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Geometric scaling behaviors of the Fortuin-Kasteleyn Ising model in high dimensions
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Recently, we argued [Chin. Phys. Lett. 39, 080502 (2022)] that the Ising model simultaneously exhibits two
upper critical dimensions (dc = 4, dp = 6) in the Fortuin-Kasteleyn (FK) random-cluster representation. In this
paper, we perform a systematic study of the FK Ising model on hypercubic lattices with spatial dimensions d
from 5 to 7, and on the complete graph. We provide a detailed data analysis of the critical behaviors of a variety
of quantities at and near the critical points. Our results clearly show that many quantities exhibit distinct critical
phenomena for 4 < d < 6 and d � 6, and thus strongly support the argument that 6 is also an upper critical
dimension. Moreover, for each studied dimension, we observe the existence of two configuration sectors, two
lengthscales, as well as two scaling windows, and thus two sets of critical exponents are needed to describe these
behaviors. Our finding enriches the understanding of the critical phenomena in the Ising model.
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I. INTRODUCTION

The Ising model [1] plays a fundamental role in statisti-
cal physics and has an important influence on almost every
branch of modern physics. The reduced Hamiltonian of the
ferromagnetic Ising model without an external field is

H = −K
∑
〈i j〉

sis j,

where si ∈ {−1, 1} is the spin on vertex i, and the coupling
strength K > 0 acts as the inverse of temperature. The sum-
mation

∑
〈i j〉 is over all pairs of adjacent vertices. The Ising

model was first proposed by Lenz in 1920 to explain the fer-
romagnetic phase transition [2], and Ising showed that in one
dimension (1D) there is no phase transition happening at any
positive temperature [3]. In 1944, the milestone was achieved
by Onsager, who obtained the analytical expression of the
free energy on the square lattice and discovered a continuous
phase transition [4]. The critical point is Kc = ln(1 + √

2)/2
[5,6] from duality arguments. The critical exponents β and
ν, respectively, characterizing the power-law behavior of the
spontaneous magnetization and the divergence of the corre-
lation length near the critical point, are exactly known as
β = 1/8 [7] and ν = 1. It has been proven that the Ising
model exhibits a continuous phase transition on hypercubic
lattices for all d � 3 [8,9]. In 3D, only numerical estimates
are available for both critical points and exponents [10–13].
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In particular, the conformal bootstrap method [14], origi-
nating from high-energy physics, has significantly improved
the precision of critical exponents with the correlation-length
exponent ν = 0.629 971(4) and susceptibility exponent γ =
1.237 075(10). Renormalization-group (RG) theory predicts
that dc = 4 is the upper critical dimension for the Ising model,
i.e., for d � 4 critical exponents take their mean-field values,
e.g., β = 1/2 and ν = 1/2 [8,15].

Besides the spin representation, the Ising model has a
well-known geometric representation, under the framework
of the general Q-state random-cluster (RC) model [16] pro-
posed by Fortuin and Kasteleyn (FK) in 1969. Given a graph
G ≡ (V, E ) with vertex set V and edge set E , the RC model
is defined by choosing a spanning subgraph (V, A) with a
probability

π (A) ∝ v|A|Qk(A).

Here |A| is the number of edges on A, and k(A) is the number
of connected components (clusters) on A. Parameters v and Q
are fugacity for edges and clusters. When Q is an integer, the
RC model can be mapped to the Potts model [17], of which
(Q, v) = (2, e2K − 1) corresponds to the FK Ising model.

For Q = 1, the RC model reduces to the bond percolation
model [18]. The RC model not only leads to many exact
results in 2D, but it also provides a versatile platform to
develop highly efficient cluster algorithms, such as the Wolff
algorithm [19], the Swendsen-Wang (SW) algorithm [20], the
loop-cluster algorithm [21], etc.

It is natural to ask what is the upper critical dimension
of the RC model. In the 1970s, it was suggested from RG
analysis that for the general RC model, it could be either 4
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or 6, depending on whether or not the φ3 term is taken into
account in the field Hamiltonian [22,23].

For percolation (Q = 1) and the Ising model (Q = 2), it
is well known that their upper critical dimensions are dp = 6
[24] and dc = 4, respectively. However, by studying the FK
Ising model on the Bethe lattice and complete graph (CG),
the authors in Ref. [25] conjectured that 6 is the upper critical
dimension of the FK Ising model, rather than 4. The CG is the
graph on which all pairs of vertices are adjacent, and both the
CG and Bethe lattice can be regarded as the d → ∞ limit of
lattices.

Recently, based on a combination of extensive simula-
tions from d = 4 to 7, insights from RG theory, rigorous and
numerical results on the CG, we argued that the FK Ising
model has two upper critical dimensions dc = 4 and dp = 6,
depending on which quantities to be considered [26]. We note
that, to our knowledge, dp = 6 cannot be seen from quanti-
ties in the spin representation. Compared with Ref. [26], the
goal of the current paper is to provide a systematic study of
various quantities of the FK Ising model on high-dimensional
(high-d) tori (lattices with periodic boundary conditions) and
present a more detailed data analysis, such that the two-upper-
critical-dimension phenomena are clearly demonstrated.

In the field of critical phenomena, the theory describing the
asymptotic approach of finite systems to the thermodynamic
limit near a continuous phase transition is called finite-size
scaling (FSS). Thus, before moving on to our numerical re-
sults, let us briefly review some theoretical predictions to the
FSS of the Ising model on high-d tori and boxes (lattices with
free boundary conditions). The basic hypothesis of FSS is that
the correlation length is cut off by the linear system size L,
such that the singular part of the free-energy density can be
written as

f (t, h) = L−d f̃ (tLyt , hLyh ),

where t = (Kc − K )/Kc, h is the magnetic scaling field, and
the exponents yt and yh are, respectively, the thermal and
magnetic renormalization exponents. The scaling behaviors
of many quantities can be derived accordingly. For example,
the susceptibility χ corresponds to the second derivative of f
with respect to h, and it scales as χ ∼ L2yh−d at the critical
point t = 0 and with zero field h = 0. Above dc = 4, the FSS
of the Ising model is controlled by a Gaussian fixed point
(GFP), which gives (yt , yh) = (2, 1 + d/2), that is, for d � 4
one expects χ ∼ L2. However, it was observed that the FSS of
χ above 4D depends on the boundary conditions [27–36]. The
scaling L2 was observed on boxes, but on tori it was observed
that χ ∼ Ld/2.

To understand the behavior on tori, one can turn to the
CG. The CG can be regarded as the mean-field approxi-
mation of models on high-d tori, since both of them are
finite, translational-invariant, and have large vertex degrees.
However, models on the CG are often more tractable. For
the Ising model on the CG with volume V , it is known that
χ ∼ V 1/2χ̃ (tV 1/2), with χ̃ (·) the scaling function. Let V = Ld

and use the scaling formula of χ . Then one can see that
the CG asymptotics predict two new exponents (y∗

t , y∗
h ) =

(d/2, 3d/4) for high-d tori. Since spatial distance is not
defined on the CG, it is reasonable to believe that spatial

fluctuations are controlled by the GFP. In Ref. [35], it is
conjectured that one needs both the CG asymptotics and GFP
to fully describe the FSS of the Ising model on high-d tori,
and the free energy can be explicitly written as

f (t, h) = L−d f̃0(tLyt , hLyh ) + L−d f̃1(tLy∗
t , hLy∗

h ). (1)

Predictions from Eq. (1) for various quantities are all consis-
tent with existing numerical results.

Although Eq. (1) can describe very well the high-d-tori
FSS of various quantities in the spin representation, the FSS in
the geometric representation is still worth investigating, since
many geometric quantities have no direct correspondence in
the spin representation. Before presenting results for the FK
Ising model on the tori, let us first summarize the results
known for the d = ∞ case, the CG. At the critical point and
within the critical window of width O(V −1/2), it was proved
that the size of the largest cluster C1 ∼ V 3/4; this again implies
that (y∗

t , y∗
h ) = (d/2, 3d/4). For the second-largest cluster, it

was proved that C2 = O(
√

V ln V ) [37]. Moreover, at K =
Kc − aV −1/3 with a > 0, the system is in the percolation scal-
ing window where C1,C2 ∼ V 2/3, the same behavior as the
two largest clusters in the critical percolation model on the CG
[38]. The Fisher exponent τ , which characterizes the power-
law decay of the cluster-number density, was conjectured to
be 5/2 in Ref. [25] and confirmed numerically in Ref. [39].
This is also consistent with the τ value for the critical perco-
lation on the CG [40]. Additionally, in Ref. [39], we found
that there is a vanishing sector in the whole configuration
space in which the scaling behaviors of all clusters follow
the CG-percolation asymptotics, such as C1 ∼ C2 ∼ V 2/3 and
τ = 5/2. The probability of such a percolation sector vanishes
with the rate of V −1/12. The exponent 1/12 happens to be the
difference between the fractal dimensions of the largest cluster
in the FK Ising model and the percolation model.

