) − dμ(C), respectively,
where the former has the explicit form

dμ(C) = Qμν (C)∂Cν
φ. (10)

Using Eq. (8) and the definition La
μν ≡ Fμνe−φ , the reactive

current can be cast into the explicit form

rμ(C) = La
μν∂Cν

φ + ∂Cν
La

μν. (11)

The point we want to make here is that the structure of
the dissipative and reactive terms in the equilibrium and equi-
libriumlike description is exactly the same, i.e., Eqs. (7) and
(6) are structurally identical to Eqs. (1) and (2). The identi-
fication of the symmetric coupling with the noise strength is
also present in both cases, establishing an FDR of the first
kind, as noted in Ref. [17]. One very important difference
is that, unlike in equilibrium, the antisymmetric coupling is
not obliged to originate from a Poisson bracket, in the generic
case. It can however easily be seen that the generic antisym-
metric coupling, La boils down to a Poisson bracket W , in the
equilibrium limit, where φ = −H . Then, the antisymmetric
coupling is Weφe−φ , and equating this with La gives

Fμν = Wμνe−H . (12)

Taking its derivative and using Eq. (8), we then find

rν = Wμν∂Cμ
H − ∂Cμ

Wμν, (13)

consistent with the equilibrium formalism [24,25].
In summary, Eqs. (1) and (7) have an identical form, and

the symmetry of the coupling coefficient with respect to an
interchange of its indices is also the same. However, when the

dynamics is governed by Eq. (1), the system is in equilibrium,
whereas Eq. (7) can describe both equilibrium as well as
nonequilibrium dynamics. This prompts the question: Where
is the nonequilibrium condition hidden in Eq. (7)? It is clear
from the above discussion that an explicit description of a
nonequilibrium dynamics by Eq. (7) requires the knowledge
of its steady-state distribution. In general, the latter will be
very difficult to find. Therefore, we study in the following an
exactly solvable linear system to provide explicit answers to
the theoretical questions raised and to illustrate the general
statements promised in the Introduction I.

IV. A SOLVABLE MODEL

As described above, for a given (effective) Hamiltonian
and noise correlation matrix in an equilibrium system, the
reactive and dissipative terms come out naturally with the
correct time-reversal signatures. But things get more compli-
cated once the system is out of equilibrium. Here we discuss
the linear case, which can be solved exactly, to see how the
classification of the terms as reactive and dissipative looses
meaning. Our starting point is the following set of coupled
linear equations:

α̇ = − 1

�
∂αH + υ̃∂βH + ξα (t ), (14)

β̇ = −υ̃∂αH − 1

γ
∂βH + ξβ (t ), (15)

associated with the quadratic Hamiltonian

H = 1
2 Kα2 + 1

2 kβ2, (16)

where K and k are positive stiffness constants and υ̃ is a posi-
tive constant. The Markovian noise correlation matrix shall be
given by

D = 2

(
1
�

0

0 1
γ

)
δ(t − t ′), (17)

with positive mobilities 1/� and 1/γ . The antisymmetric cou-
plings can be assumed to be derived from a Poisson bracket
{α, β} = υ̃ [31]. Since all couplings are constant and hence
even under time reversal, the equations describe equilibrium
dynamics only when α and β have opposite signature under
time reversal [32,33]. Then the equilibrium distribution of the
variables following this set of equations is proportional to
e−H . The discussion can easily be extended to the case where
coupling constants are odd under time reversal (like magnetic
fields), but this does not add anything new to the physics. Note
that the choice of the Poisson brackets and noise covariance
does still not uniquely fix the form of the Hamiltonian and
the associated equations of motion [30,31]. But the remaining
freedom does not allow to breach the equilibrium structure.

There are multiple ways to take Eqs. (14) and (15) out
of equilibrium. Here we choose to make the dynamics of β

autonomous, i.e., independent of α, for which the dependence
on β is retained. The reciprocity of the mutual forces is
thereby broken [32,33], the Hamiltonian structure is lost, and
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the nonequilibrium equations read

α̇ = − 1

�
∂αH + υ̃∂βH + ξα, (18)

β̇ = − 1

γ
∂βH + ξβ. (19)

Notice that these equations, in contrast to Eqs. (14) and (15),
always correspond to nonequilibrium dynamics irrespective of
any time-reversal signature of α and β. We keep the original
noise covariance matrix D as in Eq. (17). Equations (18) and

(19) can then still be written in the equilibriumlike form of
Eq. (7), albeit with an effective nonequilibrium Hamiltonian
�, as shown in Appendix A, and a new (apparently) “reactive”
coupling:

α̇ = − 1

�
∂α� + υ�

Kγ + k�
∂β� + ξα, (20)

β̇ = − υ�

Kγ + k�
∂α� − 1

γ
∂β� + ξβ, (21)

where υ = kυ̃ and

� = (Kγ + k�){[K2α2 + (υ�)2β2 + Kβ(−2υ�α + kβ )]γ + k(Kα2 + kβ2)�}
2{K2γ 2 + [(υ�)2 + 2kK]γ� + k2�2} , (22)

∂α� = (Kγ + k�)[(K2α − Kυ�β )γ + kK�α]

{K2γ 2 + [(υ�)2 + 2kK]γ� + k2�2} , (23)

∂β� = (Kγ + k�){[(υ�)2β + K (−υ�α + kβ )]γ + k2β�}
{K2γ 2 + [(υ�)2 + 2kK]γ� + k2�2} . (24)

Recall from Sec. II that equilibrium requires “reactive” and
“dissipative” terms to have the same and opposite time-
reversal symmetry as α̇ and β̇, respectively. If α and β have
opposite signature under time reversal, then the effective NH
� in Eq. (22) is not invariant under time reversal, because it
contains terms like αβ. And if the time-reversal signature of α

and β is the same (say even), then the NH is even under time
reversal. Which implies that the NH need not be time-reversal
invariant for nonequilibrium dynamics; also see Refs. [15,34].
An interesting observation, easily gleaned from Eqs. (23) and
(24) is that, in either case the “reactive” and “dissipative”
terms no longer exhibit the time-reversal signature required
for thermal equilibrium, which is a manifestation of nonequi-
librium. We discuss this in more detail in the next paragraph.
Although we have shown this feature explicitly only for the
liner system, it is important to note that it needs to hold
generally, also for nonlinear nonequilibrium systems, since
otherwise thermal equilibrium pertains. As a result, unlike
the situation in thermal equilibrium, where only the dissi-
pative term is responsible for entropy production during the
evolution toward steady state, now both the “dissipative” and
“reactive” terms contribute. Furthermore, while the “dissipa-
tive” fluxes and the divergence of the “reactive” fluxes vanish
in the steady state [16,17], as in equilibrium, the “reactive”
flux now keeps producing “housekeeping” heat and entropy
even after the steady state has been attained. The presence of
housekeeping entropy production is, of course, a necessary
signature of any NESS, which underscores the necessity of
the condition for a system out of equilibrium.

