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Finite-temperature equilibrium density profiles of integrable systems in confining potentials
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We study the equilibrium density profile of particles in two one-dimensional classical integrable models,
namely hard rods and the hyperbolic Calogero model, placed in confining potentials. For both of these models the
interparticle repulsion is strong enough to prevent particle trajectories from intersecting. We use field theoretic
techniques to compute the density profile and their scaling with system size and temperature, and we compare
them with results from Monte Carlo simulations. In both cases we find good agreement between the field theory
and simulations. We also consider the case of the Toda model in which interparticle repulsion is weak and
particle trajectories can cross. In this case, we find that a field theoretic description is ill-suited and instead,
in certain parameter regimes, we present an approximate Hessian theory to understand the density profile. Our
work provides an analytical approach toward understanding the equilibrium properties for interacting integrable
systems in confining traps.
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I. INTRODUCTION

Integrable classical systems [1–3] have a macroscopic
number of constants of motion that are in involution with
each other. In phase space, these systems (i) have regular
periodic orbits (invariant torus), (ii) are characterized by zero
Lyapunov exponents, and (iii) generally resist thermalization
to a Gibbs state. However, many-body integrable systems
are also believed to be extremely fragile in the presence of
external perturbations, and they become nonintegrable, er-
godic, and chaotic, retaining only a few constants of motion
[4]. Consequently, integrable systems are rare, and noninte-
grability arising due to imperfections dominates the natural
world. For example, most experiments [5–7] are performed
in confining potentials where we expect that integrability will
be lost and thermalization to occur. Recent theoretical studies
have addressed thermalization and transport in such trapped
integrable models [8–15]. To study thermalization, one needs
to have a clear understanding of the thermal equilibrium state.
One simple characterization is to look at the equilibrium
density profile of the particles in the trap which is the most
commonly measured quantity in experiments [16–18].

In this work, we focus on equilibrium density profile of
two one-dimensional short-range integrable classical models
in the presence of integrability-breaking external potentials.
The integrable models considered here are the gas of hard
rods [19] and the hyperbolic Calogero model [20–22]. The
external trap potential keeps the particles spatially confined
and breaks integrability. Such systems have been studied
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recently and many surprising results have been reported. For
example the gas of hard rods [11] and the Lieb-Liniger model
[13] in quadratic trap were investigated. It was found that
these systems do not thermalize even in the presence of the
quadratic trap. Under out-of-equilibrium conditions, drasti-
cally slow relaxations to a nonequilibrium steady state and
large finite-size effects have also been observed for the Toda
model with harmonic (quadratic) pinning potential [8,12]. In
another recent work [23], a similar observation was made for
the nonlinearly perturbed Toda model and a universal scaling
of the thermalization time has been reported. Studies of the
integrable Calogero model in the presence of external confin-
ing potentials have also been undertaken in recent times, see
for example Refs. [10,15,24–26].

The equilibrium properties of trapped interacting particles
have recently been studied where field theoretic techniques
are used to compute the equilibrium density profiles and
fluctuations [27–33]. Here we adapt these field theoretic pro-
cedures to study the equilibrium properties of hard rods and
the hyperbolic Calogero system in the presence of external
trapping potentials. The field theory presented here predicts
quite accurately the equilibrium density profile of these two
models, and their scaling with system size and temperature, as
obtained from Monte Carlo (MC) simulations. For integrable
models in the presence of confining traps, the approach of
the thermodynamic Bethe ansatz (TBA) has been employed
to compute the equilibrium density profiles in the generalized
Gibbs ensemble [34,35]. Our field theory approach is based
on the Gibbs ensemble and (i) is more direct and transparent
and (ii) does not rely on integrability unlike the TBA.

However, we find that the behavior of trapped integrable
models with weak repulsion, such as the Toda model, ap-
pears to be strikingly different from the above-mentioned
models. It turns out that for such short-range models where
particle crossings are allowed, the density profile is localized
on a length scale that is system size independent, thereby
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rendering the field theoretic description ill-suited. In a suitable
parameter regime, the equilibrium density profiles of the Toda
model can be understood using the Hessian approximation of
the Toda interaction which is the nearest-neighbor harmonic
chain. Note that the harmonic chain model in the quadratic
trap is analytically tractable and thereby provides a transpar-
ent way of understanding the density profiles.

The paper is organized as follows. We describe the models
and definitions in Sec. II. Thereafter, in Sec. III, we present the
field theory for the hard rods gas and the hyperbolic Calogero
model in both quadratic and quartic traps. In Sec. IV we
compute the densities and extract their scaling with system
size and temperature for (i) hard rods gas in Sec. IV A and
(ii) hyperbolic Calogero model in Sec. IV B. We verify the
analytical results using MC simulations. Next, in Sec. IV C,
we study the equilibrium density profiles of the Toda model
along with its Hessian approximation in a suitable parameter
regime. We summarize the main results in Sec. V and end with
a discussion of open questions in such integrability broken
classical systems. The Appendix is organised as follows. In
Appendix A, we derive the field theory for (i) hard rods
gas and (ii) hyperbolic Calogero model in external confining
traps. In Appendix B, we compute the analytical form of
the densities for low and high values of the temperature. In
Appendix C, we derive the equilibrium density profile for the
quadratically confined nearest-neighbor harmonic chain.