In this work, we present a systematic study to various
quantities of the FK Ising model on tori with d ranging from 5
to 7. We provide solid evidence of the existence of two length-
scales, two configuration sectors, and two scaling windows,
from which our conjecture that both dc = 4 and dp = 6 are the
upper critical dimensions of the FK Ising model is supported.
For d = 4, since the theoretical prediction for the forms of
logarithmic corrections of geometric quantities is incomplete,
we leave the 4D case for future work.

Two length scales. We start with the fractal dimensions of
clusters to demonstrate the existence of two lengthscales. Two
finite-size fractal dimensions dL1, dL2 and two thermodynamic
fractal dimensions dF1, dF2 are defined via C1 ∼ LdL1 ∼ RdF1

1

and C2 ∼ LdL2 ∼ RdF2
2 . Here, R1 and R2 are the unwrapped

radii of gyration for C1 and C2, respectively, which repre-
sent the radii of the torus that clusters would have on the
infinite lattice. Our conjectured values for these fractal dimen-
sions are summarized in Table I, and they are all consistent
with numerical estimates. We find that dL1 is consistent with
y∗

h = 3d/4 for d > 4, following the CG asymptotics, and dL2

is consistent with 1 + d/2, following the GFP predictions
(possibly with multiplicative logarithmic corrections), which
recovers the same leading behavior as the CG asymptotics
(V 1/2) in the d → ∞ limit. These results demonstrate that 4 is
an upper critical dimension, which is well-known in the spin
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TABLE I. Conjectured values and numerical estimates for the
finite-size (dL1, dL2) and thermodynamic (dF1, dF2) fractal dimensions
for the largest and second-largest clusters. The theoretical values
are (dL1, dL2) = (3d/4, 1 + d/2) for any d � 4, and (dF1, dF2) =
(dL1, dL2) for 6 > d � 4 and (9/2, 4) for d � 6.

d 5 6 7

dL1 15/4 3.74(2) 9/2 4.51(1) 21/4 5.18(2)
dF1 15/4 3.76(1) 9/2 4.6(1) 9/2 4.55(12)
dL2 7/2 3.486(11) 4 3.95(7) 9/2 4.48(3)
dF2 7/2 3.61(3) 4 4.0(1) 4 4.1(1)

representation, while for dF1 and dF2, we find that they are
consistent with dL1 and dL2 for d < 6. However, for d � 6,
we find that dF1 is consistent with 9/2, and dF2 is consistent
with 4, independent of the spatial dimensions. We note that
4 is the fractal dimension of percolation clusters on high-d
lattices [41]. These results suggest that 6 is another upper
critical dimension for the FK Ising model.

From these fractal dimensions, one can easily obtain the
scaling behavior of the radius of gyration. For d < 6, both R1

and R2 are of order O(L). For d � 6, we have R1 ∼ LdL1/dF1 =
Ld/6, consistent with that of the percolation model [42], and
R2 ∼ LdL2/dF2 = L1/4+d/8, both of which are larger than L.
Therefore, the topology of these clusters changes at dp = 6,
namely, large clusters hardly wind around the torus when
d < 6 but wind extensively when d > 6.

We next move to discuss the behavior of other clusters.
Our data show that for other clusters, their sizes s scale with
the radii R as s ∼ Ryh with yh = 1 + d/2 for 4 < d < 6 but
s ∼ R4 for d � 6; the latter is the behavior of percolation
clusters on lattices with d � 6. The other interesting quantity
to study is the cluster-number density n(s) of these clusters,
defined based on the fact that the number of clusters with size
in [s, s + ds) is Ld n(s)ds. It is typically expected that n(s) ∼
s−τ with a cutoff at s close to the size of the largest cluster,
and the hyperscaling relation τ = 1 + d/dL1 is believed to
hold. This has been generally observed for percolation models
in various dimensions [43] and the FK Ising model below
the upper critical dimension [12]. For d > dc, since C1 is
much larger than C2 and other clusters, it is plausible that
the above scaling relation for τ fails. Indeed, for 4 < d < 6,
our numerics suggest that the Fisher exponent τ = 1 + d

yh

follows the GFP prediction. For d � 6, our data show that
τ = 5/2, which is consistent with the percolation model in
high dimensions. Thus, the properties of other clusters in the
FK Ising model follow the GFP prediction for 4 < d < 6, but
exhibit percolation-cluster behavior for d � 6.

From the fractal dimensions of other clusters and the
cluster-number density, one can obtain the scaling of the
number of spanning clusters Ns. A cluster is called spanning
if its unwrapped extension (defined in Sec. II) exceeds the
system size L. From the above discussions, one can see that
the two largest clusters are spanning when d > 6. For other
clusters, we have s ∼ R4 above 6D, and thus a cluster is
spanning if its size is larger than O(L4). It then follows that
Ns ∼ Ld

∫
L4 n(s)ds ∼ Ld−6. Thus, Ns is divergent when d > 6

and possibly diverges logarithmically at d = 6. We note that

the scaling behaviors of Ns for d � 6 are the same as in the
percolation model [44,45]. By a similar argument, one can
obtain that Ns ∼ O(1) for d < 6. The above scaling for Ns is
confirmed by our numerical data.

Two configuration sectors. We then present evidence for
the existence of two configuration sectors based on the size
distribution of the largest cluster in the critical FK Ising
model. Our data indicate that the distribution from finite-
size systems converges to the limiting case quite slowly, i.e.,
a strong finite-size effect. Further investigation reveals that
this is due to the existence of a special sector in the whole
configuration space. Here, the sector is a set of bond con-
figurations satisfying certain conditions; see Sec. III A 2 for
precise definitions. Interestingly, when conditioned on being
in this sector, various quantities are observed to follow the
GFP prediction for 4 < d < 6; for example, C1,C2 ∼ L1+d/2.
For d � 6, quantities in this sector follow the high-d perco-
lation behavior, like C1,C2 ∼ L2d/3. For all d > 4, the weight
of the sector vanishes in the limit L → ∞. Numerically, we
observed that the vanishing rate is consistent with L1−d/4 for
d < dp and L−d/12 for d � dp; the latter is the same as on the
CG [39]. We note that for all d > 4, the vanishing rate is equal
to the difference between the finite-size fractal dimension of
the largest cluster in the sector and in the whole configuration
space.

Two scaling windows. Finally, we present the existence of
the two scaling windows near the critical point. For d > dc,
our data show that there is a critical window with a width of
order O(L−d/2), consistent with the CG prediction that y∗

t =
d/2. Namely, the FK Ising model at K , where |K − Kc| =
O(L−d/2) exhibits the same scaling behavior as at the critical
point Kc. Moreover, in the high-T regime, our data indicate
the existence of another scaling window. For d = 5, when
(K − Kc)L2 is constant, various quantities follow the GFP
prediction, such that C1,C2 ∼ L1+d/2 and the radii R1, R2 are
of constant order. For d � 6, we find that there is a percolation
scaling window with a width of order O(L−d/3), i.e., when
(K − Kc)Ld/3 is a constant, the FK clusters behave like perco-
lation clusters. For example, one can observe C1,C2 ∼ L2d/3

and R1, R2 ∼ Ld/6.
We then study the thermodynamic behavior of the two radii

R1 and R2, which involve two correlation-length exponents ν1

and ν2 via R1 ∼ |t |−ν1 as t → 0+ and R2 ∼ |t |−ν2 as t → 0.
Based on the assumption of the standard FSS, one can recover
the thermodynamic behavior from the FSS near Kc. As the
critical point is approached from the high-T side (t → 0+),
we find that ν1 = ν2 = 1/2 for all d > 4, consistent with the
mean-field value for the correlation-length exponent. How-
ever, as t → 0−, we conjecture that ν2 = 2/d for 4 < d < 6
but ν2 = 1/4 + 1/(2d ) for d � 6. We note that in the d → ∞
limit, one obtains ν2 = 1/4, which is consistent with the ob-
servation on the Bethe lattice [25].