A. Nonequilibrium Hamiltonian and detailed balance

From the explicit Eqs. (20), (21), (23), and (24) it is clear
that one cannot restore the detailed balance required for equi-
librium by assigning any other time-reversal signature to the
dynamical variables α and β. For detailed balance to hold, say,
if both α and β are even under time reversal, the “reactive”
term should be odd, which is simply not the case for Eqs. (23)
and (24). Similarly, as one easily convinces oneself, any other

combination of time-reversal signatures for the variables will
also not give rise to the required equilibrium symmetries for
the “reactive” and “dissipative” terms. Therefore, it is not
possible to restore detailed balance even though one knows
the NH � exactly [35]. That this is so, inevitably follows from
the underlying breaking of reciprocity in Eqs. (18) and (19),
which is somewhat masked by the splitting of the fluxes into
nominally (but not literally) “dissipative” and “conservative”
parts [32] in Eqs. (20) and (21).

Generally speaking, it is always possible to construct a set
of equilibrium Langevin equations for a T -even steady-state
distribution but impossible otherwise [36]. Here is a formal
way to see this. The general condition for detailed balance
(when both T even and odd variable are present) is [36]

P0(C)w(C → C′) = P0(T C′)w(T C′ → T C). (25)

It can be telescoped for a chain of configurations:

P0(C0)w(C0 → C1) . . . w(Cn−1 → Cn)

= P0(T Cn)w(T Cn → T Cn−1) . . . w(T C1 → T C0).
(26)

In particular, for cyclic state changes, i.e., Cn = C0,

w(C0 → C1) . . . w(Cn−1 → C0)

w(T C0 → T Cn−1) . . . w(T C1 → T C0)
= e[φ(T C0 )−φ(C0 )].

(27)
For a Markov process defined with transition rates w(C →
C′), the entropy production in the heat bath is then given by
[37–39]

S = k ln
w(C → C′)

w(T C′ → T C)
. (28)

Combining Eqs. (27) and (28) confirms that any T -odd terms
in the NH φ and the steady-state distribution ∝ eφ give rise to
the entropy production S = k[φ(T C0) − φ(C0)]. Of course,
there can be further contributions on the top of this. An-
other formal method illustrating this point is discussed in
Refs. [15,34].
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B. Symmetric versus antisymmetric coupling

To achieve an equilibriumlike form, the symmetric cou-
plings in the dynamical equations are required to equal those
in the noise covariance matrix. If two sets of dynamical equa-
tions have the same dissipative couplings and thus also the
same noise covariances, then they can be understood as cou-
pled to the same heat bath. In an equilibrium system with an
effective Hamiltonian structure, the antisymmetric coupling is
also predetermined, namely by the Poisson brackets between
the dynamical variables. In the case of coarse-grained (field)
variables, the antisymmetric couplings can either be calcu-
lated from the Poisson brackets of a microscopic model or
written down phenomenologically, based on the knowledge of
symmetries [30,31]. However, far from equilibrium, an origin
of the “reactive” couplings from Poisson brackets is no longer
guaranteed. Then, similar to the symmetric couplings, one
may wonder about the physical implications (if any) if two
sets of equations share the same “reactive” couplings.

As an example, consider Eq. (18) without the noise term
for α. Then the corresponding equilibriumlike formulation of
Eqs. (18) and (19) takes the new form

α̇ = υ�

Kγ + k�
∂βφ, (29)

β̇ = − υ�

Kγ + k�
∂αφ − 1

γ
∂βφ + ξβ, (30)

which differs from Eqs. (20) and (21), and where also

φ = Kγ + k�

2(υ�)2γ�
[(Kα − υ�β )2γ + kK�α2] (31)

is a new NH, not equal to �. Since we suppressed the noise
for α, the noise correlation changes to

D = 2

(
0 0
0 1

γ

)
δ(t − t ′). (32)

Notice, that the antisymmetric coupling coefficient in
Eqs. (29) and (30) is however the same as in Eqs. (20)
and (21). While, even far from equilibrium, for two sets of
equations to have identical symmetric couplings implies that
they have the same (virtual) thermostat, possible implications
of identical “reactive” coupling coefficients, as in the above
example, are less clear and might deserve further study.

V. ACTIVE ORNSTEIN–UHLENBECK PARTICLES (AOUP)

The active Ornstein–Uhlenbeck process is a nonequi-
librium variant of the well-known equilibrium Ornstein–
Uhlenbeck process (the stochastic harmonic oscillator) [40].
It can be interpreted as the equation of motion of an active
Brownian particle or microswimmer [41]. The particle coor-
dinate is given by X (t ) and a nominal (autonomous swimming
is actually a force-free motion) propulsion force is given by
x(t ). The latter defines the direction of swimming, which is a
stochastic variable, whereas the stochasticity of the particle’s
center-of-mass coordinate is omitted, since it is negligible
compared to the systematic swimming motion, at the relevant
late times. Here we consider the one-dimensional case, as in

Ref. [41], which can easily be generalized to higher spatial
dimensions [23]. The equation of motion is

�Ẋ = −∂X H + x, (33)

