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Asymmetric coupling induces two-directional reentrance transition in three-lane exclusion process
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Inspired by vehicular traffic phenomena, we study a three-lane open totally asymmetric simple exclusion
process with both-sided lane switching in the companionship of Langmuir kinetics. We calculate the phase
diagrams, density profiles, and phase transitions through mean-field theory and successfully validate these
findings with Monte Carlo simulation results. It has been found that both the qualitative and quantitative topology
of phase diagrams crucially rely on the ratio of lane-switching rates called coupling strength. The proposed model
has various unique mixed phases, including a double shock resulting in bulk-induced phase transitions. The
interplay between both-sided coupling, third lane, and Langmuir kinetics produces unusual features, including
a back-and-forth phase transition, also called a reentrance transition, in two directions for relatively nominal
values of coupling strength. The presence of reentrance transition and peculiar phase boundaries leads to a rare
type of phase division in which one phase lies entirely within another region. Moreover, we scrutinize the shock
dynamics by analyzing four different types of shock and finite-size effects.
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I. INTRODUCTION

Many natural and man-made systems evolve into nonequi-
librium stationary states with steady currents under the
influence of internal or external energy. Ranging from physi-
cal to biological transport, most transportation systems belong
to such a category. To explain the behavior of such out-of-
equilibrium processes, various kinds of lattice gas models
have been proposed and examined extensively [1]. Here we
concentrate on models where particles prefer to hop along a
lattice only in one direction. In this direction, the totally asym-
metric simple exclusion process (TASEP) has proved itself a
paradigm in the area of the nonequilibrium transport system.
TASEP is a stochastic model introduced by MacDonald and
Gibbs in 1968 to study the kinetics of biopolymerization on
nucleic acid templates [2]. In this model, a particle can enter
and exit from two different ends and move in bulk with pre-
defined rates and rules. In past decades, TASEP has been used
to model and analyze numerous processes, including traffic
flow, pedestrian dynamics, chains of quantum dots, move-
ment of ants along a trail, information flow, and molecular
motor traffic [3–7]. Despite being a simple model, TASEP is
capable of explaining varieties of complex phenomena such
as nonequilibrium phase transitions, spontaneous symmetry
breaking, boundary and bulk induced transitions, shock for-
mation, and phase separation [8–15].

Furthermore, particles can attach to or detach from the
path in many systems. For instance, automobiles in a traffic
system can enter (exit from) the traffic lane from (to) the side
way. Similarly, in biological transport, the motor proteins’
attachment and detachment occur between microtubule and
cytoplasm [16]. Motivated by these examples, researchers
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proposed the concept of Langmuir kinetics (LK), in which
a particle can join or leave the lattice bulk sites with some
predefined rates. In this direction, Parmeggiani et al. pro-
posed a detailed analysis of the interplay between conserving
(TASEP) and nonconserving (LK) dynamics in a single-lane
TASEP with LK [17,18]. It was noticed that LK produces
many novel features, including phase coexistence and local-
ization of the shock phase [13,17]. Motivated by the nontrivial
impact of LK on the system dynamics, recently various stud-
ies have been conducted on single-lane TASEP-LK model
[18,19].

In our daily life, we observe many systems where particles
move in more than one lane. For example, vehicles travel
along multiple roads forming a multilane system. Similarly,
motor proteins perform the directed motion in intracellular
transport along multiple protofilaments. In both instances,
particles move along the numerous lanes and switch their path
depending upon various situations, producing coupled multi-
lane transport systems. Looking at the extensive appearance of
coupling between paths, multiple studies have been proposed
for a two-lane TASEP system with coupling between the
lanes [20–22]. To analyze the traffic situations more realisti-
cally, few researchers have proposed coupled two-lane TASEP
models with attachment-detachment process [23,24]. With the
increase in lanes, the system becomes very complicated, lead-
ing to various challenges in extending a two-lane system to a
three-lane one. Since a three-lane system is more realistic for
understanding various transport systems, very few researchers
have studied a complex three-lane system [11,25–29]. Wang
et al. [11] reported a bulk-induced phase transition from the
study of a three-lane TASEP with weak and asymmetric cou-
pling. Cai et al. [25] studied fully asymmetric coupling in
multichannel TASEP and observed that the topology of the
phase diagram varies as the number of lanes increases. Jiang
et al. [26] scrutinized the steady-state phase diagrams from
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FIG. 1. Sketch of the three-lane TASEP with Langmuir kinetics.
The arrows (crosses) denote permitted (prohibited) transitions. The
α, β, ωa, and ωd correspond to entry, exit, attachment, and detach-
ment rates. ω1 (ω2) denotes the coupling rate from lane 1 to lane 2,
lane 2 to lane 3 (from lane 3 to lane 2, lane 2 to lane 1).

the study of multilane partially asymmetric simple exclusion
process (PASEP) under a strong asymmetrically coupled en-
vironment. A few other researchers explored phase diagrams
of three-lane systems under the influence of fully asymmetric
coupling with Langmuir kinetics [28,29].

