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Thermodynamics of a continuously monitored double-quantum-dot heat engine
in the repeated interactions framework
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Understanding the thermodynamic role of measurement in quantum mechanical systems is a burgeoning field
of study. In this article, we study a double quantum dot (DQD) connected to two macroscopic fermionic thermal
reservoirs. We assume that the DQD is continuously monitored by a quantum point contact (QPC), which serves
as a charge detector. Starting from a minimalist microscopic model for the QPC and reservoirs, we show that
the local master equation of the DQD can alternatively be derived in the framework of repeated interactions
and that this framework guarantees a thermodynamically consistent description of the DQD and its environment
(including the QPC). We analyze the effect of the measurement strength and identify a regime in which particle
transport through the DQD is both assisted and stabilized by dephasing. We also find that in this regime the
entropic cost of driving the particle current with fixed relative fluctuations through the DQD is reduced. We
thus conclude that under continuous measurement a more constant particle current may be achieved at a fixed
entropic cost.
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I. INTRODUCTION

In recent decades, technological developments have led to
the creation of artificial mesoscopic and nanoscopic steady-
state heat engines [1–5]. Without the need for moving parts
in such engines, stochastic energy obtained in the form of
a heat transfer is converted into useful work by currents of
microscopic particles. Applications are diverse, ranging from
atomic and molecular junctions [6] to quantum dots [7]. At
the scale at which these devices operate, not only do average
values of thermodynamic quantities matter, but thermal and
quantum fluctuations become just as relevant and must be
taken into account for a complete thermodynamic understand-
ing [8,9]. To study the devices experimentally, one often relies
on continuous quantum measurement to obtain information
about the temporal evolution of the internal state. At the
same time, even with the most noninvasive detectors such
as quantum point contacts (QPCs) acting as charge sensors
[10–13], performing weak measurements inevitably leads to
measurement backaction. Moreover, by monitoring an ob-
servable incompatible with energy, the energy transport in
quantum devices can be altered, too [14]. This points to the
fundamental role that measurement and the subsequent quan-
tum trajectory description arising from measurement play
in the interpretation of stochastic quantum thermodynamics
quantities [15–30].

While dephasing occurs in coherent quantum systems in
many scenarios, such as electron-phonon interaction [31,32]
and background charge noise [33], it also arises from

*bettmanl@tcd.ie
†kewmingm@tcd.ie
‡gooldj@tcd.ie

capacitive coupling to QPCs [34,35]. In the latter scenario,
dephasing is a direct consequence of the measurement backac-
tion of the QPC on the monitored quantum system [10–13,36].
Interestingly, there are situations where, counterintuitively,
quantum transport is aided by dephasing, e.g., Refs. [37–55],
by suppressing coherent single-particle interference effects.
Exploiting this mechanism to improve transport efficiency
is therefore interesting for applications in quantum technol-
ogy, including controlled quantum systems, but also because
it challenges the conception that disturbances due to cou-
plings to the environment, under all circumstances, hinder
performance. Interestingly, the presence of a dephasing noisy
environment has been shown to be also beneficial for per-
formance in some biological systems, such as photosynthetic
systems [39,56–60].

A widely used tool to study the temporal evolution as well
as steady states of quantum systems are Gorini-Kossakowski-
Sudarshan-Lindblad (GKSL) master equations (MEs) [61,62].
Often the effect of an environment on the quantum system of
interest can be approximated as local. This approach has the
advantage of computational simplicity as derivations are gen-
erally less involved than for global approaches since they do
not require full diagonalization of the system’s Hamiltonian.

In the local approach, one assumes that the dissipators,
which account for the interaction of the system with the
individual components of the environment, can be derived in-
dependently of each other. A discussion of local versus global
MEs can be found in Refs. [63–65]. Importantly, as argued
in Ref. [66], a local GKSL ME—for which global detailed
balance does not generally hold [67]—does not guarantee
a consistent thermodynamic description of nonequilibrium
steady state (NESS), if the mechanism for its emergence is not
fully taken into account. This issue was addressed by Barra
[68] who—building off previous works [69,70]—developed
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a consistent thermodynamic framework for calculating the
average flows of work, heat, and entropy in the repeated
interactions framework (collisional models) [71–76] for sys-
tems driven locally by interactions with the environment. This
framework is an intuitive and convenient methodology which
requires assumptions on the environment similar to those of
the local GKSL ME. However, it is important to point out
that the compatibility of local MEs with thermodynamics is
an active area of research and there are a variety of alternative
approaches [22,63,77–80].

In the present work, we aim to study the influence of
measurement backaction on NESS thermodynamic currents
in quantum heat engines. The three ingredients necessary to
see this effect are (1) a central system exhibiting quantum
coherence, (2) thermodynamic gradients that drive the central
system into a NESS and allow for the generation of power, and
(3) measurement backaction. The setup chosen for this work
consists of a double quantum dot [81] coupled to two indepen-
dent macroscopic thermal fermionic reservoirs where one of
the quantum dots is continuously monitored via an interaction
with a QPC. Here, the double quantum dot (DQD) in the
two-terminal setup acts as a quantum heat engine. A similar
setup was studied also within the stochastic thermodynamics
approach in Ref. [82]. It serves as a minimal prototypical
model which can be treated predominantly analytically. Here
we use a thermodynamically consistent formalism [68] in the
framework of repeated interactions, starting from a minimalist
microscopic model of the QPC and the reservoirs. We show
that the commonly used additive local GKSL ME for the
DQD, accounting for both dissipation to the reservoirs as
well as dephasing due to the coupling to the QPC, can be
alternatively derived in the repeated interactions framework.
Thus, the characteristics of the environment relevant to the
time evolution of the DQD state and its NESS—within the
assumptions made in deriving the local GKSL ME—are well
captured in our minimalist model, suggesting that it can be
used as a starting point for more sophisticated models, for
both the central system and the environment, in the future.
We find that the net output power of the DQD operated as a
heat engine is, in certain regimes, assisted by dephasing and
can be tuned via the QPC’s measurement strength. Further,
we study the entropic cost of precision in the particle current
through the DQD within the context of a thermodynamic
uncertainty relation (TUR) [83–87]. TURs set a fundamental
lower bound on the trade-off between the relative fluctuations
of a thermodynamic current in classical Markovian NESS heat
engines and the entropy production rate. Moreover, TURs
valid for quantum systems were developed in Ref. [88] and
subsequently studied for continuous measurements, and open
quantum systems [89–92]. Importantly, recent works on TURs
have been using the DQD as a working model [93–95], albeit
without the presence of a QPC. We find that in the parameter
regime in which the output power is increased due to the
dephasing measurement-induced backaction, the precision of
the particle current through the DQD, quantified by its relative
fluctuations, is enhanced relative to the entropic cost of driv-
ing it. The fundamental lower bound set by the TUR, however,
remains intact.