Finally, we note that these abundant phenomena of the FK
Ising model cannot be observed within the spin representation.
One possible reason is that many quantities in the geometric
representation have no direct analog in the spin representation.
Under the geometric representation, many spin quantities are
decomposed into more refined geometric quantities, which
exhibit deeper and more complex properties. For example, the
susceptibility in the spin representation becomes the second
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TABLE II. The critical points Kc and the largest simulated sys-
tem volume Vmax for d = 5, 6, 7 and the CG. For each system, no
fewer than Nsam independent samples are generated.

d Kc Vmax Nsam

5 0.113 915 0(4) [46] 515 5 × 105

6 0.092 298 2(3) [47] 326 2 × 105

7 0.077 708 6(8) [47] 207 7 × 104

CG 1/V 222 5 × 106

moments of sizes of all clusters in the geometric representa-
tion, and obviously the latter contain much richer information.
Indeed, by studying the behavior of these cluster, we found
out that dp = 6 is another upper critical dimension, i.e.,
clusters show many distinct behaviors below and above six
dimensions.

The remainder of this article is organized as follows. In
Sec. II, we provide the details of simulations and sampled
quantities. Our numerical results are presented in Secs. III and
IV. Finally, we conclude with a discussion in Sec. V.

II. SIMULATION AND OBSERVABLE

We simulate the FK Ising model using a combination of the
SW algorithm [20] and the Wolff algorithm [19]. We use the
SW algorithm to generate the FK cluster configuration, and
between the consecutive SW steps we use the Wolff algorithm
to update the spin configurations, since it is believed that the
Wolff algorithm has a smaller dynamic exponent than the SW
algorithm. We simulate the FK Ising model on high-d tori
with d = 5, 6, 7 and the CG. The critical points Kc, the largest
system volume Vmax, and the number of independent samples
Nsam are summarized in Table II. In simulations, we sampled
the following observables.

(i) The size of the largest cluster C1 and the second-largest
cluster C2.

(ii) The number of clusters N (s) with size in the range
[s, s + 	s).

(iii) For a cluster C, its radius of gyration R(C) is defined
as

R(C) =
√∑

u∈C

(xu − x̄)2

|C| ,

where x̄ = ∑
u∈C xu/|C|. Here xu ∈ Zd is defined algorithmi-

cally as follows. First, choose the vertex, say o, in C with
the smallest vertex label according to some fixed but arbi-
trary labeling. Set xo = 0. Start from the vertex o, and search
through the cluster C using breadth-first growth. Iteratively we
set xv = xu + ei if the vertex v is traversed from u along the
ith direction, and we set xv = xu − ei if it is against the ith
direction. Here ei is the unit vector in the ith direction. The
radii of the largest and second-largest clusters are denoted as
R1 and R2, respectively.

(iv) The average radius of gyration of clusters with size in
[s, s + 	s),

R(s) =
∑

C:|C|∈[s+	s) R(C)

N (s)
.

(v) For each cluster C, we measure its unwrapped exten-
sion U , which is the largest unwrapped distance in the first
coordinate direction, i.e., U = maxu,v∈C (xu − xv )1.

(vi) The number of spanning clusters Ns. A cluster is
spanning if its U � L.

We choose 	s properly to guarantee there are enough data
for statistics in each interval. By taking the ensemble average
〈·〉 of these observables, we calculate the following quantities:

(i) The mean size of the largest cluster C1 = 〈C1〉 and the
second-largest cluster C2 = 〈C2〉.

(ii) The radius of gyration R(s) = 〈R(s)〉 with a given
cluster size s.

(iii) The radius of gyration of the largest and second-largest
clusters R1 = 〈R1〉 and R2 = 〈R2〉.

(iv) The cluster-number density n(s,V ) = 1
V 	s 〈N (s)〉.

(v) The number of spanning clusters Ns = 〈Ns〉.

III. RESULTS AT CRITICALITY

We perform least-squares fits on the FSS data. As a pre-
caution against correction-to-scaling terms that we missed
including in the fitting ansatz, we impose a lower cutoff L �
Lm on the data points admitted in the fit, and we systematically
study the effect on the residual χ2 value by increasing Lm. In
general, the preferred fit for any given ansatz corresponds to
the smallest Lm for which the goodness of fit is reasonable
and for which subsequent increases in Lm do not cause the
χ2 value to drop by vastly more than one unit per degree of
freedom. In practice, by reasonable we mean that χ2/DF ≈ 1,
where DF is the number of degrees of freedom. The system-
atic error is estimated by comparing estimates from various
sensible fitting ansatz.

For quantities without logarithmic corrections, we perform
the least-squares fits via the ansatz

O = LyO (a0 + b1Ly1 + b2Ly2 ) + c0. (2)

For quantities with logarithmic corrections, we perform the
least-squares fits via the ansatz

O = LyO (ln L + d0)ŷO (a0 + b1Ly1 + b2Ly2 ) + c0. (3)

Here, we note that a0LyO describes the leading behavior of the
quantities, (ln L + d0)ŷO describes the logarithmic corrections,
b1Ly1 and b2Ly2 describe the finite-size corrections with expo-
nents y1, y2 less than 0, and c0 originates from the background
contributions of various systems.

A. Existence of two sectors

1. The probability distribution of the largest cluster

In this section, we consider the probability distribution of
the largest cluster fC1 (s). Define X1 = C1

aV 3/4 with a constant a
and its probability density function as fX1 (x). Then it follows
that

fC1 (s)ds = fX1 (x)dx, (4)

where dx = a−1V −3/4ds and fX1 (x) = aV 3/4 fC1 (s).
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FIG. 1. Probability density functions of the rescaled size of
the largest cluster X1 := C1/aV 3/4. The factor a is chosen to be
1.34, 1.25, 1.06, 1 for d = 5, 6, 7 and the CG, respectively. The
dashed curve in the plot corresponds to Eq. (5), which is the V → ∞
limiting case. As shown, results on finite-size systems are consistent
with the limiting case only when x � 1. The inconsistency part for
small x is due to the existence of an asymptotically vanishing sector
in the configuration space, in which the scaling of C1 is not V 3/4.

On the CG, it was proved in Ref. [37] that the probability
density of X1 with a = 1 in the V → ∞ limit follows,

f ∞
X1

(x) = exp(−x4/12)∫ ∞
0 exp(−t4/12)dt

. (5)

Later, the authors in Ref. [39] confirmed it numerically. They
further found that in finite volume V , the whole configuration
space contains a percolation sector in which all clusters ex-
hibit the same scaling behavior as the critical percolation on
the CG. The probability of the percolation sector vanishes at
a rate of order V −1/12.

For d > dc = 4, it is believed that the scaling behavior of
the FK Ising model obeys the CG asymptotics. In the study on
5D tori, Lundow et al. [48] found that the probability distribu-
tion of FK clusters follows the CG asymptotics. In Fig. 1, we
plot the probability distribution of the largest cluster fX1 (x) on
high-d tori and CG. Similar to CG, it also has a double-peak
distribution, and the first peak seems to disappear as system
volume increases. We adjust the constant a for various sys-
tems so that they have a good data collapse for x � 1. The
dashed line shows the CG prediction Eq. (5). This provides
strong evidence that 4 is an upper critical dimension, since for
d > 4 it exhibits the same asymptotic scaling behavior as in
the V → ∞ limit.

We then consider the scaling behavior of the probability
density function when C1 is small. On the CG, a vanishing
percolation sector was numerically observed when C1 is small,
and all clusters follow the CG-percolation asymptotics in this
sector [39]. For high-d tori, one possible conjecture is that
the scaling behavior of the vanishing sector should be con-
sistent with CG for d > 4. However, it may bring a problem
that d = 5 is not sufficient to present the mean-field scaling
behavior for percolation since its upper critical dimension is
6. In Ref. [34], it was numerically observed that except for the
largest clusters, all other clusters follow the GFP asymptotics.

FIG. 2. Demonstration of the vanishing sector, by plotting the
probability density functions of the rescaled C1 for (a) d = 5 with
X ′

1 = C1/L1+d/2 and (b) d = 6, 7, and CG with X ′
1 = C1/V 2/3. This

strongly suggests that the sectors vanish with rate V −1/20 for 5D and
V −1/12 for d � 6, and in the sectors the scaling of C1 is, respectively,
L1+d/2 and V 2/3.

Therefore, we assume that the vanishing sector may follow
the GFP asymptotics. Then, we define X ′

1 = C1/L1+d/2 for
d = 5. Figure 2(a) plots V 1/20 fX ′

1
(x) versus x, and it is clearly

observed that it has a good data collapse for x � 3. We note
that the term V 1/20 = Ld/4−1 in 5D is from the quotient of the
CG-Ising asymptotics L3d/4 and the GFP asymptotics L1+d/2.