From the above studies of three-lane systems, it is clear that
some of the studies are based on TASEP without LK [11,25–
27], while studies that incorporated LK have studied only the
impact of fully asymmetric coupling [28,29]. Therefore, to our
knowledge, no study has explored the implications of asym-
metric coupling on a three-lane TASEP system in the presence
of LK. This study investigates a three-lane TASEP model
coupled with LK in the presence of asymmetric coupling
conditions. We wish to explore the novel phase transitions
and nontrivial impact of asymmetric coupling on steady-state
system dynamics of the considered model. Further, we aim
to scrutinize the overall system dynamics by analyzing phase
diagrams for different coupling rates.

II. MODEL DESCRIPTION
AND MEAN-FIELD EQUATIONS

We consider three parallel one-dimensional open lattices
denoted by lane 1, lane 2, and lane 3, as shown in Fig. 1.
Each lane has exactly an N number of sites labeled as i =
1, 2, . . . , N . Particles are distributed in the system under the
hardcore exclusion principle, such as a site that cannot occupy
more than one particle. The occupancy state of a site i is
represented by a binary variable ni

j where j = 1, 2, 3. The
value of ni

j is one (zero) depending on if the site is occupied
(vacant) by a particle. We choose a lattice site at random at
each time step and update it as per random sequential update
rules. The subprocesses which govern the system dynamics
are as follows:

(1) If i = 1, a particle can enter into the system with rate α

in case n1
j=0. If the first site is occupied, a particle can move

from i = 1 to i = 2 with the unit rate provided n2
j = 0.

(2) At i = N , particles leave from the site with rate β

provided nN
j = 1.

(3) For 1 < i < N (bulk sites), if ni
j = 1, a particle first

tries to detach with rate wd . If detachment is not possible and
ni+1

j = 0, then the particle moves to the (i + 1)th site. If the

(i + 1)th site is occupied, then the particle hops to site i on
lane j + 1 ( j − 1) with rate ω1 (ω2), provided the target site is
unoccupied. Clearly, ω2 (ω1) is 0 for lane 1 (lane 3). Besides,
if the ith site is not occupied, a particle can attach to it with
rate wa.

It is to be noted that LK and lane changing do not take
place at boundary sites.

We calculate the mean site occupation density for the bulk
site in each lane using the following master equations:
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The densities at boundaries can be calculated as follows:
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with 〈· · · 〉 as the statistical average.
To obtain the continuum limit of the model, we coarse

grain the discrete lattice with lattice constant ε = 1
N and

rescaled time as t ′ = t
N . In order to explore the competition

between boundary and bulk dynamics, involved bulk rates are
rescaled as ωaN = �a, ωd N = �d , ω1N = �1, ω2N = �2.

After replacing the discrete variable < ni
j >, with ρ i

j con-
tinuous variables, in Taylor series expansion of ρ i±1

j , we keep
the terms up to second order resulting in

ρ i±1
j = ρ i
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no kind of inhomogeneity concerning bulk sites to get
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with

S =

⎡
⎢⎣

�a(1 − ρ1) − �dρ1 − P + Q
�a(1 − ρ2) − �dρ2 − T + P − Q + R

�a(1 − ρ3) − �dρ3 + T − R

⎤
⎥⎦,
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)
.

Since our main aim is to explore the role of the asymmetric
coupling rate, therefore, to simplify the analysis, we restrict
our investigation to a specific choice of LK rates. In this
study, we focus on the case when �a = �d , under which the
stationary density equations reduce to

ε
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(
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)
+ T − R = 0 (9)

with boundary conditions ρ1(0) = ρ2(0) = ρ3(0) = α and
ρ1(1) = ρ2(1) = ρ3(1) = 1 − β = γ .

In the past, the singular perturbation technique has success-
fully explained the rich phase diagrams of coupled TASEP
systems with LK; therefore, we exploit the same method to
obtain the steady-state solution of the above nonlinear system
of equations [24]. One can follow Ref. [30] for a comprehen-
sive description of the approach.