The paper is organized as follows: First, we study the
NESS of the DQD in the absence of continuous measurement

(Sec. II). We introduce the microscopic Hamiltonian describ-
ing the DQD, the two reservoirs, and their local interaction
with the DQD, and then give the well-known GKSL ME
for the DQD (Sec. II A). Next, we discuss the issue of the
apparent thermodynamic inconsistency of the local GKSL
equation for this setup (Sec. II B). We then show that the
GKSL ME for the DQD can be alternatively derived in the
framework of repeated interactions (Sec. II C). Finally, we
compute the NESS flows of work, heat, and entropy produc-
tion following Ref. [68] and show that our result is consistent
with the first and second laws of thermodynamics (Sec. II D).
Next, we introduce continuous measurement of the DQD via
a QPC. We first give the microscopic Hamiltonian (Sec. III A)
and then state the unconditional GKSL ME for the reduced
density matrix for the DQD, now also accounting for de-
phasing due to measurement backaction. We then propose a
minimalist composite unit for the QPC in the framework of
repeated interactions and show that the GKSL ME derived in
this framework coincides with the GKSL ME derived start-
ing from the microscopic Hamiltonian (Sec. III B). Next, we
compute the NESS flows of work, heat, and entropy produc-
tion in the presence of the QPC and show that our result is
consistent with the first and second law of thermodynamics
(Sec. III C). We address the parameter regimes allowing for
enhanced power output via dephasing assisted particle trans-
port in Sec. III D. We show the consequences of the latter to
reduce relative fluctuations of the particle current at a fixed en-
tropic cost (Sec. III E). Finally, we conclude by summarizing
and giving the outlook (Sec. IV).

II. DQD OPERATED AS HEAT ENGINE

Before investigating the effect of measurement-induced
backaction due to the QPC on the boundary-driven DQD
NESS, we first provide a pedagogical overview on computing
the particle and energy fluxes of the NESS using the frame-
work of repeated interactions, in the absence of a QPC. We
show that although the time evolution of the reduced DQD
density matrix in this approach is governed by a local GKSL
ME that does not obey global detailed balance, the average
NESS energy fluxes between the DQD and the reservoirs are
compatible with the first and second laws of thermodynamics.

A. DQD and the GKSL ME

The global microscopic Hamiltonian of the DQD in contact
with the two reservoirs, a resonant-level transport model, is of
the form

Ĥ = ĤDQD +
∑

α∈{H,C}
Ĥα + ĤDQD,R, (1)

where ĤDQD denotes the DQD Hamiltonian,

Ĥα =
∑

k

εα,k ĉ†
α,k ĉα,k (2)

is the reservoir α Hamiltonian expressed in terms of the
creation (annihilation) operators ĉ†

α,k (ĉα,k) of the reservoir
single-particle states with energy εα,k and ĤDQD,R is the tun-
neling Hamiltonian between the DQD and the reservoirs. The
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DQD Hamiltonian is given by

ĤDQD = ε1ĉ†
1ĉ1 + ε2ĉ†

2ĉ2 + t (ĉ†
1ĉ2 + ĉ†

2ĉ1). (3)

It is expressed in terms of the creation (annihilation) operators
ĉ†

1(2) (ĉ1(2)) of single quantum dot states with energies ε1(2),
and t denotes the interdot tunneling amplitude. The tunneling
Hamiltonian between the DQD and the reservoirs is given by

ĤDQD,R =
∑

k

gH,k ĉ†
1ĉH,k + g∗

H,k ĉ†
H,k ĉ1

+
∑

k

gC,k ĉ†
2ĉC,k + g∗

C,k ĉ†
C,k ĉ2,

(4)

where gα,k denotes the tunneling rate between mode k in
reservoir α and the respective quantum dot. The setup is such
that the DQD is driven into a NESS in the long-time limit
by its coupling to the two reservoirs with chemical potentials
μH (C) and temperatures TH (C) at its boundaries.

Usually, the NESS is derived from a GKSL master equa-
tion, which is only valid under the following assumptions
[96]: Weak coupling of the reservoirs to the DQD (Born
approximation), the reservoirs are memoryless (Markov ap-
proximation), and the bandwidths of the reservoirs are much
larger than those of the DQD. The last assumption yields
frequency-independent interactions between the reservoirs
and the DQD (wideband limit). Finally, we suppose that the
reservoirs are kept in local thermal equilibrium states and
are static and uncorrelated with the DQD and among each
other at all times. Tracing out the reservoir degrees of freedom
one obtains the additive local GKSL ME governing the time
evolution of the DQD, ρ̂DQD = TrR[ρ̂tot], (h̄ = 1),

˙̂ρDQD = − i[ĤDQD, ρ̂DQD]

+ γH fH (ε1)D[ĉ†
1]ρ̂DQD + γH [1 − fH (ε1)]D[ĉ1]ρ̂DQD︸ ︷︷ ︸

LH (ρ̂DQD )

+ γC fC (ε2)D[ĉ†
2]ρ̂DQD + γC[1 − fC (ε2)]D[ĉ2]ρ̂DQD︸ ︷︷ ︸

LC (ρ̂DQD )

,

= L(ρ̂DQD),
(5)

where the reservoir Fermi functions fH (C)[ε1(2)] = (1 +
exp{[ε1(2) − μH (C)]/kBTH (C)})−1, where kB is the Boltzmann
constant, are evaluated at the quantum dot energies ε1(2) (reso-
nant tunneling), and the tunneling rates between the DQD and
the two reservoirs are denoted by γH (C). The setup as well as
the interactions are schematically depicted in Fig. 1. The dissi-
pators are defined asD[L̂]ρ̂DQD = L̂ρ̂DQDL̂† − 1

2 {L̂†L̂, ρ̂DQD}.
Here, we use the common notations [·, ·] for the commuta-
tor and {·, ·} for the anticommutator. The jump operators in
Eq. (5) are local and account for the boundary-driving of the
DQD by the reservoirs since they drive transitions between
single quantum dot eigenstates at the boundary rather than
between delocalized energy eigenstates of ĤDQD. In this ap-
proach it is assumed that the dissipators for the two reservoirs
can be derived independently of each other. While this approx-
imation is commonly made, it is important to point out that
in general the exact evolution cannot be expressed as a sum
of dissipators describing the action of each reservoir alone

FIG. 1. The DQD consists of two quantum dots coupled via a
tunneling interaction of amplitude t . Each quantum dot is locally
exchanging energy and particles with an independent, macroscopic
thermal fermionic reservoir, at rate γH (C). The reservoirs are fully
characterized by their respective chemical potential μH (C) and tem-
perature TH (C).