For d � 6, following the same procedure as d = 5, we
find that the data cannot be well collapsed. We then define
X ′

1 = C1/V 2/3 and Fig. 2(b) shows the plot of V 1/12 fX ′
1
(x)

against x on high-d tori with d = 6, 7 and CG. It can be
numerically observed that when x is small, the data collapse
well for various systems. Here, we note that the exponent 1/12
simply originates from the difference between the CG-Ising
exponent 3/4 and the CG-percolation exponent 2/3. The good
data collapse in Fig. 2 implies that there is a vanishing sector.
The scaling of C1 in the sector, i.e., L1+d/2 for d = 5 and
V 2/3 for d � 6, gives a hint that 6 is also an upper critical
dimension.

2. The vanishing sector

We then consider the vanishing rate and scaling behavior
of clusters in the vanishing sector. The good data collapse
in Fig. 2 implies that there is an exponent θ and positive
constants a0, c0 so that

lim
L→∞

V θP

[ C1

Vvan
� a0

]
= c0 (6)

with c0 = ∫ a0

0 fX ′
1
(x)dx. To precisely estimate the exponent

θ , we set a0 = 1 and choose Vvan = L1+d/2 for d = 5 and
Vvan = V 2/3 for d � 6, and we count the probability P of con-
figurations with the size of the largest cluster C1 ∈ (0,Vvan].
We then perform the least-squares fits via the ansatz Eq. (2)
with L substituted by V . The final estimates of θ are 0.046(4)
for d = 5 and 0.088(3), 0.087(9) for d = 6, 7, respectively;
the former for d = 5 is consistent with the expected value
1/20, and the latter for d = 6, 7 is consistent with 1/12
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FIG. 3. Plot to show that the vanishing rate of the vanishing
sector is V −1/20 for 5D and V −1/12 for d = 6, 7. For d � 6, the rate
is consistent with the observation on the CG.

within two standard deviations. Figure 3 presents the prob-
ability P versus system volume V in the log-log scale for
d = 5, 6, 7, and the slopes of the data are well consistent
with their expected value. We define the vanishing sector
as the set of configurations with C1 � Vvan. In this sector, it
can be implied that the largest cluster C1 ∼ L1+d/2 for d = 5
and C1 ∼ L2d/3 for d = 6, 7. We then consider the probability
density of the second-largest cluster C2. We define the variable
X ′

2 = C2/L1+d/2 for d = 5 and X ′
2 = C2/(aV 2/3) for d = 6, 7

and CG. Figure 4(a) shows fX ′
2
(x) against x, and the good

data collapse suggests that C2 ∼ L1+d/2, following the GFP
asymptotics. Figure 4(b) implies C2 ∼ V 2/3 for d = 6, 7 and
CG. The data from 6D and 7D collapse well, but there is
a little discrepancy with CG, which may originate from the
choice of constant a0. The different scaling behaviors of the

FIG. 4. The probability density function of the rescaled second-
largest cluster in the vanishing sector, which displays different
scaling behaviors for (a) d = 5 and (b) d = 6, 7 and CG. The
variable X ′

2 := C2/L1+d/2 for d = 5 and X ′
2 := C2/(aV 2/3) with a =

1.23, 1.12, 1 for d = 6, 7, and CG, respectively.

FIG. 5. The probability density function of the rescaled
second-largest cluster in the Ising sector. The variable X ′

2 :=
C2 ln L/(aL1+d/2) with a = 4.70, 4.22, 4.67 for d = 5, 6, 7, respec-
tively, and X ′

2 := C2/(V 1/2 ln V ) for CG.

vanishing sectors imply 6 is a special dimension, which gives
another hint for geometric upper critical dimension dp = 6.

3. Ising sector

Except for the vanishing sector, we also define the Ising
sector, whose probability approaches 1 as system volume
goes to infinity. To suffer from less finite-size corrections,
we include only the configurations with C1 � V 3/4 to the
Ising sector. In this sector, its largest cluster follows the
CG asymptotics C1 ∼ V 3/4. For the second-largest cluster C2,
we define X ′

2 = C2 ln L/(aL1+d/2) for high-d tori and X ′
2 =

C2/(V 1/2 ln V ) for CG, and the data can collapse well for
various systems, as shown in Fig. 5.

B. Existence of the two-lengthscale behavior

1. Finite-size fractal dimensions dL1 and dL2

In this section, we study the two-lengthscale behavior by
extracting the finite-size fractal dimensions dL1 and dL2. We
first recall the theoretical study on the CG. In Ref. [37], it was
numerically observed that the critical FK Ising model on the
CG has two-lengthscale behavior, in which the largest cluster
C1 ∼ V 3/4 and the second-largest cluster C2 ∼ O(V 1/2 ln V )
have different scaling behaviors, which was further numer-
ically testified in Ref. [39]. Later, numerical results on the
5D FK Ising model also showed its two-lengthscale behavior
[34].

In a previous study [34], we argued that the scaling behav-
iors of the FK Ising model on the 5D tori are simultaneously
governed by the CG asymptotics and the GFP asymptotics,
which were supported by large-scale Monte Carlo simulation
results. Based on it, we argue that the largest cluster C1 ∼
L3d/4 and the second-largest cluster C2 ∼ L1+d/2/ ln L, which
gradually converges to the CG scaling behavior V 1/2 ln V in
the d → ∞. Note that the appearance of the multiplicative
logarithmic correction 1/ ln L in the scaling of C2 is con-
jectured purely according to our numerical data; see below
for details. Figure 6 plots C1 and C̃2 ≡ C2 ln L/L versus the
system volume V , and data from various systems collapse
well with slopes consistent with 3/4 and 1/2, respectively. To
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FIG. 6. The FSS behaviors of the largest cluster C1 (hollow
points) and second-largest cluster C̃2 := C2 ln L/L (solid points) for
various system sizes with d = 5 (blue), d = 6 (red), and d = 7
(green). These scaling behaviors follow the CG asymptotics.

extract the value of the finite-size fractal dimensions dL1 and
dL2, we perform the least-squares fits to the MC data.

We first consider the largest cluster C1 for d > 4. We
perform the least-squares fits to it via the ansatz Eq. (2). The
fitting results are summarized in Table III. For d = 5, we first
set b2 = c0 = 0 and leave other parameters free, and we ob-
tain dL1 = 3.743(2) and y1 = −1.9(2) with Lm = 8. Leaving
c0 free also gives a consistent estimate dL1 = 3.736(11). By
comparing with various ansatz, we finally get the estimate
dL1 = 3.74(2), which is consistent with the expected value
15/4. For d = 6, we first set b2 = 0 and leave other param-
eters free, but it does not yield stable results. Consequently,
we fix the correction exponent y1 and obtain the estimates
dL1 = 4.510(7) for y1 = −2 and dL1 = 4.505(10) for y1 =
−3. By comparing various ansatz, we obtain the final estimate
dL1 = 4.51(1), which is consistent with the expected value
9/2. For d = 7, following a similar procedure, we obtain the
final estimate dL1 = 5.18(2), which is close to the expected

TABLE III. Estimates of the finite-size fractal dimension dL1 with
d � 5 via ansatz Eq. (2). The conjectured values of dL1 are 15/4, 9/2,
21/4 for d = 5, 6, 7, respectively.

d Lm dL1 a0 b1 y1 χ 2/DF

6 3.743(2) 1.160(7) −1.1(3) −1.9(2) 4.4/6
5 8 3.743(3) 1.16(1) −1(1) −2.1(6) 4.3/5

6 4.508(4) 1.00(1) 0.5(3) −2 1.7/5
8 4.510(7) 1.00(2) 0.8(9) −2 1.6/4

6 6 4.506(3) 1.009(9) 3(2) −3 1.8/5
8 4.509(6) 1.00(2) 8(9) −3 1.5/4
10 4.505(9) 1.01(3) −5(26) −3 1.3/3
5 5.196(5) 1.12(2) −12(2) −3 6.4/6
6 5.188(8) 1.14(3) −17(5) −3 4.9/5

7 7 5.18(1) 1.18(5) −28(13) −3 4.2/4
4 5.190(4) 1.14(1) −2.0(1) −2 6.6/7
5 5.183(7) 1.16(2) −2.5(4) −2 5.0/6
6 5.18(1) 1.19(4) −3.1(9) −2 4.3/5

TABLE IV. Estimates of the finite-size fractal dimension dL2

for d � 5 with multiplicative logarithmic corrections via the ansatz
Eq. (3). The conjectured values of dL2 are 7/2, 4, 9/2 for d = 5, 6, 7,
respectively.

d Lm dL2 ŷO a0 b1 y1 χ 2/DF

10 7/2 −1.05(1) 1.09(2) −1.25(4) −1/2 1.9/5
12 7/2 −1.06(2) 1.11(3) −1.29(6) −1/2 1.2/4
16 7/2 −1.08(3) 1.15(6) −1.4(1) −1/2 0.6/3