γ ẋ = −x + ξx, (34)

where H represents an external potential. The case with a
harmonic confinement potential H = 1/2KX 2 is studied in
detail in Ref. [41]. It corresponds exactly to Eqs. (18) and
(19) without a noise term for α, if α and β are identified
with X and x, respectively. The equilibriumlike structure is
the one provided in Eqs. (29) and (30). Recall that the FPE
corresponding to a generic Langevin equation is solved for
the stationary state by setting the divergence of the probability
flux to zero. When the steady state corresponds to a thermal
equilibrium, additionally the dissipative part of the flux itself
has to vanish identically, to avoid any spurious entropy pro-
duction. Now, for a nonequilibrium Langevin equation written
in equilibriumlike form, like the set of Eqs. (29) and (30) in the
case of Eqs. (33) and (34), the steady-state solution formally
looks like a Boltzmann equilibrium (while it is not). Thanks
to the equilibriumlike formulation, the nominally dissipative
part of the flux, which tracks the relaxation to the steady
state, still vanishes in the steady state [16,17], so that only the
nominally reactive flux can account for the housekeeping heat
and entropy production. This is how the splitting of the total
flux into nominally “reactive” and “dissipative” parts is still
useful and gives insight into the nature of entropy production
in such situations far from equilibrium. For a diferent kind
of splitting of the fluxes on the basis of their parity under
T we refer the reader to Refs. [15,34]. For a discussion of
the explicit result for the entropy production of the above
AOUP system, see Ref. [29,41,42]. In the following section,
our emphasis is more on its general structure.

VI. ENTROPY PRODUCTION

The primary aim of this section is to show how the T -odd
and T -even parts of the NH contribute to the entropy produc-
tion. For concreteness, our discussion is based on the above
model Eqs. (20) and (21), but the results are more general.

The steady-state entropy production rate is defined as [43]

σ = lim
τ→∞

1

τ
S, S = 〈ln(P/PR)〉, (35)

which is recognized as the Kullback–Leibler (KL) divergence
[44]. It measures the distinguishability of the probability
weight, P, associated with a path {α(t ), β(t )}0�t�τ and the
weight PR for the time-reversed path. The angular brackets
denote an average over noise realizations. However, under
suitable ergodicity assumptions, which we implicitly use
throughout the paper, the average over noise realizations
can be replaced by the time average over a single infinitely
long noise realisation. Therefore, the angular brackets can be
dropped under (or exchanged for) time averages [23,45]. As
discussed in Appendix B [26,46,47], the trajectory probability
P = e−A can be expressed in terms of the action A, which for
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Eqs. (20) and (21) in Stratonovich convention reads

A =
∫

dt
1

4

[
�

(
α̇ + 1

�
∂α� − υ�

Kγ + k�
∂β�

)2

+ γ

(
β̇ + υ�

Kγ + k�
∂α� + 1

γ
∂β�

)2

− 2

�
∂2
α� − 2

γ
∂2
β�

]
.

(36)

The entropy production rate (35), expressed as a function of
the action, is then

σ = lim
τ→∞

AR − A

τ
, (37)

where AR ≡ T A. For the case when both noises have equal
strength, i.e., � = γ , and α and β have opposite parity under
T , Appendix C gives

σ = − lim
τ→∞

1

τ

∫
dt

[
d�s

dt
+ M(∂α�a∂α�s + ∂β�a∂β�s)

+ υγ

K + k
(β̇∂α�a − α̇∂β�a) − 1

γ
(∂2

α�a + ∂2
β�a)

]

= − lim
τ→∞

1

τ

[
��s +

∫
dt

(
M∂C�a · ∂C�s

+ υγ

K + k
∂C�a ∧ Ċ − 1

γ
∂2
C�a

)]
. (38)

Here, M is a positive constant given in Appendix C; �s and
�a are the T -even and T -odd parts of the NH, respectively.
The first term, ��s = �s(τ ) − �s(0) is simply the difference
between the final and initial values of the T -even part of the
NH. Since ��s is always finite, it contributes transiently and
vanishes in the steady state due to the division by τ → ∞.
Note that for an equilibrium system, the Hamiltonian is al-
ways T -even. Therefore the last three terms vanish in this
case, leading to zero entropy production in the steady state.
The second term changes sign depending on whether the
forces originating from T -even and T -odd parts of the NH
oppose or align with each other. The latter force is of nonequi-
librium nature. The second last term with the wedge product
(here equivalent to the cross product in two dimension) is
reminiscent of classical Hamiltonian dynamics in phase space,
which is perpendicular to the energy gradients due to the
symplectic Hamiltonian structure. Yet, it is contributing to
the entropy production, because �a is T -odd. The last term
originates from the Jacobian in the Stratonovich discretization
convention, see Appendix B.

Inserting the explicit forms of �s and �a in the above
expression gives

σ = − lim
τ→∞

1

τ

{
��s −

∫
dt

[
M ′αβ − N ′ d (α2 − β2)

dt

]}

= M ′〈αβ〉. (39)

Here, M ′ and N ′ are positive constants given in Appendix C.
We have used the ergodic assumption and the fact that ��s

and �(α2 − β2) are finite. Since our NH is a quadratic func-
tion of the dynamical variables, the dot product of the forces
due to T -even and T -odd parts of the NH is the only en-
tropy producing term in the steady state (for a more general

NH, all terms would contribute). The corresponding correlator
〈αβ〉 = νγ K/k(Kγ + k�) is easily calculated [29]. Obvi-
ously, the steady-state entropy production is always positive.

In the more general case where the noise strengths differ,
�−1 �= γ −1, the form (38) is recovered, by a straightforward
rescaling α → α/

√
� and β → β/

√
γ with new prefactors

(Appendix C)

A − AR =
∫

dt

(
d�′

s

dt
+ M̃∂C�′

a · ∂C�′
s

(40)

+ υ�
√

�γ

Kγ + k�
∂C�′

a ∧ Ċ − ∂2
C�′

a

)
,

where �′ ≡ �(α/
√

�, β/
√

γ ), and M̃ is a constant. The
above results can be generalized to a generic noise covariance
matrix, as long as it is positive definite, if the dynamical
variables have a definite parity under T in the new coordi-
nates [34]. If all dynamical variables have the same, then this
is automatically guaranteed. It is important to note that the
splitting of the entropy production rate found in Eqs. (38)
and (40) is independent of the explicit form of the NH and
hence holds for generic nonlinear systems, as long as noise
is additive with no cross correlation and the antisymmetric
coupling matrix is constant. Only the reduction to Eq. (39) is
specific to the harmonic form of NH. We discuss the entropy
production rate for the more generic case in Appendix D.
A different interesting way of splitting entropy production is
discussed in Refs. [15,34].