[97]. Moreover, the interaction ĤDQD,R does not commute with
the DQD Hamiltonian ĤDQD, i.e., [ĤDQD,R, ĤDQD] �= 0. This
is because the jump operators L̂ here are not eigenoperators
of ĤDQD, due to the intersystem coupling [67]. Thus, the
local GKSL ME (5) derived from the interaction ĤDQD,R vio-
lates global detailed balance, although locally detailed balance
holds.

B. Thermodynamic inconsistency of the local GKSL ME

In this section, we follow the discussion in the work by
Levy and Kosloff [66] on the the apparent violation of the
second law of thermodynamics starting from the local GKSL
ME (5) for the DQD coupled to two reservoirs. Assume for
this example the absence of a chemical potential gradient. For
simplicity we set μH , μC = 0. Commonly, the heat current
from the hot reservoir into the DQD is defined as

Q̇H =Tr[ĤDQDLH (ρ̂DQD)]. (6)

Evaluating the trace, it may be rewritten as

Q̇H = [ fH (ε1) − fC (ε2)]F , (7)

where F is a function of the DQD parameters and is al-
ways positive. Clearly, for βCε2 < βHε1, [ fH (ε1) − fC (ε2)] <

0, since μH , μC = 0, so that the heat current from the hot
reservoir is negative. Since in this NESS Q̇H = −Q̇C , the
second law of thermodynamics appears to be violated, as the
entropy production rate, for Q̇H < 0,

σ = (βC − βH )Q̇H < 0. (8)

This apparent violation arises because the above definition of
the heat current from the hot reservoir is valid only for global
MEs which satisfy the condition of global detailed balance.
The above example illustrates that the local GKSL ME alone
may not be suitable for describing the thermodynamics of the
DQD and other approaches are needed.

C. GKSL ME in the framework of repeated interactions

A description of boundary-driven systems such as the
above reconciled with the second law of thermodynamics,
without having to compromise on using a local GKSL ME,
was put forward by Barra in Ref. [68] for the framework
of repeated interactions. We will briefly review it here.
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FIG. 2. In the framework of repeated interactions, the hot and
cold reservoirs are replaced by periodically refreshed units consisting
of single qubits with energy splitting ε1 − μH and ε2 − μC , respec-
tively. For the interaction time τ , a single unit per reservoir interacts
with the DQD. Subsequently the two units are replaced by new units
with the same initial state. The inital population of the qubit levels
are set by the chemical potentials and temperatures of the reservoirs
we aim to model.

Note, however, that a variety of alternative approaches exist
[22,63,77–80].

The framework of repeated interactions provides a pre-
scription to model a system’s interaction with an environment
in terms of replacing it by a collection of identical units
interacting with the system one after the other for a fixed
interaction time τ . Initially the system is uncorrelated with all
interaction units and, importantly, the interaction units remain
uncorrelated among each other for all times. The system then
evolves for an interaction time τ in the presence of the inter-
action with a single unit, subsequently the unit is replaced,
and the system then interacts with the fresh unit, again for an
interval of length τ , and so on. In Fig. 2 we schematically
show how we model the two thermal reservoirs by units,
each consisting of a thermal qubit with an energy splitting
of ε1 − μH and ε2 − μC , respectively, during each interaction
interval. The populations of the qubit levels are set by the
chemical potentials and temperatures, μH (C) and TH (C), of the
original reservoirs. This microscopic setup is described by the
bare Hamiltonians for the DQD ĤDQD defined in Eq. (3) and
the qubit units for the two reservoirs

Ĥα = (εα − μα )ĉ†
α ĉα, (9)

where α ∈ {H,C}, and the (single) interactions between the
DQD and reservoir qubits, via

v̂H = √
γH (ĉ†

H ĉ1 + ĉ†
1ĉH ), (10)

v̂C = √
γC (ĉ†

Cĉ2 + ĉ†
2ĉC ). (11)

The total Hamiltonian is given by

Ĥ = ĤDQD +
∑

α

Ĥα +
∑

α

V̂α, (12)

where V̂α = v̂α/
√

τ . Importantly, the periodic refreshing of
the units introduces time dependence into the total Hamilto-
nian. Barra shows that because of this, an inherent external
work is required to produce the dissipative evolution described
by the local GKSL equation [68]. Since the units representing
the two reservoirs consist of a single thermal qubit each, their
respective density matrix is initialized to

ω̂βH =
[

fH (ε1) 0
0 1 − fH (ε1)

]
, (13)

ω̂βC =
[

fC (ε2) 0
0 1 − fC (ε2)

]
. (14)

The total density matrix ρ̂ at the start of each subsequent
interaction is given by

ρ̂ = ρ̂DQD ⊗ ω̂βH ⊗ ω̂βC︸ ︷︷ ︸
ω̂R

. (15)

After initialization ρ̂ evolves unitarily for the duration of the
interaction time τ with

Û = exp(−iτ Ĥ ). (16)

After the nth interaction, the difference 
ρ̂DQD(nτ ) =
ρ̂DQD(nτ + τ ) − ρ̂DQD(nτ ) is given by


ρ̂DQD(nτ ) = TrE [Û ρ̂DQD(nτ ) ⊗ ω̂RÛ † − ρ̂DQD(nτ ) ⊗ ω̂R].

(17)

The GKSL ME is recovered by expanding the unitary Û to
second order in τ and taking the limit of infinitely many
interactions n → ∞ and infinitesimal interaction time τ → 0.
One then finds

˙̂ρDQD = −i[ĤDQD, ρ̂DQD] +
∑

α∈{H,C}
Dα (ρ̂DQD). (18)

Importantly, the action of the reservoirs on the system emerges
as a sum of dissipators due to the interaction with individual
reservoirs defined by

Dα (ρ̂DQD) = Trα[v̂α

(
ρ̂DQD ⊗ ω̂βα

)
v̂α]

− 1
2 Trα

{
v̂2

α,
(
ρ̂DQD ⊗ ω̂βα

)}
. (19)

By plugging Eq. (10) and Eq. (11) into Eq. (19), we recover
the local GKSL ME stated in Eq. (5). Therefore, we know that
at the level of the DQD, the dynamics dictated by the local
GKSL equation and in the framework of repeated interactions
are equivalent. However, the utility of the repeated interac-
tions framework allows us to recover a thermodynamically
consistent picture, as we now show.