5 10 3.490(2) −1 1.06(1) −1.19(2) −1/2 1.5/5
12 3.489(3) −1 1.07(1) −1.20(3) −1/2 1.1/4
16 3.485(6) −1 1.09(3) −1.25(7) −1/2 0.7/3

8 4 −0.99(3) 0.94(3) −17(2) −2 7.7/4
10 4 −1.07(5) 1.05(6) −26(5) −2 2.9/3
12 4 −1.3(2) 1.3(3) −59(33) −2 1.5/2

6 8 4.003(7) −1 0.94(2) −17(1) −2 7.8/4
10 3.98(1) −1 1.02(4) −25(4) −2 2.9/3
12 3.94(4) −1 1.2(2) −47(22) −2 1.5/2

7 4.49(1) −1 1.64(7) −1.9(1) −1/2 2.7/5
8 4.48(2) −1 1.7(1) −2.0(2) −1/2 2.5/4

7 7 9/2 −1.04(4) 1.7(1) −2.0(2) −1/2 2.7/5
8 9/2 −1.06(7) 1.7(2) −2.1(3) −1/2 2.4/4

value 21/4. The discrepancy between the estimate and the
expected value may be due to the fact that the precision of the
critical threshold is not high enough, such that the true critical
point is slightly away from the quoted value in Ref. [47].

We then consider the second-largest cluster C2. We as-
sume that it scales as C2 ∼ L1+d/2/ ln L for d � 5. We
perform the least-squares fits to it via the ansatz Eq. (3).
Taking d = 5 as an example, leaving yO and ŷO free can-
not yield reasonable results. We then fix yO = 7/2 and
obtain the estimate ŷO = −1.07(6). We then fix ŷO = −1
and obtain yO = 3.49(1), which is consistent with the ex-
pected value 7/2. Following a similar procedure, we obtain
the estimates dL2 = 3.95(7), 4.48(3) for d = 6, 7, respec-
tively, and the logarithmic correction exponents are consistent
with −1. These estimates are consistent with our conjecture
C2 ∼ L1+d/2/ ln L, and the fitting results are summarized in
Table IV.

In addition, we also try to fit the C2 data to the ansatz
Eq. (2) without logarithmic corrections. We obtain the
estimates dL2 = 3.32(1), 3.71(3), 4.32(2) for d = 5, 6, 7, re-
spectively. These estimates all deviate away from the expected
values. This is why we believe there exists the logarithmic
correction 1/ ln L in the scaling behavior of C2.

2. Thermodynamic fractal dimensions dF1 and dF2

We then consider the thermodynamic fractal dimensions
dF1 and dF2. To extract their values, we plot the largest cluster
C1 versus its radius R1 and the second-largest cluster C2 versus
its radius R2 in the log-log scale, as seen in Fig. 7. The slopes
of lines indicate the fractal dimensions. We find that dF1 is
consistent with the finite-size fractal dimension dL1 = 3d/4
for 4 < d < 6, while for d � 6 it is consistent with 9/2, in-
dependent of the spatial dimension. For the fractal dimension
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FIG. 7. The log-log plot of (a) the largest cluster C1 vs its radius
R1 and (b) the second-largest cluster C2 vs its radius R2 for various
system sizes in d = 5 (blue), d = 6 (red), and d = 7 (green).

dF2, we find that it is consistent with 1 + d/2 for 4 < d < 6
and 4 for d � 6.

We then perform the least-squares fits to the MC data.
For d � 5, we assume C1 and C2 do not require logarithmic
correction, and we take the fitting ansatz Eq. (2). The re-
sults are summarized in Table V. Considering the systematic
error from various fitting ansatz, we finally estimate dF1 =
3.76(1), 4.6(1), 4.55(12) and dF2 = 3.61(3), 4.0(1), 4.1(1)
for d = 5, 6, 7, respectively. Except for dF2 in d = 5, all of
these estimates are consistent with our conjecture. The slight
disagreement of the estimate of dF2 to its expected value at 5D
might be due to the potential logarithmic corrections.

We next study the thermodynamic fractal dimension for
clusters other than C1 and C2. We plot the size of these clusters
s versus their radius R for d � 5 in Fig. 8. In the log-log plot,
the slopes of lines indicate the value of dF2, and we find for all
critical clusters with medium size that the fractal dimension is

TABLE V. Estimates of the thermodynamic fractal dimensions
dF1 and dF2 with d = 5, 6, 7. The exponent yO corresponds to dF1 for
C1 and dF2 for C2 in each dimension.

d O Lm yO a0 b1 c0 y1 χ 2/DF

C1 6 3.768(4) 2.25(3) 3(2) 7(9) −1.8(3) 2.0/5
5 8 3.767(6) 2.27(5) 6(11) −10(58) −2(1) 1.6/4

C2 6 3.620(3) 2.38(3) 6(2) 3(4) −2.3(2) 1.7/5
8 3.616(4) 2.40(3) 27(50) −35(65) −2.9(7) 1.0/4
6 4.56(6) 0.36(9) 3.0(1) −1.05(3) 6.1/4

C1 4 4.59(3) 0.30(3) 2.71(1) 24(1) −1 6.5/6
6 5 4.58(3) 0.32(4) 2.707(8) 26(2) −1 5.4/5

C2 4 3.95(2) 1.58(9) 3.9(5) 3(2) −1.7(2) 2.5/5
5 4.03(5) 1.2(3) 2.5(2) −10(2) −1.0(2) 1.0/4
6 4.58(4) 0.6(1) 3.1(6) −1.3(2) 2.9/5

7 C1 7 4.55(6) 0.7(2) 4(3) −1.5(5) 2.7/4
5 4.08(3) 1.4(1) 3.8(6) −1.6(2) 5.1/6

C2 6 4.06(4) 1.5(2) 5(2) −1.8(2) 4.9/5

FIG. 8. The log-log plot of the clusters size s vs their radius R(s)
for d � 5. The slopes display the thermodynamic fractal dimension
DF.

consistent with dF2. As Fig. 8 shows, we find for d = 5 that
the slope of the line is consistent with 1 + d/2, following the
GFP asymptotics, while for d � dp it has a good data collapse
with a slope consistent with 4, which has the same value as
the high-d percolation model.

To summarize, for d > 4, the two-lengthscale behavior
begins to appear with the finite-size fractal dimensions dL1 =
3d/4 and dL2 = 1 + d/2, consistent with the CG asymptotics.
For d � 6, the thermodynamic fractal dimensions dF1, dF2 are
no longer the same as the finite-size fractal dimensions and
consistent with dimension-independent constants 9/2 and 4,
respectively. The two-lengthscale behavior of the fractal di-
mensions gives solid support for the simultaneous existence
of the two upper critical dimensions.

3. Scaling behavior of radius R1 and R2

From the scaling behaviors C1 ∼ LdL1 ∼ RdF1
1 and C2 ∼

LdL2 ∼ RdF2
2 , we have R1 ∼ LdL1/dF1 and R2 ∼ LdL2/dF2 . Thus,

the scaling behaviors of R1 and R2 follow,

R1 ∼ R2 ∼ L, d � 6,

R1 ∼ Ld/6, R2 ∼ L1/4+d/8, d > 6.
(7)

Note that we ignore the logarithmic corrections for R2.
We first consider R1 and plot R1/L versus L for various

systems, as shown in Fig. 9. For 4 < d < 6, as system size
increases, we find that R1/L converges to a constant for
4 < d < 6 but increases for d � 6. This means the largest
cluster does not wind around the torus below 6D but winds
extensively above 6D. To verify the precise scaling behavior
of R1, we perform the least-squares fits to MC data via the
ansatz Eq. (2), where O corresponds to R1 and yO corresponds
to dR1. The fitting results are summarized in Table VI. We
find for d � 6 that dR1 is consistent with 1, while it is larger
than 1 for d = 7. Nevertheless, it is not consistent with 7/6,
which may be due to the fact that the precision of the critical
threshold is not high enough.
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FIG. 9. The FSS behavior of the rescaled radius R1/L vs system
size L for (a) d = 5, (b) d = 6, and (c) d = 7. For d < dp, the radius
R1 is bounded by the linear system size L, while it increases faster
than L for d > dp.

We then consider R2. In Fig. 10, we plot the rescaled radius
R2/L versus its system size L. As L increases, R2/L converges
to a constant for d � 6, but it increases for d = 7.