As shown in Eq. (D8), when both dynamical variables
(α and β) are T -even, so that � = �s, the entropy produc-
tion rate is proportional to ∂C�′ ∧ Ċ, calculated explicitly
in Ref. [29,48]. It implies that, in the steady state, only the
motion perpendicular to the gradient of the NH is responsible
for the entropy production, quite unlike equilibrium situation.
Although Eqs. (20) and (21) have the structure of equilibrium
dynamics, the “reactive” terms have the opposite time-reversal
signature compared to what is required in equilibrium. The
dynamics given by Eqs. (20) and (21), in the steady state,
drives the system to the minimum of the NH, see Appendix F,
where the systematic forces vanish. But the noise keeps
kicking the system out of the minimum, leading to said en-
tropy production via what could be called “active/dissipative”
(external) fluctuations. This situation is again unlike equilib-
rium, since equilibrium thermal fluctuations are not externally
driven nor do they contribute to dissipation. The origin of this
discrepancy is the following. In equilibrium, the path leading
to a fluctuation is the time reversal of its relaxation path [49],
whereas spontaneous nonequilibrium fluctuations most likely
follow a different trajectory, which is not the time reversed re-
laxation. For more on this interesting feature, which deserves
further discussion, we refer to the Refs. [50,51]. It is also
interesting to note that, in the case where the variables have
opposite signature under T , the entropy production rate has a
contribution independent of the velocity Ċ; see Eq. (38).

VII. FRENESY

Graham [16] extended the FDR of the second kind to the
general (nonequilibrium) Fokker–Plank equation (9) without
invoking the notion of time-reversal symmetry. However, the

044106-6



TIME-REVERSAL SYMMETRIES AND EQUILIBRIUMLIKE … PHYSICAL REVIEW E 107, 044106 (2023)

quantity that provides the most natural measure for the dis-
tance of a nonequilibrium system from thermal equilibrium,
namely entropy production, is closely tied to the time rever-
sal of a process and the dynamical variables involved. More
recently, a new quantity called frenesy was introduced as an
additional trait to characterize dynamics far from equilibrium
[20,21]. It accounts for some undirected (nonequilibrium)
“activity.” Both quantities, entropy production and frenesy, are
moreover closely related to the FDR [21,22] and hence natural
concepts to be discussed in the context of the generalized
FDR.

As shown in Appendix B, the action determines the relative
weight of a stochastic trajectory. Frenesy is defined as its time-
symmetric part, a measure of the escape rate from a state and
a measure of undirected traffic [20,21,52]. Frenesy also plays
a key role in the nonlinear response of an equilibrium state
and, even for the linear response of nonequilibrium steady
states [21]. As mentioned in the introduction, the NH acts as a
Lyponov function for relaxations to steady states [16] and also
as entropy change upon adiabatic transitions between steady
states [19]. For a given steady state, it is therefore natural to
study frenesy in the context established above. So let us again
turn to the Eqs. (20) and (21), which can describe an AOUP
with an additional noise acting onto the center of mass.

In situations far from equilibrium, for which there is in
general no Hamiltonian, perturbing forces are usually added
directly to the equation of motion. The extra frenesy of
the AOUP within this approach was already calculated be-
fore [21]. But in Graham’s equilibriumlike formulation, a
fundamentally different option arises. Due to presence of the
NH, it is possible to add a work term depending on the per-
turbing force to the NH, which then yields entirely different
equations of motion. If we follow this route for the AOUP
model, and perturb its nonequilibrium Hamiltonian in Eq. (22)
according to � → � − fi(t )qi, where q1 = α and q2 = β, as
in Ref. [16], then the resulting perturbed equation of motion
is

α̇ = − 1

�
∂α� + υ�

Kγ + k�
∂β� + f1

�
− υ� f2

Kγ + k�
+ ξα,

(41)

β̇ = − υ�

Kγ + k�
∂α� − 1

γ
∂β� + υ� f1

Kγ + k�
+ f2

γ
+ ξβ.

(42)

It is interesting to note that the perturbing force f1, which
couples only to α in the NH, acts on both α and β in the
equation of motion, and viceversa for f2. And this is clearly
the consequence of the antisymmetric coupling that comes
with the Hamiltonian structure in this formulation. Usually, in
an equilibrium system, we would understand this as a result
of reactive dynamics originating from a Poisson bracket [24],
but here we cannot rely on such a structure to exist. Therefore
even if the perturbing force conjugate to any single variable is
omitted in the NH, the dynamics of this variable will still be
directly perturbed. Also, according to Appendix G, the prob-
ability P[ω] of the trajectory ω = (Xs, s ∈ [0, t]) is generally
expressed in terms of the perturbed and unperturbed action A
and A0, respectively, as

P[ω] = e−A = e−A f (ω)Pref[ω]. (43)

Here Pref[ω] ≡ e−A0(ω) is the probability in the absence of any
perturbing forces. To leading order in the latter,

A f =
∫

ds

{[
1

�
+ (υ�)2γ

(Kγ + k�)2

](
f1

�
∂α� + f2

γ
∂β�

)

+ �α̇

(
f1

�
− υ� f2

Kγ + k�

)
+ γ β̇

(
υ� f1

Kγ + k�
+ f2

γ

)}
.