II. MODELS AND DEFINITIONS

We study two short-range models given by a Hamiltonian
of the form

H ({xi, pi}) =
N∑

i=1

[
p2

i

2m
+ Uδ (xi )

]
+ 1

2

N∑
i=1

N∑
j=1
j �=i

V (xi − x j ),

(1)

where {xi, pi} are the position and momentum of the ith par-
ticle (1 � i � N ), each of mass m which we set to unity. The
second term on the right-hand side of Eq. (1) is the external
potential

Uδ (x) = xδ

δ
, (2)

which we take to be of quadratic (δ = 2) or quartic (δ = 4)
form. The third term in Eq. (1) is the interaction term, which
for hard rods (HR) of length a is

VR(r) =
{

0 for r > a,

∞ for r � a.
(3)

Note that in Eq. (3) the subscript “R” in VR(r) stands for the
hard rods gas. For the hyperbolic Calogero (HC) model each
particle is coupled to every other particles in the system with
the interaction potential

VC (r) = J

sinh2 |r| . (4)

In Eq. (4), the subscripts “C” in VC (r) stand for the hyperbolic
Calogero model and J > 0 is the strength of the repulsive
interaction.

We consider these systems to be in their respective thermal
equilibrium states described by the canonical Gibbs distribu-
tion

P({xi, pi}) = e−βH ({xi,pi})

Zβ (N )
, (5)

where β = 1/T is the inverse temperature and Zβ (N ) is the
partition function. We are interested in the spatial density
profile

ρ(x) =
N∑

i=1

〈δ(x − xi )〉β, (6)

where 〈. . .〉β denotes the average over the thermal distribution
given in Eq. (5). In particular, we will examine the dependence
of the density profile ρ(x) on system parameters, such as the
number of particles N and the temperature T . In the following
sections, we address these questions using field theory and
MC simulations.

III. FIELD THEORY FORMALISM

To obtain the thermal properties one needs to compute the
partition function Zβ (N ) which is generally a hard task in
microscopic variables. Therefore, often one resorts to field
theoretic (macroscopic) approach to compute Zβ (N ). In this
method, the partition function is written as a functional inte-
gral over density fields. This procedure has been commonly
used in several contexts such as Landau theory [36], random
matrix theory [27], general Coulomb gas [37], and long-range
interacting particles [29,38]. Despite this progress there has
been only a few rigorous comparisons between densities and
other equilibrium properties obtained from microscopic and
macroscopic (field theory) computation [29–33,39].

In this section, we describe a macroscopic procedure and
construct a field theory adapted appropriately for our models.
We start with the partition function

Zβ (N ) =
∫ ∞

−∞

N∏
i=1

d pi

∫ ∞

−∞
dxN exp(−βH ({xi, pi})), where

∫ z

w

dxN ≡
∫ z

w

dx1

∫ z

x1

dx2 . . .

∫ z

xN−1

dxN . (7)

Since the position and momentum variables are uncoupled,
the partition function reduces to

Zβ (N ) = Z (K )
β (N ) Z (C )

β (N ), (8)

where the configurational contribution to the partition func-
tion is given by

Z (C )
β (N ) =

∫ ∞

−∞
dxN×exp

(
− β

[
N∑

i=1

Uδ (xi )

+ 1

2

N∑
i=1

N∑
j=1
j �=i

V (xi − x j )

])
, (9)

and contribution due to kinetic terms is

Z (K )
β (N ) =

(
2π

β

)N/2

. (10)
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FIG. 1. A schematic representation for partitioning the system
into Nb subsystems, each of size �. Here s = 1, 2, . . . , Nb denotes
the subsystem index. Note that the particles are represented by or-
ange circles. In the sth subsystem there are ns particles. The double
arrow indicates the extent of each subsystem. While analyzing each
subsystems we take large-ns and then for the complete system we
finally take small-� limit.

Performing the multiple integrals in Eq. (9) is a hard problem.
However, for (i) short-range repulsive interactions that diverge
at vanishing separation, and (ii) slowly varying confining po-
tentials, one can approximate the full partition function as
follows. We divide the system into Nb subsystems, as shown
in Fig. 1, where each subsystem s contains a large number of
particles ns. Note that the size of each subsystem, denoted by
�, is small enough compared to the actual size of the gas and
large enough to contain many particles such that the change
in potential energy between two successive boxes is smaller
than thermal energy T , i.e., |Vext (xs+1) − Vext (xs)| < T . The
particles in each subsystem experience an effective constant
potential that depends on the location of the subsystem xs

inside the trap. The partition function Z (C )
β (N ) in Eq. (9) can

be approximated (in the thermodynamic limit) as the product
of the partition functions of these boxes,

Z (C )
β (N ) ≈ exp

(
Nb∑

s=1

log[Zβ (ns, xs,�)]