4. Cluster number density n(s, L)

We then consider the cluster-number density n(s, L). Gen-
erally, it is expected that

n(s, L) ∼ s−τ ñ(s/LdL1 ), (8)

where τ is the Fisher exponent. The universal scaling function
ñ(x) is approximately a constant for x � 1 and drops quickly
for x � 1. The exponents τ and dL1 are not independent but
obey the hyperscaling relation

τ = 1 + d/dL1. (9)

The above scaling behavior of n(s, L) has been observed for
percolation models in various dimensions and random-cluster
models below dc = 4 [12].

TABLE VI. The fitting results of the radius of the largest cluster
R1 for d = 5, 6, 7. For d � 6, it is of order L, while it deviates from
L for d > 6.

d Lm dR1 a0 b1 b2 y1 y2 χ 2/DF

5 8 0.999(2) 0.809(9) 0.17(3) −0.61(5) −2/3 −4/3 2.6/5
10 0.997(3) 0.82(1) 0.11(6) −0.5(1) −2/3 −4/3 1.5/4

6 10 1.001(2) 1.19(1) −1.01(4) −1 4.0/3
12 0.997(4) 1.21(2) −1.10(7) −1 1.8/2

6 1.102(7) 1.30(4) −1.2(2) 0.5(5) −1 −2 6.7/5
7 1.09(1) 1.35(7) −1.4(5) 1(1) −1 −2 6.2/4

7 6 1.08(2) 1.44(10) −0.9(3) −0.2(4) −2/3 −4/3 6.5/5
7 1.07(3) 1.5(2) −1.3(7) 0.4(9) −2/3 −4/3 6.0/4

FIG. 10. The FSS behavior of the rescaled radius R2/L vs system
size L for (a) d = 5, (b) d = 6, and (c) d = 7. For d � dp = 6, the
radius R2 is bounded by the linear system size L, while it increases
faster than L for d > dp.

We then plot n(s, L) versus cluster size s for 5 � d � 7,
shown in Fig. 11. As we can see, it first displays a power-law
behavior with the slope being the Fisher exponent τ , then it
enters a plateau, and finally it decays significantly. Our data
show that τ is consistent with 17/7 for d = 5 and 5/2 for d =
6, 7; the latter was conjectured in Ref. [25] and is consistent
with the value of the FK Ising model on the CG [39] and the
percolation model on high-d tori and the CG [43]. Thus, it
supports dp = 6 is an upper critical dimension.

We note that, using the values of dL1 in Table I, the scaling
relation Eq. (9) is broken. Using these values of τ , one can
obtain an effective fractal dimension deff using Eq. (9). For
d = 5, since τ = 17/7, one has deff = 7/2, consistent with
dL2 = 1 + d/2 from the GFP prediction. For d � 6, using τ =
5/2, one has deff = 2d/3, which is the fractal dimension of the
percolation clusters on high-d tori and CG.

5. Number of spanning cluster Ns

We next study the number of spanning clusters Ns. Recall
that a cluster is spanning if its unwrapped distance U is not
less than the linear size L. We plot Ns versus L for d = 5, 6, 7
in Fig. 12. For d < 6, we see Ns converges to a bounded value,
while for d � 6, Ns increases as the system size increases.
For d = 6, the straight line in the semilog plot in Fig. 12(b)
suggests Ns ∼ ln L, and the straight line in the log-log plot
with a slope close to 1 in Fig. 12(c) suggests Ns ∼ L for
d = 7, which is consistent with the observation on the high-d
percolation [42].

The divergence of Ns above 6D can be understood from the
behavior of n(s, L). As discussed in Sec. III B 2, for clusters
except the largest one, their sizes scale with the radius of
gyration as s ∼ R4 for d � 6. It is reasonable to expect the
unwrapped distance U of a cluster is of the same order as R.
Thus, it follows that a spanning cluster has R no less than L,
and thus its size s is at least of order L4. Thus, the number of
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FIG. 11. The cluster-number density n(s, L) for (a) d = 5 and
(b) d = 6, 7. The Fisher exponent τ is consistent with 1 + d

1+d/2 for
d < dp and 5/2 for d � dp.

spanning clusters above 6D can be calculated as

Ns ∼ Ld
∫ Ld

L4
n(s, L)ds ∼ Ld−6.

So Ns diverges as Ld−6 for d > 6, which is the same as the
percolation model on high-d tori [44]. In the marginal case
d = 6, possibly Ns diverges logarithmically.

To verify the scaling of Ns, we perform the least-squares
fits to the MC data. For d = 6, we use the logarithmic fitting
ansatz Eq. (3) with yO = 0. We first leave ŷO free, but no stable
results can be obtained. We then fix ŷO = 1, y1 = −1, and
leave a0, b1, c0 free, and we obtain stable fits when Lm = 16,
which gives a0 = 19(2), b1 = −150(20), and c0 = 23(9) with
the residuals χ2 ≈ 0.9. For d = 7, we fit the MC data to the

FIG. 12. The number of spanning clusters Ns, which is bounded
for (a) d = 5 and diverges for d = 6 and 7. The semilog plot in
(b) implies Ns ∼ ln L for d = 6. The log-log plot in (c) implies Ns

for d = 7 diverges as a power law.

TABLE VII. The fitting results of the number of spanning cluster
Ns for d = 7, which is consistent with the conjecture Ns ∼ L.

d Lm yO a0 b1 c0 y1 χ 2/DF

7 7 0.97(1) 90(6) −292(27) 250(27) −1/2 1.5/4
8 0.99(3) 80(11) −244(52) 201(53) −1/2 0.5/3

ansatz Eq. (2). We first set b1 = b2 = 0 and leave a0, c0, and
yO free, which gives unstable results. Leaving the correction
exponent y1 or y2 free cannot yield stable results. Thus, we fix
the exponent y1 to various values, and we leave a0, b1, c0, and
yO free. The fitting results are summarized in Table VII.

IV. RESULTS NEAR CRITICALITY

In this section, we consider the critical behavior away from
the critical point Kc. We study the coupling strength K = Kc −
aL−λ with λ > 0, i.e., the reduced temperature t = 1

Kc
aL−λ.

When a > 0, the critical point t = 0 is approached from the
high-T side, and a < 0 is from the low-T side. We study the
scaling behavior for different values of λ. For d > dc, we
find there are asymmetric behaviors as Kc is approached from
different sides, and the asymmetric behaviors are different for
4 < d < 6 and d � 6. On the high-T side, we find that there
exists more than one scaling window.

A. High-temperature side

We recall some scaling behaviors that are believed to hold
near criticality. First, for d � 4, the leading FSS behavior of
the magnetic susceptibility χ reads

χ (t, L) � L2y∗
h−d χ̃ (tLy∗

t ) = Ld/2χ̃ (tLd/2), (10)

where the RG exponents (y∗
h, y∗

t ) = (3d/4, d/2) from the
CG asymptotics have been used. In the thermodynamic limit
(L → ∞), χ exhibits singular scaling behavior as χ (t ) ∼ t−γ ,
and the mean-field value γ = 1 can be obtained either from
the GFP or the CG asymptotics. We ask how the FSS ansatz
(10) transits to the thermodynamic scaling. Given any in-
finitesimal but finite t , the argument x ≡ tLd/2 in the function
χ̃ (x) would diverge for sufficiently large L. To eliminate the
explicit dependence of L, it is requested that χ̃ (x) ∼ x−1 for
x � 1. Therefore, if the Ising critical point is approached from
the high-T side as t ∼ L−λ with λ < d/2, one has χ ∼ Lλ.
Indeed, it was numerically observed [32] that χ on high-d tori
follows,

χ ∼
{

Lλ if λ < d/2,

Ld/2 if λ � d/2.
(11)

For λ � d/2, since the renormalized scaling field tLd/2 in
Eq. (10) does not flow away, the FSS behaviors of all the
quantities, including χ , should be the same as those at the
critical point, as presented in Sec. III.

Second, for 0 < λ < d/2, the cluster-number density
n(s, L) should obey a similar form to Eq. (8). Taking into
account the potential two lengthscales, we separate the
contribution from the largest cluster and write

n(s, L) ∼ s−τ ñ(s/sλ) + L−d fC1 (s, L). (12)
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The factor L−d is for the density of the largest cluster, which
might have a λ-dependent fractal dimension dλ1, and fC1 (s, L)
denotes the cluster-size distribution of the largest cluster. For
4 � d < 6, the Fisher exponent is τ = 1 + d/dF with dF =
1 + d/2 from the GFP. Further, if the cutoff size sλ ∼ Ldλ ,
the number of clusters of size O(sλ) would diverge as Nλ ∼
Ld (1−dλ/dF ) for dλ < dF. For d � 6, one has τ = 5/2, and Nλ is
divergent for dλ < 2d/3.