(44)

The behavior of the action A under a time-reversal operation
T is among the central characteristics of nonequilibrium sys-
tems [20,29,46]. And its antisymmetric and symmetric parts
are closely related to the concepts of entropy and frenesy,
respectively [20]. Since we are interested in perturbations and
fluctuations around a steady state, what matters is the A f part
of the action, very much as discussed in Ref. [20]; see also
Appendix G. If α and β behave like coordinates, then they are
even under time reversal. The time-symmetric part of A f is
then

A f + T A f =2
∫

ds

{[
1

�
+ (υ�)2γ

(Kγ + k�)2

]
f · ∂C�′

}
,

(45)
where, as above, a rescaling of α → α/

√
� and β → β/

√
γ ;

�′ ≡ �(α/
√

�, β/
√

γ ) was employed and f is the perturbing
force. For our particular form of �:

A f + T A f = γ�

∫ [
1

γ

(
f1

�
− υ�

Kγ + �
f2

)(
Kα

�
− υ�β

�

)

+ 1

�

(
ν

Kγ + �
f1 + f2

γ

)(
kβ

γ

)]
ds. (46)

The time-antisymmetric part

A f − T A f = 2
∫

ds

[
�α̇

(
f1

�
− υ� f2

Kγ + k�

)

+ γ β̇

(
υ� f1

Kγ + k�
+ f2

γ

)]
(47)

is not explicitly dependent on the NH.
If α and β behave like coordinate and velocity, then they

are even and odd under time reversal, respectively. The time-
symmetric part of A f is then

A f + T A f = 2
∫

ds

{[
1

�
+ (υ�)2γ

(Kγ + k�)2

]

×
(

f1

�
∂α�s + f2

γ
∂β�a

)

+ γ β̇

(
υ� f1

Kγ + k�
+ f2

γ

)}
. (48)

For our particular form of �:

A f + T A f = 2
∫

ds

[
Kα

(
f1

�
− υ�

Kγ + �
f2

)

+ 1

�

(
υ�

Kγ + �
f1 + f2

γ

)
β̇

]
. (49)
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Now, the antisymmetric action is

A f − T A f = 2
∫

ds

{[
1

�
+ (υ�)2γ

(Kγ + k�)2

]

×
(

f1

�
∂α�a + f2

γ
∂β�s

)

+ �α̇

(
f1

�
− υ� f2

Kγ + k�

)}
, (50)

and, for our particular form of �,

A f − T A f = 2
∫

�

[(
f1

�
− υ�

Kγ + �
f2

)(
α̇ − υ�β

�

)

+ 1

�

(
υ�

Kγ + �
f1 + f2

γ

)
kβ

γ

]
ds. (51)

To compare these results with the conventional expressions
for entropy production and frenesy, note that the time deriva-
tives can be interchanged between the coordinates and the
perturbing forces using integration by parts. Interestingly,
the perturbing forces in Eqs. (41) and (42) appear in a dif-
ferent, inequivalent way compared to the above mentioned
case, when the perturbing forces are directly added to the
equation of motion; see Refs. [21,29] and Appendix H. As a
result, the entropy and frenesy contributions to the action (and
thus the explicit type of activity associated with them) differ
objectively from those discussed in Ref. [21].

Finally, for completeness, let us give an outlook onto the
role of Graham’s FDR for the Harada–Sasa relation [22].
The later states that the housekeeping heat associated with a
nonequilibrium steady state manifests itself as a violation of
the equilibrium FDR, obtained when a weak perturbing force
is introduced to the equation of motion. In the nonequilib-
rium steady state, the difference between the correlation and
response function grows proportionally with the dissipation
rate. As we have discussed, Graham’s equilibriumlike refor-
mulation of equations admitting a nonequilibrium steady state
always admits a formal FDR for perturbing forces added into
the NH. Combining this with the Harada–Sasa relation, one
concludes that the housekeeping dissipation also amounts to
a measure of the discrepancy between the conventional linear
response and its formal counterpart obtained from the NH. In
other words, the three metrics for quantifying the distance to
equilibrium (steady-state dissipation, FDR violation, and the
discrepancy between conventional and NH notions of linear
response) are mutually consistent. In the same vein, it should
also be informative to keep track of the discrepancy between
the corresponding alternative notions of frenesy discussed
above.

VIII. CONCLUSION

In this paper we have considered nonequilibrium Marko-
vian Langevin equations, where the potential corresponding to
the logarithm of the steady-state distribution can formally take
the role of a free energy or coarse-grained Hamiltonian, which
we called the nonequilibrium Hamiltonian. Exactly solving
an explicit model we find that the NH does not need to be
a time-reversal invariant quantity, out of equilibrium. Even if
the existence of a steady state is exploited to rephrase nonequi-

librium Langevin equations, so that they appear formally
equivalent to those of an equilibrium system, “reactive” and
“dissipative” terms lack important symmetries required for
detailed balance. In particular, there are no Poisson-brackets
underlying the “reactive” couplings. In equilibrium Langevin
equations, the reactive terms are reversible and confined to
level surfaces of the Hamiltonian, so that they produce no
heat and entropy. In the equilibriumlike Langevin equation,
“reactive” terms are responsible for “housekeeping” entropy
production that maintains the steady state and prevents its
relaxation to equilibrium. Far from equilibrium, a splitting
of the NH into time-reversal even and odd parts is observed
to be useful, since both parts contribute in different, phys-
ically transparent ways to the entropy production. In some
cases, the entropy production comes entirely from what could
be called “active/dissipative” fluctuations. We also discussed
two nonequivalent but physically meaningful instances of fre-
nesy, depending on whether the relevant perturbing forces are
added directly to the equations of motion or rather introduced
at the level of the nonequilibrium Hamiltonian. As an outlook,
we pointed out that the response corresponding to the later
type of perturbation can lead to a variant of the Harada-Sasa
relation. Finally, it might be interesting to further investi-
gate the physical significance of two sets of nonequilibrium
Langevin equations having the same antisymmetric coupling
in their equilibriumlike formulation.
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APPENDIX A: EXACT SOLUTION OF THE EQUATION
OF MOTION

We show here how we derived Eq. (22) in Sec. IV. Writing
Eqs. (18) and (19) using Eq. (16) in the vectorial form

q̇ = M · q + ξ, (A1)

where q = (α, β ), M = (
− K

�
υ

0 − k
γ

), and 〈ξ(t )ξ(t ′)〉 =
(

1
�

0
0 1

γ

)δ(t − t ′), the solution of Eq. (A1) can be written
as

q =
∫ t

−∞
exp[M(t − s)]ξ(s)ds. (A2)

The corresponding covariance matrix, C(t, t ′) ≡ 〈q(t )q(t ′)〉,
is given by

C(t, t ′) = C(|t − t ′|)

=
∫ t

−∞

∫ t ′

−∞
ds ds′ exp[M(t − s)]〈ξ(s)ξ(s′)〉

× exp[MT (t ′ − s′)]. (A3)
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Since Eq. (A1) is a linear equation driven by a Gaussian noise, its steady-state distribution is ρ ∝ exp[−�(α, β )], where

�(α, β ) = q · C−1 · q = (Kγ + k�){[K2α2 + (�υ )2β2 + Kβ(−2�υα + kβ )]γ + k(Kα2 + kβ2)�}
{K2γ 2 + [(�υ )2 + 2kK]γ� + k2�2} , (A4)

where C is defined as C = 〈q(t )q(t )〉 in the lim t → ∞.