D. Thermodynamic consistency

We are now in a position to compute the flows of heat
and work between the DQD and the reservoirs, as well as the
entropy production rate in the NESS [68].

The NESS of the DQD is uniquely defined by

˙̂ρNESS
DQD = L(

ρ̂NESS
DQD

) = 0, (20)

where the Liouvillian L is defined in Eq. (5). First, we
are interested in showing agreement with the first law of
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thermodynamics. To this aim, we begin by defining the work
and heat currents from the reservoir α as

Q̇α = −Dα (Ĥα ), (21)

Ẇα = Dα (ĤDQD + Ĥα ), (22)

where

Dα (Â) = Tr
[(

v̂αÂv̂α − 1
2

{
v̂2

α, Â
})

ρ̂NESS
DQD ⊗ ω̂βα

]
. (23)

In the NESS, the average particle current from the hot reser-
voir into the DQD is given by

JN
H = γH ( fH (ε1) − 〈ĉ†

1ĉ1〉), (24)

= 4|t |2
 f γHγC γ̃

γHγC (4
ε2 + γ̃ 2) + 4|t |2γ̃ 2
, (25)

where 
ε = ε2 − ε1 denotes the detuning between the two
quantum dots in the DQD, 
 f = fH (ε1) − fC (ε2) is the dif-
ference in the Fermi distributions of the reservoirs evaluated
at the quantum dot energies, and γ̃ = (γH + γC ). Here the
average occupation of the first quantum dot 〈ĉ†

1ĉ1〉 can be
calculated either in the Schrödinger picture using the reduced
NESS density matrix of the DQD or by solving the coupled
system of equations obtained in the Heisenberg picture for
the time evolution of the average DQD occupation and its
coherence, as we will illustrate in Sec. III D. Using Eq. (22),
we find that the work currents into the DQD in the NESS are
given by

ẆH =
(

γH
ε

γ̃
+ μH

)
JN

H , (26)

ẆC =
(

γC
ε

γ̃
− μC

)
JN

H , (27)

Ẇtot = −[(ε1 − μH ) − (ε2 − μC )]JN
H . (28)

Similarly, the heat currents into the DQD in the NESS, ac-
cording to Eq. (21), are found to be

Q̇H = (ε1 − μH )JN
H , (29)

Q̇C = −(ε2 − μC )JN
H , (30)

Q̇tot = [(ε1 − μH ) − (ε2 − μC )]JN
H . (31)

Note the linear dependence of the energy current on the par-
ticle current. This so-called tight-coupling limit, where the
determinant of the Onsager response matrix vanishes, is a
consequence of the weak-coupling approximation made in
deriving the GKSL equation and does not hold in general.
Nevertheless, the tight-coupling limit is of high interest in
nanoelectronics since in this limit the system may operate at
Carnot efficiency [98].

The first law states that Ẇtot + Q̇tot = 〈 ˙̂HDQD〉. Within
this framework, the expectation value of the first derivative
with respect to time of the DQD Hamiltonian is 〈 ˙̂HDQD〉 =∑

α Dα (ĤDQD). In the NESS, this quantity vanishes. Clearly,
Ẇtot = −Q̇tot , so that overall our calculation of heat and work
currents into the DQD in this framework is consistent with the
first law of thermodynamics.

Moreover, if this device is operated as a heat engine, then
its efficiency η is defined as the ratio between the time deriva-

FIG. 3. The DQD in the two-terminal setup is continuously mon-
itored via an interaction between one quantum dot in the DQD and a
QPC with measurement strength �. The particle current through the
QPC depends on the occupation of the monitored quantum dot.

tive of total work performed by the system DQD and the
time derivative of the heat flowing into the DQD from the hot
reservoir,

η = −Ẇtot

Q̇H
,

= 1 − ε2 − μC

ε1 − μH
. (32)

Note that the DQD operates as a heat engine if the work cur-
rent leaving the DQD −Ẇtot > 0. This is ensured if [ fH (ε1) −
fC (ε2)] > 0, so that JN

H > 0, and (ε1 − μH ) − (ε2 − μC ) > 0.
By the first condition,

(ε2 − μC )/TC

(ε1 − μH )/TH
> 1 (33)

and we find that η is bounded from above by the Carnot
efficiency ηC , since

η < 1 − TC

TH
= ηC . (34)

We can finally show that this model satisfies the second
law of thermodynamics. This can be readily achieved by rec-
ognizing that in the NESS, the entropy production rate can be
expressed in standard thermodynamic form

σ = −
∑

α∈{H,C}
βαQ̇α, (35)

=
(

ε2 − μC

kBTC
− ε1 − μH

kBTH

)
JN

H , (36)

� 0, (37)

where βα is the inverse temperature of reservoir α. One can
easily show that it is strictly positive, and thus we find that
this result is indeed consistent with the second law of thermo-
dynamics.

III. DQD CONTINUOUSLY MONITORED BY QPC

We now illustrate a setup where the occupation of one of
the quantum dots in the DQD is continuously monitored by a
QPC, see Fig. 3. The goal of this section is to recover a ther-
modynamically consistent picture of such a system using the
framework of repeated interactions. In this way, we consider
the QPC as performing boundary-driving on the DQD.
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A. Monitored DQD and the GKSL ME

The global Hamiltonian of this configuration is given by

Ĥ = ĤDQD +
∑

α∈{H,C}
Ĥα + ĤQPC + ĤDQD,R + ĤDQD,QPC,

(38)
where the DQD Hamiltonian ĤDQD is defined in Eq. (3), the
Hamiltonian Ĥα of the α reservoir is defined in Eq. (2), and
the tunneling Hamiltonians describing the coupling between
the DQD and the thermal reservoirs is defined in Eq. (4). Here
the QPC is modeled as a tunnel junction between a left and
right reservoir composed of noninteracting fermions,

ĤQPC =
∑

α∈{L,R},k
ωα,kâ†

k âk +
∑
k,k′
Tk,k′ (â†

R,kâL,k′ + â†
L,k′ âR,k ).