III. RESULTS AND DISCUSSION

To explore the role of lane-changing rates on the steady-
state system properties of three-lane TASEP, we define a
parameter K , namely, coupling strength [24] (also called the
coupling constant [31]), which is the ratio of coupling rates �1

and �2. For simplicity, throughout this paper, we call K the
coupling strength. Previous studies have analyzed the impact
of K in a two-lane system [31] and reported different values of
�1, and �2, with fixed K , leading to different phase diagrams
affecting the system dynamics significantly. Apart from that,
one study has been conducted on three-lane TASEP without
LK with asymmetric coupling conditions [11]. Therefore our
aim is not only to understand the influence of K on system
dynamics but also to visualize the role of LK in the proposed
system. To do this, we calculate the phase diagrams for the
same values of K , �1, and �2, which have been used in
previous studies so that we can compare the results and can
understand the influence of various incorporated processes
[11,31] in proposed model dynamics. These observations
stimulate the need to explore a few questions as follows: (i)
What is the impact of K on phase diagram? (ii) Does the
same K with different coupling rates produce the same phase

diagram? (iii) How does the LK influence the properties of
the phase diagram? and (iv) What are the similarities and
differences between the proposed model and corresponding
two-lane model? To answer the above questions, we calculate
various important characteristics, including phase diagrams,
density profiles, and phase transitions for varied important pa-
rameters. Refer to Appendix A for the procedure to calculate
the phase diagram. Further, K = 1 represents a trivial case
of symmetric coupling discussed in Appendix B. Similarly,
K = 0 means a fully asymmetric coupling case which was
already discussed in [28]; therefore, we skip this discussion
here.

A. Phase diagrams

To begin, we first review the notation of density profiles
in each phase diagram in Fig. 2. The density profile takes the
form X1/X2/X3, with the phases in lane 1, lane 2, and lane 3
denoted by X1, X2, and X3, respectively. X1, X2, X3 can take
any one or a combination of basic profiles L (low density with
ρ < 0.5), H (high density with ρ > 0.5), M (maximal current
with ρ = 0.5), and S (shock phase; sudden change from low
density to high density), and D (double shock in a single lane).
Note that the phase classification is adopted as the standard
definition of low density, high density, and maximal current
from past literature [32,33].

As discussed earlier, a past study [24] has proposed
understanding the impact of coupling strength (K) on the
two-lane TASEP with LK. We calculate the phase diagrams
for the same parameters as in [24] to know how system
properties alter with the third lane. In Fig. 2(a), the phase
diagram with K = 4, �1 = 0.8, and �2 = 0.2 is displayed.
At this stage, we observe 17 distinct steady-state pro-
files: L/L/L, L/S/S, S/S/S, L/L/S, L/A/S, S/A/S, S/LH/S,
S/S/H , L/LML/H , L/A/H , S/A/H , S/LH/H , L/HMH/H ,
S/HMH/H , L/HL/H , S/H/H , and H/H/H . Here LML
(density profile, which goes from low density to maximal
current and back to low density), HMH(density profile goes
from high density to maximal current to high density),
LH(density profile with gradual change from low to high
density), HL(density profile goes from high-density profile to
low-density profile), and A (density profile goes from low den-
sity to maximal current to high density) are mixed phases with
A as a unique phase which consists of all three basic phases
L, M, and H , which is usually rare to find in TASEP-based
studies. Further, we notice that phases like L/L/L, S/S/S, and
H/H/H are similar to those observed in the phase diagram for
a two-lane system [24], while all remaining phases arise due
to dissimilarity between a three- and two-lane system. The
third lane produces a complex phase diagram and leads to 17
phases compared to six phases in a two-lane system. Most of
the profiles in the second lane are mixed profiles arising due to
the impact of the third lane in our system. Since more particles
move to the third lane as �1 = 0.8 is higher than �2 = 0.2,
the density in the third lane usually remains higher than the
other two lanes.

Besides, if we keep K = 4 fixed but change �1 = 80, and
�2 = 20 as adopted in the two-lane system, we realize that
despite fixed K , the phase diagram changes, which was also
noticed in [24]. In this case, the phase diagram becomes more
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FIG. 2. Phase diagrams for varied coupling strength K = �1
�2

as (a) K = 4, �1 = 0.8, and �2 = 0.2; (b) K = 4, �1 = 80, and �2 = 20;
(c) K = 100, �1 = 10, and �2 = 0.1; (d) K = 1000, �1 =10, and �2 = 0.01; (e) K = 0.7, �1 = 7, and �2 = 10; and (f) K = 0.05, �1 = 1,
and �2 = 20. Parameters �a = �d = 0.2, and N = 1000 are the same in (a)–(f). Here �1, �2, �a, �d , α, and β = 1 − γ are coupling rate
(lane 1 to lane 2, lane 2 to lane 3), coupling rate (lane 3 to lane 2, lane 2 to lane 1), attachment rate, detachment rate, entry rate, and exit rate,
respectively. Black solid lines are the phase boundaries obtained by mean-field theory (MFT), while red markers correspond to Monte Carlo
simulation (MCS) results. The green solid line in (c), (d), and (f) indicates the back-and-forth phase transitions.
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complex with 18 phases compared to 17 phases for �1 = 0.8
and �2 = 0.2. In a two-lane system, the number of phases
has not changed, contrary to the three-lane case displaying
the crucial role of the third lane. Phases like L/L/L, H/H/H ,
and S/S/S are similar in this phase diagram and in the phase
diagram for the two-lane system, while all remaining phases
are not reported in the two-lane system.