APPENDIX B: DEFINITION OF ACTION

Given an equation of the form

q̇ = D(q, t ) + N(t ), (B1)

where q is the column vector of dynamical variables, D(q, t )
is the column vector of systematic forces, and N is the column
of additive Gaussian noise with zero mean and variance,

〈N(t )N(t ′)〉 = Mδ(t − t ′). (B2)

Following Refs. [26,46,47], the path probability P = e−A

for the paths qs [s ∈ (0, t )] solving Eqs. (B1) and (B2) is
governed by the action

A =
∫ t

0

[
1

2
(q̇ − D)M−1(q̇ − D)T + 1

2
∂q · D

]
ds. (B3)

The last term is the Jacobian arising in the Stratonovich con-
vention for the discretization, Eq. (5.15) in Ref. [26], when
the weight for the noise history is written in terms of the dy-
namical variables. Its antisymmetric part under time reversal
T is related to entropy, its symmetric part to frenesy [20].

APPENDIX C: ENTROPY PRODUCTION

From the equations of motion (20) and (21) of Sec. IV we
obtain the action

A =
∫

dt
1

4

[
�

(
α̇ + 1

�
∂α� − υ�

Kγ + k�
∂β�

)2

+ γ

(
β̇ + υ�

Kγ + k�
∂α�+ 1

γ
∂β�

)2

− 2

�
∂2
α� − 2

γ
∂2
β�

]
.

(C1)

We can rewrite it as

1

4

∫
dt

[
�α̇2 + γ β̇2 + M(∂α�)2 + N (∂β�)2

+ 2α̇∂α�+ 2β̇∂β�− 2υ��

Kγ + k�
α̇∂β�+ 2υ�γ

Kγ + k�
β̇∂α�

− 2

�
∂2
α� − 2

γ
∂2
β�

]
, (C2)

where M = 1
�

+ γ ( υ�
Kγ+k�

)2 and N = 1
γ

+ �( υ�
Kγ+k�

)2, to ar-
rive at

A =
∫

dt
1

4

[
�α̇2 + γ β̇2 + M(∂α�)2 + N (∂β�)2 + 2

d�

dt

+ 2υ�

Kγ + k�

(
γ β̇∂α� − �α̇∂β�

) − 2

�
∂2
α� − 2

γ
∂2
β�

]
.

(C3)

If both noises have equal strength, i.e., � = γ , then

A =
∫

dt
1

4

{
γ (α̇2 + β̇2) + M[(∂α�)2 + (∂β�)2] + 2

d�

dt

+ 2υγ

K + k
(β̇∂α� − α̇∂β�) − 2

γ
(∂2

α� + ∂2
β�)

}
, (C4)

where the second to last parenthesis can also be written as
∂C� ∧ Ċ. Since α and β have opposite time-reversal sig-
nature, the time antisymmetric part of the action, A − AR,
reads

∫
dt

1

4

{
M[(∂α�)2 + (∂β�)2 − (∂α�R)2 − (∂β�R)2]

+ 2
d (� + �R)

dt
− 2

γ
[∂2

α (� − �R) + ∂2
β (� − �R)]

+ 2υγ

K + k
[β̇∂α (� − �R) − α̇∂β (� − �R)]

}
, (C5)

where �R ≡ T � and AR ≡ T A. With �s = (� + �R)/2 and
�a = (� − �R)/2 for the T -even and T -odd parts of the NH,
we have

A − AR =
∫

dt

[
M∂C�a · ∂C�s + d�s

dt

+ υγ

K + k
(β̇∂α�a − α̇∂β�a) − 1

γ
∂2
C�a

]
, (C6)

or, equivalently,

∫
dt

(
M∂C�a · ∂C�s + d�s

dt
+ υγ

K + k
∂C�a ∧ Ċ − 1

γ
∂2
C�a

)
.

(C7)

The generic case, when the noises have different strength,
can also be written in the form above by rescaling α → α/

√
�

and β → β/
√

γ , upon which Eq. (C2) becomes

A =
∫

dt
1

4

{
α̇2 + β̇2 + M̃[(∂α�′)2 + (∂β�′)2] + 2

d�′

dt

+ 2υ�
√

�γ

Kγ + k�
(β̇∂α�′ − α̇∂β�′) − 2(∂2

α� + ∂2
β�)

}
,

(C8)

where �′ = �(α/
√

�, β/
√

γ ) and M̃ = 1 + �γ ( υ
Kγ+k�

)2.
Following the arguments above, the antisymmetric part
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A − AR of the action is∫
dt

(
M̃∂C�′

a · ∂C�′
s + d�′

s

dt
+ υ�

√
�γ

Kγ + k�
∂C�′

a ∧ Ċ − ∂2
C�′

a

)
.