(39)

In the first term, ωα,k corresponds to the energies for the left
and right reservoir at mode k and â†

α,k (âα,k) are the respec-
tive QPC fermionic creation (annihilation) operators. In the
second term Tk,k′ is the tunneling matrix element between
states k and k′ in left and right reservoirs. When the DQD is
occupied, then the tunneling rates in the QPC are modulated.
The interaction Hamiltonian between the quantum dot in the
DQD and the QPC is given by

ĤDQD,QPC =
∑
k,k′

χk,k′ ĉ†
1ĉ1(â†

R,k âL,k′ + â†
L,k′ âR,k ), (40)

where χk,k′ is the change in the tunneling amplitude between
states k and k′ when the first quantum dot is occupied. Now
we follow Ref. [99] in assuming that the chemical potentials
μL and μR of the left and right QPC leads, respectively, the
resulting bias eV = μR − μL and the temperature of the QPC
are chosen such that |eV |, kBTQPC � μL, μR. Moreover, we
assume that both reservoirs in the QPC are at the same, albeit
low temperature TQPC. Thus, the Fermi functions in the right
and left lead of the QPC, fR and fL, respectively, will behave
similar to step functions, and the narrow transport window,
in which fR ≈ 1 and fL ≈ 0, becomes sharp, resulting in
unidirectional current in the QPC. Supposing the wide band
limit for both reservoirs and the leads of the QPC and taking
the Born-Markov secular approximation [96], the GKSL ME
is then given by [99]

˙̂ρDQD,� = L(ρ̂DQD,� ) +D[T+ + χ+ĉ†
1ĉ1]ρ̂DQD,�

+D[T ∗
− + χ∗

−ĉ†
1ĉ1]ρ̂DQD,�, (41)

where L(ρ̂DQD,� ) is defined in Eq. (5), and T± and χ± are as-
sumed to be energy-independent tunneling rates along/against
the chemical potential gradient and real [99]. Note that

D[T± + χ±ĉ†
1ĉ1]ρ̂DQD,� = |χ±|2D[ĉ†

1ĉ1]ρ̂DQD,�, (42)

which can be intuitively understood as that the evolution of
the DQD density matrix does not depend on the baseline
current through the QPC and allows us to rewrite the master
equation as

˙̂ρDQD,� = L(ρ̂DQD,� ) + �D[ĉ†
1ĉ1]ρ̂DQD,�,

= L� (ρ̂DQD,� ) (43)

where � = |χ+|2 + |χ−|2 is the dephasing rate due to the mea-
surement. We can therefore neglect the contribution due to the
QPC dynamics given by T as it does not change the dynamics
of the DQD. Following Ref. [99], we can define an explicit
expression for � in terms of the physical QPC parameters
given that

|T±|2 = D± = 2π |T00|2gLgReV±, (44)

|T± + χ±|2 = D′
± = 2π |T00 + χ00|2gLgReV±, (45)

where T00 and χ00 are the tunneling amplitudes for energies
near the chemical potentials, gL and gR are the energy-
independent density of states for the left and right reservoirs,
and effective finite temperature external potential bias is

eV± = ±eV

1 − exp (∓eV/kBTQPC)
. (46)

Here the average electron currents through the QPC when the
quantum dot is unoccupied and occupied are eD = e(D+ −
D−) and eD′ = e(D′

+ − D′
−), respectively. Combining these,

and assuming the tunneling rates T00 and χ00 are real, then
one can show that the dephasing rate � = (

√
D − √

D′)2 is
given by the expression

� = 2πgLgRχ2
00eV coth

(
eV

2kBTQPC

)
. (47)

There are thus many parameters that can be varied to tune
the dephasing rate, i.e., the temperature TQPC, χ00, the density
of states gR(L) and the chemical potential bias eV . Note that
even in the limit of zero bias, � �= 0 due to the fact that
the tunneling rate varies depending on the occupation of the
quantum dot.

The NESS of the DQD in the presence of the QPC is
uniquely defined by

˙̂ρNESS
DQD,� = L�

(
ρ̂NESS

DQD,�

) = 0, (48)

where the Liouvillian L� is defined in Eq. (43). As studied
in Sec. II B, the above local GKSL ME is not guaranteed to
be thermodynamically consistent. Therefore, we now develop
an approach for the QPC analogous to that in Sec. II C for
the thermal reservoirs, which were replaced by a string of
identical auxiliary units that interact with the DQD for a finite
time and are then replaced.

B. GKSL ME in the framework of repeated interactions

In order to deal with the QPC in the framework of repeated
interactions, we recast it as a single unit composed of two
qubits with energy splitting � − μR(L), respectively, coupled
via tunneling with strength T . The bare Hamiltonians of the
DQD and reservoir units, Eqs. (3) and (9), respectively, remain
unchanged, while the Hamiltonian of the QPC in Eq. (39)
turns into

ĤQPC = (�− μR)â†
RâR + (� − μL )â†

LâL + T (â†
RâL + â†

LâR),

(49)

where we choose μR � μL. It is assumed that at the beginning
of each interaction the global density matrix is a product state
of the individual states of all four unities: DQD, hot and cold

044102-6



THERMODYNAMICS OF A CONTINUOUSLY MONITORED … PHYSICAL REVIEW E 107, 044102 (2023)

FIG. 4. In the framework of repeated interactions, we model the
interaction of the DQD with the QPC with periodically refreshed
units composed of two qubits, i.e., one qubit per QPC lead. The
energy splitting of the qubits is [� − μR(L)], respectively. They
are coupled via a tunneling interaction with amplitude T . The
qubits are initialized so that the qubit in the right lead is occupied
while the qubit in the left lead is empty, resulting in a unidirectional
current from right to left.

reservoir units, and the QPC unit. The latter is also assumed
to be factorized in terms of two thermal density matrices
associated with each L,R qubit (see Fig. 4), ω̂βL and ω̂βR ,
respectively. Thus, at the start of each interaction,

ρ̂ = ρ̂DQD,� ⊗ ω̂βH ⊗ ω̂βC ⊗ ω̂βR ⊗ ω̂βL︸ ︷︷ ︸
ρ̂E

. (50)

where ω̂βH and ω̂βC are defined in Eq. (13) and (14), re-
spectively. This configuration is representative of the QPC
in the limit for which the ME was derived originally, i.e.,
|eV |, kBTQPC � μL, μR, such that the energy window for
transmission is narrow and the current through the QPC is
unidirectional. In this limit, and assuming that the temperature
of the QPC is low, the Fermi functions of the right and left lead
are fR(�) = 1 and fL(�) = 0, respectively, so that we define

ω̂βR =
(

1 0
0 0

)
, (51)

ω̂βL =
(

0 0
0 1

)
. (52)

Since we assume that the QPC unit couples only to the first
quantum dot with coupling strength

√
�, we define the (sin-

gle) interaction between the monitored dot and the QPC via

v̂QPC =
√

�ĉ†
1ĉ1(â†

RâL + â†
LâR), (53)

and the interactions with the hot and cold reservoir, v̂H and
v̂C , as defined in Eqs. (10) and (11), respectively.