In general, the differences between the two-lane model and
the proposed model can be explained as follows. In a three-
lane system, the middle lane involves a few extra transitions,
including particle exchange through lane 1 and lane 3, which
make it different from the other two lanes leading to various
mixed phases in this lane, as can be seen in Figs. 2(a) and
2(b). Due to the middle lane, a three-lane system produces a
very complex phase diagram with many mixed profiles, which
are not reported in a two-lane system. Various new phases
result in interesting bulk-induced phase transitions, which are
discussed in upcoming sections.

Moreover, a past study [11] analyzes a three-lane system
in the absence of LK with �1 = 10 and �2 = 0.1. Figure 2(c)
shows the phase diagram for the proposed three-lane system
with LK and the same coupling rates as in Ref. [11]. It is
important to note that LK drastically impacts the topological
geometry of the phase diagram leading to the S/S/S phase,
which does not exist in the three-lane model without LK.
Besides, we notice that one can travel from L/S/H to L/D/H
again to L/S/H just by varying α ∈ [0.2, 0.4] by keeping all
parameters fixed with γ = 0.79. This kind of transition is
named a back-and-forth phase transition (also called a reen-
trance transition), which appears here as a significant impact
of LK [34,35]. We discuss it in detail in upcoming sections.
The back-and-forth transition is marked using a green line
in Fig. 2(c). The reentrance transition that appears in only
a small region is a peculiarity of our phase diagram, which
can be explained as follows. When the system is in L/S/H
and α increases, more particles enter the system, but since
�1 = 10 and �2 = 0.1, the flow of particles will be towards
lane 3. Since lane 3 is already crowded so it cannot accept
more particles, a good number of particles start accumulating
in lane 2, leading to another traffic jam near the left boundary
resulting in a double shock (D) that transits to high density on
further increased in α providing a single shock phase again.

Further, with the different parameter values of K = 1000,
�1 = 10, and �2 = 0.01 used in Fig. 2(d), we see that there
are only 12 distinct density profiles and that the complex-
ity of the profiles is less than in earlier diagrams; however,
this phase diagram provides nontrivial features in terms of a
double shock (D) in the second lane (L/D/H ) and a back-
and-forth transition as we can start from L/S/H to L/D/H
to get L/S/H again just by varying α ∈ (0.2, 0.4) for fixed
γ = 0.76. Similarly, one can travel from L/S/H to L/D/H
again to L/S/H by varying γ from 0.72 to 0.85 with fixed
α = 0.31. In this way, we observe a two-directional reentrance
transition which is not reported in the corresponding two- or
three-lane system [11,24,28,31]. The existence of this feature
signifies the crucial role of interplay between asymmetric
coupling and LK. Note that reentrance transition provides the
freedom to control the system dynamics by varying a single
parameter. Physically, L/D/H shows two traffic jams in the
middle lane, which are undesirable for smooth transportation

and can be avoided by varying entry or exit rates due to a
reentrance transition. Therefore reentrance transition helps in
transiting one phase into other with better control and just by
altering a single parameter.

In Fig. 2(e) parameters are K = 0.7, �1 = 7, and �2 = 10,
and here we have 14 density profiles with the interesting
simultaneous double transition from S/L/L changes to S/S/S
signifying the transition from L to S in lane 2 and lane 3
together, which was not reported in the corresponding two-
and three-lane systems [11,24,28,31]. The double simultane-
ous phase transition occurs due to the influence of the third
lane, LK, and asymmetric coupling and can be explained
as follows. When the system is in the S/L/L phase, more
particles enter the second and third lanes as the first lane is
in the shock phase. On increasing γ , particles tend to stay in
that lane for a fixed value of α, which causes the second and
third lanes to change to shock simultaneously.

Moreover, for K = 0.05, �1 = 1, and �2 = 20, we get 15
density profiles in Fig. 2(f). Here �2 is greater than �1, so
the density of particles is high in the first lane. In this phase
diagram, we notice the presence of a bidirectional reentrance
transition. Fixing α and varying γ , we can see the transition
in lane 2 as H/S/L → H/D/L → H/S/L, and the same tran-
sition can be experienced by fixing γ and varying α. This
double reentrance transition is indicated by green lines in
Fig. 2(f). Another interesting feature of the phase diagram is
the existence of phase division as a region of phase H/D/L
completely lies inside phase H/S/L. It is important to note that
to our knowledge, in similar past studies of two- or three-lane
systems, no such phase division has been reported showing
the critical role of adopted processes in the proposed model.