(C9)

Now we explicitly calculate the terms in Eq. (C7) for the
NH given in Eq. (22):

�a = −(Kγ + k�)(Kγ υ�βα)

{K2γ 2 + [(υ�)2 + 2kK]γ� + k2�2} , (C10)

∂C�a = −(Kγ + k�)Kγ υ�

{K2γ 2 + [(υ�)2 + 2kK]γ� + k2�2} (β, α) ≡ N ′′

2
(β, α); ∂2

C�a = 0, (C11)

�s = (Kγ + k�){[K2α2 + (υ�)2β2 + Kkβ2]γ + k(Kα2 + kβ2)�}
2{K2γ 2 + [(υ�)2 + 2kK]γ� + k2�2} , (C12)

∂C�s = (Kγ + k�)

{K2γ 2 + [(υ�)2 + 2kK]γ� + k2�2} [K2γα + kK�α, (υ�)2γ β + kKγ β + k2�β], (C13)

(∂α�s∂α�a, ∂β�s∂β�a) = −(Kγ + k�)2Kγ υ�

{K2γ 2 + [(υ�)2 + 2kK]γ� + k2�2}2
{(K2γ + kK�)αβ, [(υ�)2γ + kKγ + k2�]αβ}, (C14)

∂C�s · ∂C�a = −(Kγ + k�)2Kγ υ�

{K2γ 2 + [(υ�)2 + 2kK]γ� + k2�2}2
{(K2γ + kK�) + [(υ�)2γ + kKγ + k2�]}αβ ≡ M ′

M
αβ, (C15)

β̇∂α�a − α̇∂β�a = −N ′ dβ2

dt
+ N ′′ dα2

dt
= N ′′ d (α2 − β2)

dt
; N ′ ≡ N ′′ υ�γ

Kγ + k�
. (C16)

APPENDIX D: GENERIC CASE

Here we display the structure of entropy production for
a generic equilibriumlike Langevin equations. We recall the
generic equilibriumlike Langevin equations (6) and (7) and
restrict to additive noise for simplicity:

Ċ = −(Q + La) · ∂Cφ + ∂CLa + giξi, (D1)

〈ξi(t )ξ j (t
′)〉 = 2δi jδ(t − t ′) Q = gigi. (D2)

For simplicity, we restrict the discussion ∂CLa = 0, as often
the case [24] and ∂C · (La · ∂Cφ) = 0, both are always satisfied
for constant La. Then, the action A is∫

dt[Ċ + (Q + La) · ∂Cφ]T· Q−1 · [Ċ + (Q + La) · ∂Cφ]

− Q : ∂C∂Cφ. (D3)

Using (AB)T = BT AT and the fact that Q and Q−1 are sym-
metric matrices and [∂Cφ]T · La · ∂Cφ = 0, because La is
antisymmetric, we can write

A =
∫

dt (ĊT · Q−1 · Ċ + ĊT · Q−1 · Q · ∂Cφ

+ ĊT · Q−1 · La · ∂Cφ + [Q · ∂Cφ]T · Q−1 · Ċ
+ [Q· ∂Cφ]T· Q−1· Q· ∂Cφ + [Q · ∂Cφ]T · Q−1· La · ∂Cφ

+ [La · ∂Cφ]T· Q−1 · La · ∂Cφ + [La · ∇Cφ]T· Q−1 · Ċ
+ [La · ∂Cφ]T· Q−1 · Q· ∂Cφ − Q : ∂C∂Cφ)

=
∫

dt (ĊT · Q−1 · Ċ + 2φ̇ + [∂Cφ]T · Q · ∂Cφ

− [∂Cφ]T · La · Q−1 · Ċ + ĊT · Q−1 · La · ∂Cφ

− [∂Cφ]T · La · Q−1 · La · ∂Cφ − Q : ∂C∂Cφ). (D4)

When the noises have equal strength but no cross correla-
tions, i.e., Qi j ∝ δi j , then

A ∝
∫

dt
[
Ċ2 + 2φ̇ + (∂Cφ)2 + 2Ċ · La · ∂Cφ

+ (La · ∂Cφ)2 − ∂2
Cφ

]
. (D5)

As discussed above, the general case of different noise
strengths reduces to this form upon variable rescaling.

To proceed further we choose for La a matrix, J (or J̃ if
singular and odd dimensional), which can generate any anti-
symmetric matrix through the similarity transformation (see
Appendix E), where J is a 2n × 2n matrix written in 2 × 2
block form [53–55]:

J ≡ diag

{(
0 1

−1 0

)
,

(
0 1

−1 0

)
, ...,

(
0 1

−1 0

)}
. (D6)

Taking La = J gives (La · ∂Cφ)2 = (∂Cφ)2. As a result,
Eq. (D5) reduces to

A ∝
∫

dt

[
Ċ2 + 2φ̇ + 2(∂Cφ)2 + 2

∑
block

(∂Cφ ∧ Ċ)i j − ∂2
Cφ

]
,

(D7)

where Ċi∂C j φ − Ċ j∂Ciφ ≡ (∂Cφ ∧ Ċ)i j giving Ċ · J · ∂Cφ =∑
block

(∂Cφ ∧ Ċ)i j , and A − AR takes the form

∝
∫

dt

[
φ̇s + 2∂Cφs · ∂Cφa +

∑
blocks

(∂Cφl ∧ Ċ)i j − 2∂2
Cφa

]
.

(D8)

Here, l stands for either a or s, depending on whether Ci and
C j have opposite or same signatures under T .
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APPENDIX E: PROPERTIES OF ANTISYMMETRIC
MATRICES

If M is an even-dimensional nonsingular 2n × 2n antisym-
metric matrix, then there exists a nonsingular 2n × 2n matrix
P such that

M = PT · J · P, (E1)

where the 2n × 2n matrix J written in 2 × 2 block form is
given by Eq. (D6)

If M is a singular antisymmetric d × d matrix of rank 2n
(where d is either even or odd and d > 2n), then there exists
a nonsingular d × d matrix P such that

M = PT · J̃ · P (E2)

and J̃ is the d × d matrix that is given in block form by

J̃ ≡
(

J 0
0 0

)
,

where the 2n × 2n matrix J is defined in Eq. (D6) and 0 is a
zero matrix of the appropriate number of rows and columns.
Note that if d = 2n, then Eq. (E2) reduces to Eq. (E1).

Two matrices, M and J (or J̃) are said to be congruent
(similar) if they are related by Eqs. (E1) and (E2). Thus,
Eqs. (E1) and (E2) imply that all d × d antisymmetric matri-
ces of rank 2n (where n � d/2) belong to the same congruent
class, which is uniquely specified by d and n. Thus all the an-
tisymmetric matrices of a given d and n can be generated from
their respective J (J̃) through a similarity transformation.