Since the magnetic susceptibility is identical to the second
moment of cluster sizes as χ = ∑

s s2n(s, L), we have

χ ∼ (sλ)3−τ + bL2dλ1−d , (13)

where b is a positive constant. Depending on the value of λ,
the leading scaling behavior of χ might come from the largest
cluster, from the remaining ones, or equally from both.

Third, as the temperature decreases, the correlation length
ξ , corresponding to the diameters of characteristic clusters,
grows as ξ ∼ t−ν , with ν = νg = 1/2 from the GFP. For t ∼
L−λ, one would have ξ ∼ Lλ/2, suggesting that λ = λg = 2 is
a special value. For λ < λg, the diameters of clusters are much
smaller than the linear size L. For λ > λg, the correlation
length ξ might be restricted to be of order L or it might
increase faster than L. In this case, finite-size effects become
important.

Fourth, it is helpful to consider the two-point correlation
function g(r, L), which is the probability for two vertices with
distance r to be in the same cluster. By definition, the suscep-
tibility is χ ≡ ∑

g(r, L), where the translational invariance on
the tori is used. For λ < λg = 2, we expect g(r) ∼ r2−d g̃(r/ξ ),
where ξ � L, and g̃(x) drops exponentially for x � 1. For
λ > 2, g(r, L) develops a plateau for large distance due to
finite-size effects, which would contribute to the leading scal-
ing behavior of χ . According to Eq. (11), one has

g(r, L) ∼
⎧⎨⎩r2−d g̃(r/Lλ/2) if λ ∈ (0, 2),

r2−d + O(Lλ−d ) if λ ∈ [2, d/2),
r2−d + O(L−d/2) if λ ∈ [d/2, ∞).

(14)

Thus, for λ > 2, g(r, L) exhibits the crossover behavior
from the power-law decay, as predicted by GFP, to a
distance-independent plateau. The crossover happens at r =
O(L(λ−d )/(2−d ) ) for 2 < λ � d/2 and at r = O(Ld/2(d−2)) for
λ > d/2. The summation over the r-dependent part of the cor-
relation function g(r, L) gives χ ∼ Lλ for λ � 2, and χ ∼ L2

for λ > 2, serving only as the subleading behavior of χ . To
verify this scenario, one can define the magnetic structure
factor as χk ≡ ∑

g(r) exp(ik · r) and take the lowest mo-
mentum |k| = 2π/L. Since the Fourier transformation would
eliminate the contribution from the plateau of g(r, L), one
expects χk ∼ L2 for λ � 2, which was indeed observed in the
previous studies [29,30,32].

1. 4 < d < 6

For λ < 2, the critical point is approached at such a low
speed that the diameters of the large clusters, though diverg-
ing, are much smaller than the linear size L. Finite-size effects
are negligible, and the critical behaviors of the medium-size
clusters are governed by the GFP. Namely, one has the cluster
size s ∼ Rdg with dg ≡ 1 + d/2 for radii 1 � R � Lλ/2, and
the cutoff size is sλ ∼ Lλdg/2. In Eq. (13), the contribution to

χ from the largest cluster is of order O(Lλ−d (1−λ/2)) < O(Lλ),
and thus the FSS of χ is from the summation over all the
clusters. Actually, since the number Nλ of large clusters of
characteristic size sλ is Nλ ∼ Ld (1−λ/2), the contribution from
these large clusters is already of order O(Lλ).

For λ = λg = 2, corresponding to the so-called Gaus-
sian scaling window of width O(L−2), the correlation length
ξ reaches the order of L. There are only finite char-
acteristic clusters Nλ ∼ O(1); a plateau of height L2−d

develops in the scaling of the correlation function g(r, L) for
large r.

For λ � d/2, i.e., the CG-Ising scaling window, the re-
sults in Sec. III show that the unwrapped diameters of the
largest and second-largest clusters are R1 ∼ R2 ∼ L. Two
lengthscales are exhibited in the sizes of clusters: the largest
cluster scales as C1 ∼ L3d/4, and all the other clusters have the
Gaussian fractal dimension dg = 1 + d/2. The leading FSS
χ ∼ Ld/2 is merely from the largest cluster, or equivalently,
from the plateau of g(r, L).

For λg < λ < d/2, one naturally expects that R1 ∼ R2 ∼
L and the Gaussian fractal dimension holds true for all
clusters except C1. Further, from the leading FSS behavior
χ ∼ Lλ, one obtains dF1 = dL1 = (d + λ)/2 for the largest
cluster.

2. d � 6

The scaling behaviors for λ � 2 should be similar to those
for 4 � d < 6, except that the Gaussian fractal dimension
dF = dg should be replaced by dF = 4, which can be regarded
as being from branching random walks. Namely, for medium-
size clusters with radii 1 � R � ξ , one has s ∼ R4, which is
independent of d .

For λ > 2, we first consider λ = λp = d/3, corresponding
to the CG-percolation scaling window of width O(L−λp ), and
we expect that the FK-Ising clusters exhibit nearly the same
geometric properties as those in the standard bond percola-
tion model on high-d tori. The unwrapped correlation length
grows faster than L as ξu ∼ Lλ/2 = Ld/6. All the clusters,
including C1, scale as s ∼ R4

u until the cutoff size sλ ∼ ξ 4
u ∼

L2d/3. The Fisher exponent is τ = 5/2, and the number of
clusters of cutoff sizes is O(1). In other words, as the standard
percolation clusters in high dimensions, the FK-Ising clusters
manage to keep their shape to be “thin” by avoiding touch-
ing each other and wrapping around the tori for a diverging
number of times (ξu/L = Ld/6−1). This is indicated by Figs. 8,
7, and 12(c) and other plots in Sec. III. It is interesting to
note that, in terms of the unwrapped distance ru, the two-point
correlation function decays as Gaussian-like as g(r, L) ∼ r2−d

u
until the unwrapped correlation length, giving χ ∼ ξ 2

u ∼ Ld/3

[31,33]. The situations for λg < λ < λp are similar to those
for the percolation scaling window. We have ξu ∼ Lλ/2, sλ ∼
ξ 4

u ∼ L2λ, and χ ∼ ξ 2
u ∼ Lλ.

For λ ∈ (d/3, d/2), we argue that the scaling of the
unwrapped diameter of the largest cluster becomes λ-
independent as R1 ∼ Ld/6, as for λ = λp and λ � d/2.
Meanwhile, C1 becomes “fat” by merging the second-largest
and other clusters, and, from the FSS of χ , we have C1 ∼
LdL1 ∼ RdF1

1 , with dL1 = (d + λ)/2 and dF1 = 4 + δλ, where
δλ ≡ λ/λp − 1 is introduced.
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FIG. 13. The CG-Ising scaling window illustrated by the
rescaled cluster sizes C1/L3d/4 and C̃2/Ld/2 = C2 ln L/L1+d/2 on
high-d tori with d = 5, 6, 7. Both C1 and C2 follow the CG
asymptotics.

We expect that all the medium-sized clusters scale as
s ∼ R4 until the cutoff size sλ. Since all clusters with s > sλ

are merged into the largest cluster, sλ should decrease as
λ increases. For the second-largest cluster C2, by assuming
a linear interpolation between dL2 = 2d/3 for λ = λp and
dL2 = 1 + d/2 for λ = d/2, we obtain the finite-size fractal
dimension dL2 = (d − λ) + 2δλ. With the assumption C2 ∼
R4

2, we have R2 ∼ LdL2/4, which is also divergent for d > 6. An
argument for dL2 � d − λ can be provided as follows. As λ in-
creases from λp, all the clusters larger than sλ ∼ C2 ∼ LdL2 are
merged into the largest cluster, contributing to a total size of
Ld

∫
sλ

sn(s, L)ds ∼ Ld−dL2/2. Thus, we have Ld−dL2/2 � C1 ∼
L(d+λ)/2, giving dL2 � d − λ. Note that δλ is a d-independent
constant, and thus the lower bound d − λ becomes sharper
and sharper as d increases.

In a brief summary, as the critical point is approached as
O(L−λ) from the high-T side, the FK-Ising model exhibits
the simultaneous existence of the CG-Ising scaling window
of width O(L−d/2) and of the Gaussian scaling window of
width O(L−2). For d � 6, in between, there exists another
scaling window of width O(L−d/3), corresponding to the
CG-percolation scaling window. Since the high-d percola-
tion exhibits both the Gaussian and CG-percolation scaling
windows, we say that the FK-Ising model for d � 6 exhibits
the simultaneous existence of the high-d percolation and the
CG-Ising scaling windows. As λ increases, the correlation
length ξ reaches the order of L already in the Gaussian scaling
window. For 4 � d < 6, ξ ∼ L saturates as long as λ > 2,
and the largest and second-largest clusters display different
geometric properties. For d > 6, the correlation length in an
unwrapped way saturates in the high-d percolation scaling
window as ξu ∼ Ld/6, and the two-lengthscale behaviors de-
velop for λ > d/3. As an illustration, Figs. 13–15 display the
FSS behaviors of the largest and second-largest clusters in
the CG-Ising, Gaussian, and CG-percolation scaling windows.
Table VIII lists the exact values of critical exponents for dif-
ferent λ and d , including the finite-size and thermodynamic
fractal dimensions as well as the scaling exponents for the
unwrapped cluster diameters.