B. Density profiles and phase transitions

As discussed in previous sections, we obtain phase di-
agrams and other characteristics utilizing the mean-field
approach. To validate these findings, we use Monte Carlo
simulations (MCS) which are carried out for N = 1000. We
perform simulations for 1010 times and ignore the first 5%
time steps to guarantee the occurrence of a stationary state
(Fig. 3). The average density in all three lanes is calculated
using time averages over an interval of 10N . With a margin of
error of less than 1%, the phase boundaries are determined.

We have illustrated some of the important stationary den-
sity profiles in Fig. 3 obtained using mean-field theory and
their validation using Monte Carlo simulations. It is clear from
Fig. 3 that there is good agreement between our theoretical
outcomes and the simulation results. It is important to note
that some of the profiles were not reported in past studies
in corresponding two-lane or three-lane systems [11,24,28].
Further, phases like maximal phase M, the mixed profiles
LML, HMH , HL, the unique phase A [Fig. 3(a)], and the
double shock D [Fig. 3(b)] were not reported in a two-lane
system with the same rules [24], which signifies the crucial
impact of the third lane on the system dynamics. Similarly,
phases like HMH [Fig. 3(c)], LML [Fig. 3(d)], the unique
phase A Fig. 3(e)], and LH [Fig. 3(f)] were not reported in a
three-lane system without LK [11] indicating the nontrivial
impact of LK in our model. Besides, asymmetric coupling
present in our model leads to a few new phases, such as
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FIG. 3. Density profiles for (a) K = 1000, �1 = 10, and �2 = 0.1; (b) K = 4, �1 = 0.8, and �2 = 0.2; (c) K = 4, �1 = 0.8, and �2 =
0.2; (d) K = 4, �1 = 0.8, and �2 = 0.2; (e) K = 4, �1 = 0.8, and �2 = 0.2; and (f) K = 4, �1 = 80, and �2 = 20. �a = �d = 0.2, N =
1000 are the same in (a)–(f). Here K , �1, �2, �a, �d , α, and β = 1 − γ are coupling strength, coupling rate (lane 1 to lane 2, lane 2 to lane
3), coupling rate (lane 3 to lane 2, lane 2 to lane 1), attachment rate, detachment rate, entry rate, and exit rate, respectively. The black dotted
line represents ρ = 0.5.

HMH and LML, which were not reported in the study of
three lanes fully asymmetric system with LK. For the sake
of completeness and to understand how particles flow along
all lanes in steady state, many other density profiles are listed
in Appendix C.

Moreover, due to complicated dynamics and a few unique
mixed phases, the system experiences various interesting
features which can be well explained in terms of phase tran-
sitions. In this way, we present various nontrivial transitions
between different phases in Fig. 4. Note that in the phase
diagram for K = 1000 with �1 = 10 and �2 = 0.01, the
shape of phase boundaries of a few phases such as L/A/H
and L/D/H becomes peculiar leading to a unique kind of
phase transition, namely, a back-and-forth phase transition
(also called a reentrance transition in the literature) where one
can start from phase P1 to P2 again to P1 by just varying a
single parameter with all other parameters kept as fixed. In
phase diagram Fig. 2(d), we can notice a novel feature called
a double back-and-forth transition in lane 2. Here one can
travel from L/S/H to L/A/H to S/S/H with varying γ (α) for