APPENDIX F: NOISE AS A SOURCE OF ENTROPY
PRODUCTION

We recall the generic equilibriumlike Langevin equa-
tions (6) and (7) and restrict to ∂CLa = 0 as above:

Ċμ = −(
Qμν + La

μν

)
∂Cν

φ + gi
μ(C)ξi. (F1)

Time derivative of the NH is

φ̇ = Ċμ∂Cμ
φ. (F2)

There is no systematic change in the value of the NH due to
the “reactive” part of the dynamics, as φ̇ = −La

μν∂Cν
φ∂Cμ

φ =
0, because La

μν is antisymmetric. Therefore, dynamics due to
“reactive” part is along the level surfaces of NH. The temporal
change in φ due to “dissipative” part is

φ̇ = −Qμν∂Cν
φ∂Cμ

φ < 0. (F3)

Because noise covariance matrix, Qμν , is symmetric and pos-
itive definite (semidefinite in general), the “dissipative” term
will always systematically decrease the NH. Since the NH is
bounded from below the systematic dynamics will lead to the
minimum of the NH, in accord with the notion of a Lyapunov
function. At the minimum the derivative of the NH vanishes,
which implies the vanishing of all “dissipative” and “reactive”
forces. But fluctuation keep kicking the system out of the
minimum which leads to a finite “reactive” (and “dissipative”)
force resulting in the movement along the contour lines and
producing entropy. It is important to note that it is the noise
which is responsible for the entropy production (especially
when both α and β are even under T ). This scenario is totally

different from equilibrium where fluctuations due to noise do
not give rise to any dissipation. Therefore, the above “reac-
tive” entropy producing fluctuations are suitably addressed as
“dissipative fluctuations.”

APPENDIX G: CALCULATION FOR EXCESS FRENESY

The equations of motion (20) and (21) in the presence of
perturbing force, i.e., taking φ → φ − fiqi with q1 = α and
q2 = β, given by

α̇ = − 1

�
∂α� + υ�

Kγ + k�
∂β� + f1

�
− υ� f2

Kγ + k�
+ ξα,

(G1)

β̇ = − υ�

Kγ + k�
∂α� − 1

γ
∂β� + υ� f1

Kγ + k�
+ f2

γ
+ ξβ.

(G2)

We define the perturbation part A f of the action by

A = A0 + A f , (G3)

where A is the total action in presence of the external forces fi

and A0 is the action in the absence. As shown in Appendix B,
the path probability for the trajectory ω = (Xs) (s ∈ [0, t]) is
given by

P[ω] = e−A = e−A f (ω)Pref[ω], (G4)

where Pref[ω] = e−A0(ω) is the path probability in the absence
of the perturbation. They are given by

A0 =
∫

ds
1

4

[
�

(
α̇ + 1

�
∂α� − υ�

Kγ + k�
∂β�

)2

+ γ

(
β̇ + υ�

Kγ + k�
∂α� + 1

γ
∂β�

)2

− 2

�
∂2
α�

− 2

γ
∂2
β�

]
(G5)

and

A f =
∫

ds �γ

[
1

γ

(
α̇+ 1

�
∂α�− υ�

Kγ + k�
∂β�

)

×
(

f1

�
− υ� f2

Kγ + k�

)

+ 1

�

(
β̇ + υ�

Kγ + k�
∂α� + 1

γ
∂β�

)

×
(

υ� f1

Kγ + k�
+ f2

γ

)]
, (G6)

which can be rewritten as

A f =
∫

dt

[(
1

�
+ (υ�)2γ

(Kγ + k�)2

)(
f1

�
∂α� + f2

γ
∂β�

)

+ �α̇

(
f1

�
− υ� f2

Kγ + k�

)
+ γ β̇

(
υ� f1

Kγ + k�
+ f2

γ

)]
.

(G7)
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When α and β are T -even

A f + T A f =
∫

dt 2

(
1

�
+ (υ�)2γ

(Kγ + k�)2

)

×
(

f1

�
∂α� + f2

γ
∂β�

)
. (G8)

After scaling, α → α/
√

� and β → β/
√

γ ,�′ ≡
�(α/

√
�, β/

√
γ ), we have

A f + T A f =
∫

ds 2

[(
1

�
+ (υ�)2γ

(Kγ + k�)2

)
f · ∂C�′

]
.

(G9)
The antisymmetric part of A f

A f − T A f =
∫

ds 2

[
�α̇

(
f1

�
− υ� f2

Kγ + k�

)
+ γ β̇

×
(

υ� f1

Kγ + k�
+ f2

γ

)]
. (G10)

When α is T -even and β is T -odd, we find

A f + T A f =
∫

dt 2

[(
1

�
+ (υ�)2γ

(Kγ + k�)2

)

×
(

f1

�
∂α�s + f2

γ
∂β�a

)

+ γ β̇

(
υ� f1

Kγ + k�
+ f2

γ

)]
, (G11)

or, more explicitly,

A f + T A f =
∫ t

0
γ�

[
1

γ

(
f1

�
− υ�

Kγ + �
f2

)(
Kα

�

)]

+
[

1

�

(
υ�

Kγ + �
f1 + f2

γ

)
β̇

]
ds (G12)

and

A f − T A f =
∫

ds 2

[(
1

�
+ (υ�)2γ

(Kγ + k�)2

)

×
(

f1

�
∂α�a + f2

γ
∂β�s

)

+ �α̇

(
f1

�
− υ� f2

Kγ + k�

)]
, (G13)

which for our �, reduces to

A f − T A f = 2
∫ t

0
γ�

[
1

γ

(
f1

�
− υ�

Kγ + �
f2

)(
α̇ − υ�β

�

)]

+
[

1

�

(
υ�

Kγ + �
f1 + f2

γ

)
kβ

γ

]
ds. (G14)

APPENDIX H: DIRECTLY PERTURBING THE EOM
VERSUS PERTURBING THE NH

The usual way to perturb nonequilibrium systems (without
a Hamiltonian) is by introducing a perturbing force f into the
equations of motion for X [21,29]

�Ẋ = −∂X H + f + x, (H1)

γ ẋ = −x + ξx. (H2)

Quite different results are obtained if one exploits Graham’s
equilibriumlike structure and perturbs the dynamic variable X
by adding a term φ → φ − f1X to the NH. For a harmonic
NH, the latter strategy results in

Ẋ = −KX

�
+ x

�
, (H3)

ẋ = − x

γ
+ f1

Kγ + �
+ ξx. (H4)
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