FIG. 14. The Gaussian and CG-percolation scaling windows
illustrated by C1 and C2 on high-d tori with (a) d = 5 and
(b) d = 6, 7.

B. Low-temperature side

We then consider that the critical point is approached
from the low-T side, i.e., a < 0. When the temperature is
decreased, more and more clusters merge into the largest clus-
ter, such that the second-largest cluster C2 becomes smaller
and smaller. One would not expect to observe the percolation
scaling windows with λ = d/3, in which C2 ∼ L2d/3. Recall
that it was observed that the Ising model on the CG has
a critical window with a width of order O(V −1/2) both for
the spin representation and FK representation [37,49]. Thus,
one would expect that within this critical window, the FSS
behaviors are the same as those at criticality. In other words,
for λ ∈ [d/2,∞), the scaling behavior is the same for the

FIG. 15. The Gaussian and CG-percolation scaling windows il-
lustrated by the unwrapped radii R1 and R2 on high-d tori with
(a) d = 5, 6 and (b) d = 7.
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TABLE VIII. Finite-size and thermodynamic fractal dimensions,
dLi and dFi, for the largest and second-largest clusters (i = 1, 2), as
the critical point is approached at a speed of O(L−λ) from the high-
temperature side. The unwrapped diameters of clusters scale as Ri ∼
LdRi , with dRi = dLi/dFi For clarity, we use dg = d/2 + 1 and δλ =
λ/λp − 1 with λp = d/3. Note that the exact values of many of these
exponents are conjectured on the basis of numerics, insights from
RG theory and CG asymptotics, or even from linear interpolation.

Largest cluster Second-largest cluster

d λ ∈ dL1 dF1 dR1 dL2 dF2 dR2

(0,2) λ

2 dg dg
λ

2
λ

2 dg dg
λ

2

[4,6) [2, d
2 ) λ+d

2 dL1 1 dg dL2 1

[ d
2 ,∞) 3

4 d dL1 1 dg dL2 1

(0, d
3 ) 2λ 4 λ

2 2λ 4 λ

2

[6,∞) [ d
3 , d

2 ) λ+d
2 4 + δλ

1
6 d d − λ + 2δλ 4 1

4 dL2

[ d
2 , ∞) 3

4 d 9
2

1
6 d dg 4 1

4 dL2

high-T approach and low-T approach, and the corresponding
exponents are listed in Table VIII. In Fig. 13, we plot the
rescaled cluster sizes C1/L3d/4 and C2 ln L/L1+d/2 versus
tLd/2. The good data collapse gives solid support to the ex-
istence of the critical window.

C. Crossover to the thermodynamic limit

From above, we find there is an asymmetric FSS behavior
from the high-T and low-T approaches, which is unconven-
tional in most critical systems. Here, we note that it not only
affects the FSS behavior, but also the thermodynamic scaling
behavior.

Like the susceptibility χ in Eq. (10), we assume that the
FSS scaling behaviors of other quantities obey a similar form
to

Q(t, L) = LyQλt Q̃(tLλt ). (15)

Moreover, under the condition that the quantity Q is well
defined directly in the thermodynamic limit, we assume that
the scaling function follows

Q̃(x) ∼
{

const, x → 0,

|x|−yQ , x → ∞,
(16)

such that Q(t ) returns to the thermodynamic scaling behavior
Q(t ) ∼ |t |−yQ . For χ , the exponents yQ = γ = 1 and λt =
d/2. We then take the radii R1 and R2 as an example and
consider the correlation-length exponents ν1 and ν2, which are
defined as R1(t ) ∼ |t |−ν1 and R2(t ) ∼ |t |−ν2 . We note that ν2

can be well defined both from the high-T and low-T sides,
while ν1 is only well defined from the high-T side.

We first consider the high-T approach. We assume that the
radii R1 and R2 have the same scaling behavior R1,2(t, L) ∼
LR̃1,2(tL2) for 4 < d < 6, such that we obtain ν1 = ν2 = 1/2.
In this case, it is consistent with the scaling behavior in Ta-
ble VIII. In other words, if one takes t ∼ L−λ it turns out to
be R1,2 ∼ Lλ/2 for λ � λt = 2 and R1,2 ∼ L for λ > λt . For
d � 6, following a similar procedure, we assume the scaling
behaviors R1,2 ∼ Ld/6R̃1,2(tLd/3) and R1,2(t ) ∼ |t |−1/2. Fig-

FIG. 16. The thermodynamic scaling behavior of the radius R1

and R2 from the high-T approach for d = 5, 6, 7.

ure 16 illustrates the above thermodynamic scaling behaviors
of R1 and R2.

We then consider that it approaches the critical point from
the low-T side. Since one has R2 ∼ LR̃2(tLd/2) for 4 < d <

6 and R2 ∼ L1/4+d/8R̃2(tLd/2) for d � 6, it is expected that
R2(t ) ∼ |t |−ν2 with ν2 = 2/d for 4 < d < 6 and ν2 = 1/4 +
1/2d for d � 6. As d → ∞, the exponent ν2 reduces to 1/4,
consistent with the calculation on the Bethe lattice [25].

FIG. 17. Demonstration of the simultaneous two upper critical
dimensions of the Ising model in its FK representation. The scaling
behaviors are governed by nontrivial fixed points for d < 4, by the
Gaussian fixed point asymptotics and complete graph asymptotics
for 4 < d < 6, and by the complete graph asymptotics and high-d
percolation asymptotic for d � 6, as illustrated in (a). The values
of the finite-size fractal dimension dL and of the thermodynamic
fractal dimension dF are given in (b) for the largest cluster and the
second-largest cluster. The value of the thermal-like renormalization
exponent yt , governing the size of the corresponding scaling window
as O(L−yt ), is given in (c).
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V. DISCUSSION

In this work, we perform large-scale Monte Carlo simu-
lations on high-dimensional (high-d) tori and the complete
graph (CG). Based on our numerical results, we provide a
detailed and complete report to support our conjecture of the
simultaneous existence of the two upper critical dimensions
(dc = 4, dp = 6) in the Fortuin-Kasteleyn (FK) representa-
tion of the Ising model. Other rich phenomena are further
observed. In particular, as long as d > dc, there are two con-
figuration sectors, two-lengthscale behaviors, and two scaling
windows. The scaling behaviors are conjectured to be gov-
erned by the Gaussian fixed point (GFP) asymptotics and
CG-Ising asymptotics for 4 < d < 6, and by the CG-Ising
asymptotics and high-d percolation asymptotics for d � 6.
For clarity, the d-dependent values of various critical expo-
nents are summarized in Fig. 17. It is unexpected at first
glance that for d � dp, many scaling behaviors of the FK-
Ising clusters are the same as the critical high-d percolation,
including the thermodynamic fractal dimension dF2 = 4 and
the scaling behavior of the radius R1 ∼ Ld/6 and the number
of spanning clusters Ns ∼ Ld−6.

The rich phenomena observed in the FK representation
deepen our understanding of the Ising model. A natural ques-
tion is whether these phenomena can be observed in other
representations. For the spin representation, critical behaviors
are simpler: no percolation-like behaviors exist and the upper
critical dimension dp = 6 does not exist. Apart from the FK
representation, there is another geometric representation, i.e.,

the loop representation, which can be linked to the FK rep-
resentation in the framework of the loop-cluster joint model
[21]. Recently, it was shown in Ref. [50] that studying the loop
representation on the CG within the framework of the loop-
cluster joint model provides a natural and simple explanation
for the appearance of percolation behaviors in the FK Ising
model, which results in the existence of two lengthscales,
two configuration sectors, and two scaling windows. Thus,
we would expect that the study of the loop representation on
high-dimensional tori, which is still under our investigation,
would provide some explanations for the observations in the
FK Ising model on tori, especially for the two upper critical
dimensions.

Here, we emphasize that the general scenario in Fig. 17 is
just a conjecture based on extensive simulations and insights
from exact CG solutions and the existing RG calculations.
Further studies are needed to judge the validity of the con-
jectured scenario in Fig. 17 as well as the values of the critical
exponents.
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