fixed α (γ ). It is important to note that it is rare to witness a
double back-and-forth transition (in two directions), as visible
here, proving the significance of the proposed model. This
transition is shown in Fig. 4(a) and Fig. 4(b). For γ = 0.8,
the middle lane is in the shock phase, which gradually tran-
sitions into A at γ = 0.84 and eventually converts back into
the S phase (S → A → S) at γ = 0.88 without varying any
other parameter leading to the back-and-forth transition in the
vertical direction with a fixed value of α = 0.3 [Fig. 4(a)]. In
the same way, we have shown S → A → S by varying α ∈
(0.18, 0.3), and γ = 0.87 with the remaining parameters as
fixed, showing the same type of transition in the horizontal di-
rection as shown in Fig. 4(b). Moreover, in the phase diagram
[Fig. 2(f)] with K = 0.05, �1 = 1, and �2 = 20, we obtain
the same type of double back-and-forth transition from H/S/L
to H/D/L to H/S/L as illustrated in Fig. 4(c) and Fig. 4(d). In
Fig. 4(c) the middle lane experiences an S phase at γ = 0.72
which reaches into the D phase at γ = 0.76 to finally convert
into the shock phase at γ = 0.82 where the value of α = 0.32
is fixed, which shows the transition in the vertical direction.
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FIG. 4. Phase transitions in lane 2 as (a) L/S/H → L/A/H → L/S/H for fixed α = 0.3, K = 1000, �1 = 10, and �2 = 0.01 with varied
γ ; (b) L/S/H → L/A/H → L/S/H for fixed γ = 0.87, K = 1000, �1 = 10, and �2 = 0.01 with varied α; (c) H/S/L → H/D/L →
H/S/L for fixed α = 0.32, K = 0.05, �1 = 1, �2 = 20 for varied γ ; (d) H/S/L → H/D/L → H/S/L for fixed γ = 0.32, K = 0.05,
�1 = 1, and �2 = 20 with varied α; and (e) L/S/H → L/D/H → L/S/H for γ = 0.79, K = 1000, �1 = 10, �2 = 0.01 with varied α.
�a = �d = 0.2 and N = 1000 are common in (a)–(e). The respective insets represent Monte Carlo simulation results. Here (a)–(d) and (e)
represent the reentrance transition in two directions and one direction, respectively. Here K , �1, �2, �a, �d , α, and β = 1 − γ are coupling
strength, coupling rate (lane 1 to lane 2, lane 2 to lane 3), coupling rate (lane 3 to lane 2, lane 2 to lane 1), attachment rate, detachment rate,
entry rate, and exit rate, respectively. The black dotted line represents ρ = 0.5.
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FIG. 5. (a) Finite-size effect on shock profile in lane 3 with α = 0.1, γ = 0.75, K = 100, �1 = 10, and �2 = 0.1 for varied N (b) Shock
position in lane 2 with α = 0.26, K = 0.05, �1 = 1, �2 = 20, �a = �d = 0.2 and N = 1000. Panel (b) also signifies the existence of a
reentrance transition. Here K , �1, �2, �a, �d , α, and β = 1 − γ are coupling strength coupling rate (lane 1 to lane 2, lane 2 to lane 3),
coupling rate (lane 3 to lane 2, lane 2 to lane 1), attachment rate, detachment rate, entry rate, and exit rate, respectively.

Similarly, the same transition (H/S/L → H/D/L → H/S/L)
is shown in Fig. 4(d) in the horizontal direction by fixing
γ = 0.32 and varying α ∈ (0.26, 0.36). In the phase diagram
[Fig. 2(d)], we observe that one can travel from L/S/H to
L/D/H again to L/S/H showing a back-and-forth transition
in the middle lane in one direction. Figure 4(e) displays this
transition with a fixed value of γ = 0.79. At α = 0.3, the
middle lane is in the shock phase, which converts into a
double shock at α = 0.33 again to achieve the shock phase
(S → D → S) with α = 0.37. Since in Fig. 4, transitions take
place in the bulk itself, therefore they are called bulk-induced
phase transitions.

Moreover, if we compare our model with a two-lane system
[24], we can see some of the following similarities. In a
two-lane system, only boundary-induced phase transitions are
reported, while in the proposed model we have various types
of transitions ranging from boundary-induced to bulk-induced
to back-and-forth transitions. Two of the common nontriv-
ial transitions between a two-lane system and the proposed
model are from LD → S in the first lane (α = 0.1, γ ∈ [0, 1])
and LD → S → HD [see Fig. 2(a)] in the third lane (α ∈
[0, 1], γ = 0.1). The remaining transitions discussed in our
model are absent in a two-lane system. Furthermore, all back-
and-forth transitions are shown in the middle lane because it
differs from the first and third lanes and behaves differently,
resulting in various new features, as previously discussed. On
the other hand, though a good number of phases are common
with three-lane systems without LK, however, due to the in-
volvement of LK, the geometry of the phase diagram changes,
which produces a few exciting features and transitions which
are not reported in past studies of three lanes. In this direction,
the presence of S/S/S, transitions involving this phase, bidi-
rectional reentrance transitions, and phase division are a few
new features in this model.