We are now in a position to study the repeated interactions
of the DQD by following the recipe outlined in Sec. II C but
including the QPC. The formalism developed in Ref. [68]
assumes that the density matrices of the units are thermal.
While the density matrices describing the left and right side
of the QPC, ω̂βR(L) , are thermal with respect to their respective
bare Hamiltonian ĤQPC,R(L) = (� − μR(L) )â

†
R(L)âR(L), the total

QPC density matrix ρ̂QPC = ω̂βR ⊗ ω̂βL is not thermal with
respect to ĤQPC. This can be easily seen as [ĤQPC, ρ̂QPC] �= 0,
because of the hopping interaction of the two thermal qubits.
Nevertheless, Eqs. (18), (21), and (22) can be analogously de-
rived also for the interaction between the QPC unit proposed
here and the DQD. One can thus easily obtain the GKSL ME
for the DQD via

˙̂ρDQD,� = −i[ĤDQD, ρ̂DQD,�] +
∑

α∈{H,C,QPC}
Dα (ρ̂DQD,� ),

(54)
where Dα (ρ̂DQD,� ) is defined in Eq. (19). In fact, one can
readily show that this recovers Eq. (43).

C. Thermodynamics of the boundary-driven monitored DQD
in the framework of repeated interactions

We now study the influence of continuous measurement
via the QPC on the energy currents into the DQD as well
as the entropy production rate. The first and second laws of
thermodynamics can be validated, and one can analyze the
efficiency of the continuously monitored DQD operated as a
heat engine.

First, we confirm that this model is thermodynamically
consistent with the first law. Using the formalism described
in Sec. II D we find the heat and work currents—Eqs. (55)
and (56), respectively—are given by

Q̇QPC = −eV �〈ĉ†
1ĉ1〉,

Q̇H = (ε1 − μH )JN
H,�,

Q̇C = −(ε2 − μC )JN
H,�, (55)

and

ẆQPC = �
ε

� + γ̃
JN

H,� + eV �〈ĉ†
1ĉ1〉,

ẆH =
(

γH
ε

� + γ̃
+ μH

)
JN

H,�,

ẆC =
(

γC
ε

� + γ̃
− μC

)
JN

H,�, (56)

where eV = μR − μL and the particle current is given by

JN
H,� = γH [ fH (ε1) − 〈ĉ†

1ĉ1〉], (57)

= 4
 f γCγH (� + γ̃ )|t |2
γ̃ [4
ε2 + (� + γ̃ )2] + 4γ̃ (� + γ̃ )|t |2 . (58)

Here we have used the � subscript to indicate the presence of
the QPC. We can readily show that our results are consistent
with the first law of thermodynamics for the NESS since

〈 ˙̂HDQD〉tot =
∑

α=QPC,H,C

Ẇα + Q̇α = 0. (59)

The QPC’s work and heat current can be divided into two
contributions: one associated with the particle current through
the DQD, JN

H,� , and the other associated with the change
in particle current through the QPC as a function of the
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FIG. 5. Work, heat and particle currents as a function of the
measurement strength. (a) In the NESS, the total work current out
of the DQD −Ẇtot (black solid line) exhibits an extremum at the
measurement strength �ext and is larger than its value in the absence
of measurement up a measurement strength of �0, as indicated by
the dashed gray lines and the gray box. Here also the work current
between DQD and QPC −Ẇ DQD

QPC (blue solid line) and the heat current
between the hot reservoir and the DQD Q̇H (red solid line) are
shown. (b) The average particle current attains a maximum at the
measurement strength �ext and exceeds its magnitude in the absence
of measurement up a measurement strength of �0, as indicated
by the dashed gray lines and the gray box. Parameters: Reservoir
temperatures TH , TC = 3, 1 and T = (TH + TC )/2; reservoir chemi-
cal potentials μH , μC = 0.5kBT , 1.5kBT ; quantum dot energies ε1,
ε2 = 2kBT , 2.1kBT ; interdot hopping amplitude t = 0.025kBT ; and
coupling to reservoirs γC, γH = γ = 0.025kBT .

monitored dot occupation, 
JN
QPC = �〈ĉ†

1ĉ1〉, so that

Q̇QPC = −eV 
JN
QPC, (60)

ẆQPC = �
ε

� + γ̃
JN

H,� + eV 
JN
QPC (61)

= Ẇ DQD
QPC + Ẇ QPC

QPC . (62)

Note that the energy current associated with 
JN
QPC follows

Watt’s law.
Here we are interested in the influence of continuous mea-

surement on the thermodynamics of the DQD operated as a
heat engine, in which the particle current through the DQD,
JN

H,� , is the carrier of energy. Thus, we argue that the heat and
work currents due to the change in the QPC particle current,

JN

QPC, that, importantly, is contained within the QPC unit,
must not be taken into account for the efficiency of the DQD
heat engine and the entropic cost of driving its particle current.

We now study the heat and work current related to the parti-
cle current through the DQD as a function of the measurement
strength �, which quantifies the strength of the dephasing
backaction. To this aim, we define

Ẇtot = ẆH + ẆC + Ẇ DQD
QPC . (63)

We find that all NESS thermodynamic currents, given by
Eqs. (56), (55), and (57), are either reduced or assisted by
the dephasing due to the measurement-induced backaction, as
depicted in Fig. 5. Moreover, we notice that the total output
power −Ẇtot is extremal at �ext, which we will revisit shortly.
It suffices to say that because we are operating the DQD heat
engine in the tight-coupling limit, the nontrivial dependence
on � can be traced back to the the particle current Eq. (57).