1. Finite-size effect and shock dynamics

Here we scrutinize the unique shock features in the pro-
posed three-lane system. The role of the lattice size on the
shock profile is also analyzed. From Fig. 5(a) we deduce that
the vertical sharpness of the shock profile is enhanced with
an increment in lattice size, which proves no finite-size effect
is present in the studied system. The absence of a finite-size
effect leads to the fact that lattice size does not alter any of
the reported features of the system. Since the presence of
back-and-forth transitions in the shock phase is one of this
study’s crucial findings, it is important to investigate the shock
dynamics of its position (Xs). In Fig. 5(b), we display the
shock position of lane 2 for a fixed value of α = 0.26, �1 = 1,
and �2 = 20. At γ = 0, lane 2 is in the L phase with a shock
position near one due to a boundary layer at the right end. With
an increase in γ , the boundary layer shifts from right to left,
producing a shock at γ = 0.741. Further increasing the value
of γ from 0.741, this shock phase transits into a mixed phase
LH at γ = 0.799, which results in a shock position as zero till
γ = 0.845 at which the LH phase converts into a shock phase
leading to a nonzero shock position. For γ > 0.845, the shock
phase shifts towards the left, resulting in a high-density phase
at γ = 0.96 with a shock position at 0. Here it is important to
note that we observe that one can travel from S → LH → S
just by varying γ with all other parameters fixed, which proves
the existence of back-and-forth phase transitions. Physically,
the presence of the back-and-forth transition represents that
for a comparatively higher value of γ with fixed entry rate
α, lane 2 experiences a traffic jam-like situation which can
be avoided just by choosing a suitable value of γ for smooth
movement. Mathematically, the both-sided lane switching and
LK terms in mean-field equations lead to back-and-forth
phase transitions. Therefore, these processes’ absence leads to
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FIG. 6. Three types of shocks profiles. Solid lines indicate mean-field approximation, and markers indicate Monte Carlo simulation
outcomes. Here �a = �d = 0.2, and N = 1000. Three profiles indicate L/S/H for (a) �1 = 100, �2 = 0.1; (b) �1 = 10, �2 = 0.01; and
(c) �1 = 10, �2 = 0.01. Here K , �1, �2, �a, �d , α, and β = 1 − γ are coupling strength, coupling rate (lane 1 to lane 2, lane 2 to lane 3),
coupling rate (lane 3 to lane 2, lane 2 to lane 1), attachment rate, detachment rate, entry rate, and exit rate, respectively. The black dotted line
represents ρ = 0.5.

this unique feature’s disappearance. Moreover, various kinds
of shock phases exist in the present study, as shown in Fig 6.
In the first type, there is an abrupt transition from low density
to high density and then back to low density [Fig. 6(a)].
The second kind denotes typical shocks [Fig. 6(b)], while
in the third type of shock, density changes abruptly from
high density to low density before returning to high density
[Fig. 6(c)]. Double shock is another attractive shock profile
that we discussed previously.

IV. CONCLUSION

In this work, inspired by multilane transport systems, we
have studied a three-lane TASEP with LK under the influ-
ence of both-sided coupling. Monte Carlo simulations validate
the theoretical findings obtained through mean-field analy-
sis. To understand the role of both-sided coupling conditions
on system dynamics, various critical stationary characteris-
tics, including phase diagrams, important density profiles,
and phase transitions, are calculated utilizing mean-field ap-
proximations. The impact of the coupling rates on the phase
diagram is also analyzed extensively by defining coupling
strength K , which is the ratio of lane-changing rates. The
study looks at 51 stationary phases, including 35 mixed
phases. Out of these 51 phases, many phases are observed for
the first time and were not reported in past studies on two- or
three-lane systems. The analysis explains that the both-sided
coupling influences the system properties crucially as the
same results in various nontrivial and interesting features even
for relatively nominal values of coupling strength in the sys-
tem, which later carries on for its higher value. As we vary the
coupling rates, several phases appear and disappear, leading to
many nontrivial qualitative and quantitative topological varia-
tions in the phase diagram. It is noticed that the comparatively
smaller values of coupling strength produce complex phase
diagrams with many phases showing that higher sensitivity
of the system as even a relatively small variation in the entry

or exit rates can change the state of the lattice. Since S and
H represent a type of traffic and many phases involve these
phases, physically, at this stage, even a minor change in the
administrative parameters can enhance or reduce the traffic on
the physical or biological paths.

Moreover, the most striking property of the proposed study
is the existence of a back-and-forth phase transition in var-
ious phase diagrams for K = 0.05, 100, 1000. Due to the
back-and-forth phase transition, one can travel from H/S/L
to H/D/L again to H/S/L just by varying γ in the phase
diagram for K = 0.05. Surprisingly we also observed that this
unique phase transition works in two directions as one can
follow H/S/L to H/D/L again to H/S/L by varying α. It is
important to note that, to our knowledge, this is the first study
on TASEP with back-and-forth transitions in two directions
due to the interplay between two-sided coupling and LK in
our three-lane system. Similarly, we observe the change from
L/S/H to L/D/H again to L/S/H just by varying γ in the
phase diagram for K = 100 and K = 1000. We have also
noticed that for K = 0.05, phase H/D/L lies entirely inside
phase H/S/L leading to a unique phase division. Further, the
influence of the system size has been analyzed, and it has been
found that lattice size does not affect the reported features of
the proposed model.

The proposed model might provide deeper insight into
complicated nontrivial dynamics of far-from-equilibrium
stochastic transportation systems in the presence of both-sided
coupling and Langmuir kinetics and features its crucial im-
pact on system dynamics. In the future, one can generalize
this study to incorporate the finite availability of particles,
dynamic lattices, bottlenecks, etc.
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FIG. 7. Phase diagram for symmetric coupling. The black line
(red dots) indicated phase boundaries by mean-field theory (Monte
Carlo simulations). Here N = 1000, K = 1, �1 = �2 = 10, and
�a = �d = 0.2.