This raises the question whether there is any advantage in
the efficiency of this heat engine due to �. As argued above,
one can define the efficiency of the engine as in Eq. (32) tak-
ing into account energy currents associated with the particle
current through the DQD. In the limit of tight coupling, the
efficiency is independent of the dephasing strength—but this
may not hold if the weak-coupling assumption is relaxed.

Last, the entropy production rate associated with the ther-
modynamic cost of driving the NESS particle current through
the DQD is given by

σDQD = −(βH Q̇H + βCQ̇C ),

=
(

ε1 − μH

kBTH
− ε2 − μC

kBTC

)
JN

H,� � 0. (64)

The total entropy production rate σtot = σDQD + σQPC is in
agreement with the second law of thermodynamics since

σQPC = −βQPCQ̇QPC,

= βQPCeV JN
QPC � 0. (65)

D. Dephasing-enhanced particle transport

In the previous section we observed a nontrivial behavior
of the particle current JN

H,� as a function of the measurement
strength �. The measurement introduces dephasing in the
DQD which typically suppresses the coherences in the DQD
density matrix [10]. Thus, for large measurement strength we
expect the particle current to vanish due to the quantum Zeno
effect [100] leading to localization. In fact, in this limit the
DQD steady state is a product state of two single quantum
dots which are in thermal equilibrium with their respective
environments, i.e.,

lim
�→∞

ρ̂DQD =
[

fH (ε1) 0
0 1 − fH (ε1)

]

⊗
[

fC (ε2) 0
0 1 − fC (ε2)

]
. (66)

For a significant range in measurement strength that de-
pends on the system’s parameters as well as the reservoir
couplings we find, however, dephasing-enhanced particle
transport [37–39,45–48]. This can be understood by study-
ing the particle current in the NESS. We start from the rate
equations for the single quantum dot occupations, n1(2) =
〈ĉ†

1(2)ĉ1(2)〉, and coherence 〈ĉ†
1ĉ2〉,

d〈ĉ†
1ĉ1〉

dt
= γH ( fH − 〈ĉ†

1ĉ1〉) + i(t〈ĉ†
1ĉ2〉 + t∗〈ĉ†

2ĉ1〉),

= JN
H,� + JN

12, (67)

d〈ĉ†
1ĉ2〉

dt
=

[
i
ε − γ̃ + �

2

]
〈ĉ†

1ĉ2〉 + it∗(〈ĉ†
2ĉ2〉 + 〈ĉ†

1ĉ1〉),

(68)
d〈ĉ†

2ĉ1〉
dt

=
[
−i
ε − γ̃ + �

2

]
〈ĉ†

2ĉ1〉 − it (〈ĉ†
2ĉ2〉 + 〈ĉ†

1ĉ1〉),

(69)
d〈ĉ†

2ĉ2〉
dt

= γC ( fC − 〈ĉ†
2ĉ2〉) − i(t〈ĉ†

1ĉ2〉 + t∗〈ĉ†
2ĉ1〉),

= JN
C,� − JN

12, (70)
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FIG. 6. Quantum dot occupations and coherences as a function
of the measurement strength. (a) The single quantum dot occupations
n1(2) = 〈ĉ†

1(2)ĉ1(2)〉 exhibit an extremum at the measurement strength
�ext and return to their original value in the absence of measurement
at measurement strength �0, as indicated by the dashed gray lines and
the gray box. (b) At �ext the real and imaginary part of the coherence
〈ĉ†

1ĉ2〉 coincide and Im〈ĉ†
1 ĉ2〉, which in the NESS is proportional

to the average particle current, exhibits an extremum. Parameters:
Reservoir temperatures TH , TC = 3, 1 and T = (TH + TC )/2; reser-
voir chemical potentials μH , μC = 0.5kBT , 1.5kBT ; quantum dot
energies ε1, ε2 = 2kBT , 2.1kBT ; interdot hopping amplitude t =
0.025kBT ; and coupling to reservoirs γC, γH = γ = 0.025kBT .

where JN
H/C,� denotes the NESS average particle current flow-

ing into the DQD from the hot or cold side and JN
12 denotes

the NESS average particle current from the first to the second
quantum dot in the DQD. In the NESS we set all the time
derivatives to zero and clearly see JN

H,� = −JN
C,� = −JN

12 and
therefore in the following we restrict to the discussion of
JN

H,� . The effect of the measurement strength � on the single
quantum dot occupations and the coherence are shown in
Fig. 6. Note that while the single quantum dot occupations
n1(2) depend on �, the total DQD occupation n = n1 + n2

is conserved. This can be understood intuitively: The QPC
performs work on the DQD as seen in Fig. 5. As a result,
the populations of eigenstates of the DQD Hamiltonian HDQD

with total occupation n = 1 are redistributed among the two
single quantum dot eigenstates. Since the QPC does not ex-
change particles with the DQD, the interaction conserves the
total occupation n. Solving the above system of equations, we
find that the single quantum dot occupations n1 and n2 are
extremal at the measurement strength

�ext = 2|
ε| − γ̃ . (71)

Thus, for any choice of 
ε and γ̃ for which �ext > 0 the
particle current can be enhanced by increasing the measure-
ment strength. Further, we find that the measurement strength
at which the dot occupations match those in the absence of
measurement, i.e., n1/2(�0) = n1/2(0), is given by

�0 = 4
ε2

γ̃
− γ̃ , (72)

meaning that the particle current is assisted up to �0. Con-
sequently, the particle current from the hot reservoir into the
DQD exhibits a maximum at �ext and is enhanced up to a
measurement strength �0, as shown in Fig. 5. Hence, a boost
in the particle current can obtained via continuous monitoring
of the occupation of the first quantum dot.

E. Thermodynamic uncertainty relation

As a final consideration, we study how TURs [83–87] are
impacted by the interplay between the average particle current
JN

H,� and the measurement strength �. These relations describe
a trade-off between the relative fluctuations of a fluctuating
thermodynamic current in classical Markovian NESS heat
engines and the entropic cost associated with their driving,
and are commonly expressed as

Dσ

J2
� 2, (73)

where J is the average of the fluctuating current, D is its
diffusion coefficient, and σ denotes the entropy production
rate. In the following we will refer to Dσ/J2 as the TUR
ratio (TURR). Equation (73) strictly holds only for classical
systems and has been shown to be violated in some quan-
tum systems [93–95,101–103]. It should be noted, however,
that the role of quantum coherence (as is conjectured to be
responsible for such violations) can be either constructive or
destructive for the fluctuations of thermodynamic currents,
depending on the context [104].