APPENDIX A

Here we discuss the procedure to calculate the phase di-
agrams shown in the main text. The phase diagrams are
calculated theoretically using mean-field theory and have been
verified through Monte Carlo simulations. One can solve the
system of Eqs. (6) to obtain a density profile for a fixed α

and γ . By keeping all the parameters fixed, we vary α or
γ , and when the phase changes, we notice that α and γ .
Similarly, we calculate the density profiles for α, γ ∈ [0, 1]
and collect those points at which the phase changes to plot the
phase boundaries. In the same way, to plot the phase diagram
through simulation (see red dots in each phase diagram), one
needs to calculate many density profiles to obtain the (α, γ )
at which the phase changes. Further, we can observe that most
boundary lines are vertical or horizontal beyond a particular
value of α or γ . This is because most phases do not show
changes after a particular point by fixing α (or γ ) and varying
γ (or α).

APPENDIX B

In the main text, we have discussed the system dynamics
with asymmetric coupling. For completeness and to compare

the outcomes from the main text, here we present the phase
diagram with symmetric coupling as displayed in Fig. 7. Due
to symmetric coupling, we can see that densities in each lane
are the same. We notice nine distinct steady-state profiles:
L/L/L, LML/LML/LML, M/M/M, LM/LM/LM, A/A/A,
LH/LH/LH , MH/MH/MH , S/S/S, H/H/H in Fig. 7. Out of
the nine, five profiles are mixed, containing maximal current.
Compared to phase diagrams shown with asymmetric cou-
pling, we observe that asymmetry enhances the complexity
of the phase diagram with more phases leading to various
new features absent in the phase diagrams shown in the main
text. In general, asymmetric coupling, which is compara-
tively more realistic to understand transport processes, affects
the system dynamics significantly and produces various new
phases, reentrance transitions, two parallel transitions, double
shock, and phase division, which disappear with symmet-
ric coupling. Moreover, any phase diagram with asymmetric
coupling(Fig. 2) provides more than nine phases, as shown
in Fig. 7, which signifies that asymmetric coupling affects
the system dynamics qualitatively as well as quantitatively.
Finally, it is important to note that the phase diagram shown
in Fig. 7 remains the same for any value of �1 = �2.

APPENDIX C

In the main results, we have provided a few main density
profiles. For the sake of completeness, we list the remain-
ing density profiles, namely, L/L/L, L/L/S, L/S/S, S/S/S,
L/L/H , L/H/H , S/S/H , S/LH/H , L/S/H , S/H/H , H/H/H ,
L/HL/H , L/L/LH , LH/H/H , as shown in Fig. 8. Note that
all profiles show a good agreement between mean-field anal-
ysis and Monte Carlo simulations.

APPENDIX D

In the main results, we have discussed a few phase dia-
grams with the same coupling strength K but with different
values of �1 and �2. It is noticed that the same K produces
a different phase diagram. To discuss this, here we present
another phase diagram with K = 4, �1 = 800, and �2 = 200
in Fig. 9. On comparing this phase diagram with those shown
in Figs. 2(a) and 2(b), we notice that the topology of the phase
diagram changes again, and the number of phases is reduced
due to a higher lane-changing rate. One can derive different
phase diagrams with the same K by varying coupling rates.
Therefore in the main text, we derived phase diagrams for the
same set of parameters adopted in past studies [11,24] so that
we can analyze the impact of adopted processes.
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FIG. 8. Density profiles with (a–j) K = 100, �1 = 10, �2 = 0.1, (k) K = 4, �1 = 0.8, �2 = 0.2, and (l–n) K = 4, �1 = 80, �2 = 20.
Here N = 1000, and �a = �d = 0.2. The black dotted line is ρ = 0.5. Here K , �1, �2, �a, �d , α, and β = 1 − γ are coupling strength,
coupling rate (lane 1 to lane 2, lane 2 to lane 3), coupling rate (lane 3 to lane 2, lane 2 to lane 1), attachment rate, detachment rate, entry rate,
and exit rate, respectively.
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FIG. 9. Phase diagram for K = 4. The black line (red dots) indicated phase boundaries by mean-field theory (Monte Carlo simulations).
Here N = 1000, �1 = 800, �2 = 200, and �a = �d = 0.2. Here K , �1, �2, �a, �d , α, and β = 1 − γ are coupling strength, coupling rate
(lane 1 to lane 2, lane 2 to lane 3), coupling rate (lane 3 to lane 2, lane 2 to lane 1), attachment rate, detachment rate, entry rate, and exit rate,
respectively.
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