Here we numerically study the TUR for the particle current
JN

H,� where the diffusion coefficient D can be calculated using
well-known methods [8,105–107] using the power spectrum
S(ω), which often is more accessible experimentally because
it describes the amount of power in each frequency compo-
nent of the measured signal, evaluated at zero frequency D =
S(ω = 0). It is important to note that we are not computing
the power spectrum with respect to the measured signal in the
QPC but rather relating to the counting statistics between the
system and the hot reservoir, i.e., in the particle current JN

H,� .
Analytically, it can be expressed in a compact vector notation
[105],

D = S(0) = M − 2 〈1|L1L+L1 |ρ̂〉 , (74)

where 〈1| is the vectorized identity, |ρ̂〉 is the vectorized
steady-state density matrix and

L1ρ̂ =
∑

k

μkL̂k ρ̂L̂†
k . (75)

The operator L̂k is the measurement operator with which the
system’s density matrix is updated conditioned on a click in
the detector with associated measurement outcome μk . L+ is
the Drazin inverse of the Lindbladian L of the GKSL ME and
is defined as

L+ =
∑

j

1

λ j
|x j〉 〈y j | . (76)

Here λ j , |x j〉, and 〈y j | are the nonzero eigenvalues, the right
eigenvectors, and the left eigenvectors of L in matrix form,
respectively. Finally, the dynamical activity M is defined as

M =
∑

k

μ2
kTr[L̂k ρ̂L̂†

k ]. (77)

Here we numerically compute the diffusion coefficient of the
fluctuating particle current between the DQD and the hot
reservoir. To this end we choose the two measurement op-
erators L̂k ∈ {

√
γH fH (ε1)ĉ†

1,
√

γH [1 − fH (ε1)]ĉ1} with their
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FIG. 7. Relative fluctuations and the thermodynamic uncertainty
relation ratio (TURR) of the particle current as a function of the
measurement strength. (a) Dephasing due to measurement-induced
backaction can reduce the relative fluctuations of the particle cur-
rent up to a measurement stength of �′

0. The relative fluctuations
are minimal at measurement strength �′

ext. (b) Similarly, the TURR
expressing the trade-off between the entropic cost and the relative
fluctuations of the particle current is minimal at �′′

ext and is reduced
up to �′′

0 , which is significantly larger than �0 and �′
0. Parame-

ters: Reservoir temperatures TH , TC = 3, 1 and T = (TH + TC )/2;
reservoir chemical potentials μH , μC = 0.5kBT , 1.5kBT ; quantum
dot energies ε1, ε2 = 2kBT , 2.1kBT ; interdot hopping amplitude t =
0.025kBT ; and coupling to reservoirs γC, γH = γ = 0.025kBT .

associated measurement outcomes μk ∈ (+1,−1) to repre-
sent the detection of single-particle hopping into and out of
the DQD from the hot reservoir, respectively. Again, we note
this does not correspond to the statistics of the observed cur-
rent measured by the QPC, but rather the counting statistics
between the system and the hot reservoir. We find that the rel-
ative fluctuations of the particle current, given by D/(JN

H,� )2,
can be reduced up to a certain measurement strength �′

0,
translating to a stabilization of the particle current, as shown
in Fig. 7, given that the parameters describing the system
and its coupling to the environment are chosen appropriately.
Note, that since we compute D only numerically, we cannot
provide analytical expressions for the measurement strength
�′

ext at which the relative fluctuations are minimal and the
measurement strength �′

0 at which they return to their value
in the absence of measurement.

Furthermore, we find that the TURR DσDQD/JN
H,�

2 of the
particle current can be pushed towards its lower bound for ar-
bitrarily weak measurement strength �, as depicted in Fig. 7,
in certain parameter regimes. Our results suggest that the
TURR may be reduced by the dephasing measurement back-
action even beyond the regime of dephasing assisted transport,
i.e., for � > �0. Further, note that here the TURR changes
at constant engine efficiency. This, however, certainly is a
pathological effect arising due to tight-coupling between the
energy and particle current.

IV. DISCUSSION

When considering quantum heat engines, fluctuations
in thermodynamic currents can be as important as their
respective mean values. Increasing precision by reducing fluc-
tuations of a current on small scales is of great interest, also
from a fundamental thermodynamics point of view, as the

fluctuations of the current are closely related to the entropic
cost of driving it, as expressed in TURs. Here, we investi-
gated the influence of continuous measurement via a QPC
on the relative fluctuations of a thermodynamically driven
NESS particle current and its entropic cost in a minimalist
model that exhibits quantum coherence: the DQD in a two-
terminal setup. We show that the local GSKL ME describing
the nonunitary evolution of the DQD in the presence of in-
teractions with two thermal reservoirs, and under continuous
measurement via a QPC, can be derived in the framework of
repeated interactions. This holds in the limit where the Born-
Markov secular approximation is valid and particle transport
in the QPC is unidirectional. We showed that under this
framework the first and second law of thermodynamics are
satisfied and that the efficiency of the DQD operating as a heat
engine is bounded by the Carnot efficiency. We argued here
that the entropy production rate associated with driving the
particle current through the DQD can be computed from the
heat currents from the thermal reservoirs and their respective
temperatures alone. This is noteworthy because this entropy
production rate is also consistent with the second law of
thermodynamics, but most importantly depends on the QPC
temperature only via the measurement strength �. While in
the zero temperature limit the measurement stength � is finite,
the entropy production rate in the QPC diverges. The question
here is thus how the entropy production in a more realistic
model of the measurement device can be adequately taken into
account in the thermodynamic description of the continuously
monitored system—and the question remains open.

Finally, using the GKSL ME to compute the NESS particle
current, we find dephasing assisted particle transport accom-
panied by a reduction in relative fluctuations up to a certain
measurement strength. This may mean that the cost of driving
a particle current given its signal-to-noise ratio can be reduced
by measurement-induced dephasing. In this way, the entropic
cost of the precision of the particle flux, which is often more
accessible experimentally than any energy flux, may be re-
duced, while the lower bound set by the TUR remains intact.
Our model, although minimalist, reproduces the commonly
used local GKSL ME for this setup while allowing the calcu-
lation of energy fluxes into the DQD in a thermodynamically
consistent manner. Thus, it may serve as a starting point for
more sophisticated models that will have a higher level of
detail in the future, such as realistic spectral densities for the
reservoirs, as is possible, for example, within the mesoscopic
leads approach [108–110] or using more realistic collision
based models [111–113].
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