)
, (11)

where the partition function of the sth subsystem of size �,
centered around xs containing ns particles is given by

Zβ (ns, xs,�) =
∫ xs+ �

2

xs− �
2

dxns

ns∏
i=1

exp(−βUδ (xi ))

×
ns∏

i, j=1
j �=i

exp

(
− β

[
1

2
V (xi − x j )

])
. (12)

The free energy per particle in the sth box is given by

f (xs, β ) = − 1

βns
log

[
Zβ (ns, xs,�)

]
. (13)

We convert the summation in Eq. (11) over subsystem index s
to an integral over x and get (see Appendix A)

F [ρ(x), β] =
∫ ∞

−∞
dx ρ(x) f (x, β ), (14)

where ρ(x) is the density of particles at position x. The
free energy per particle f (xs, β ) defined in Eq. (13) can

be computed from the partition function of the subsystem.
As mentioned earlier, we assume that the subsystem size
� is small enough such that all the ns particles with posi-
tion xi (where i = 1, 2.., ns), experience a constant potential
Uδ (xi ) ≈ Uδ (xs). The subsystem partition function can then be
approximated as

Zβ (ns, xs,�) ≈ exp(−βnsUδ (xs))

×
[∫ xs+ �

2

xs− �
2

dxns

ns∏
i, j=1

j �=i

exp

(
− β

[
1

2
V (xi − x j )

])]
. (15)

Note that, in Eq. (15), the xi is a running integration variable
not to be confused with the position of the center of the
subsystem xs. The contribution to the free energy per particle
from the sth box is written as

f (xs, β ) = Uδ (xs) + fint (xs, β ), (16)

where

fint (xs, β ) = − 1

βns

× log

⎛
⎜⎜⎝
∫ �

0
dxns

ns∏
i, j=1

j �=i

exp

[
−β

2
V (xi − x j )

]⎞⎟⎟⎠.

(17)

From Eq. (17) one can further rewrite fint (xs, β ) ≡
fint (ρ(xs), β ). Furthermore, using Eq. (17) we can rewrite
Eq. (14) as (see Appendix A)

F [ρ, β] =
∫ ∞

−∞
dx ρ(x){Uδ (x) + fint (ρ(x), β )}. (18)

For the HR and the HC models the explicit forms of the free
energy are derived in Appendix A 1 and Appendix A 2, re-
spectively. The average thermal density can then be computed
by extremizing the free energy in Eq. (18) with the constraint
that the density is normalized∫ ∞

−∞
dx ρ(x) = N. (19)

In the next section, we compute these densities for both HR
and HC models and compare them with MC simulations.

IV. RESULTS FROM FIELD THEORY AND COMPARISON
WITH MONTE CARLO SIMULATIONS

In this section, we adapt the field theory formalism dis-
cussed in Sec. III for the case of HR and HC models to
compute the free energy. We extremize the obtained free en-
ergy along with the constraint that the density is normalized
and this yields the average density profile.

A. Hard rods model

For the HR model, the contribution due to interaction to
the free energy per particle at position x is given by (see
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Appendix A 1)

fint (ρ(x), β ) = − 1

β
log

(
1 − a ρ(x)

ρ(x)

)
+ 1

β
. (20)

Using Eq. (20) in Eq. (18) we get the free energy for the HR
model [ignoring the density independent term 1/β in Eq. (20)]

FR[ρ(x), β] =
∫ ∞

−∞
dx ρ(x)

[
Uδ (x) − 1

β
log

(
1 − a ρ(x)

ρ(x)

)]
.

(21)

The free energy in Eq. (21) is super-extensive, i.e.,
FR[ρ(x), β] ∼ O(Nδ+1), since the ground-state energy of N
hard rods in a confining potential Uδ (x) ∼ xδ scales as Nδ+1.
Therefore, the average thermal density ρ∗(x, T ) can be com-
puted via saddle point approximation [29]. This amounts to
extremizing the free energy along with the normalization con-
straint

δ

δρ(x)
FR[ρ(x), β]

∣∣∣∣∣
ρ(x)=ρ∗(x,T )

= μN (β ), (22)

where the chemical potential μN (β ) is temperature dependent
and can be extracted from normalization condition given in
Eq. (19). Using Eq. (21) in Eq. (22) we get

μN (β ) =Uδ (x)

− T

[
log

(
1 − a ρ∗(x, T )

ρ∗(x, T )

)
− 1

1 − a ρ∗(x, T )

]
.

(23)

It is interesting to note that Eq. (23) can also be obtained using
the thermodynamic Bethe ansatz (TBA) formalism [40,41]
when Uδ (x) is constant as assumed in our calculation for each
subsystem. See Appendix D for a discussion. To obtain the
system size dependence of the density profile, we define

ρN (x, T ) = 1

N
ρ∗(x, T ), (24)

such that ∫ ∞

−∞
dx ρN (x, T ) = 1. (25)

Using Eq. (24), Eq. (23) can then be expressed as

μN (β ) =Uδ (x)

− T

[
log

(
1 − a NρN (x, T )

NρN (x, T )

)
− 1

1 − a NρN (x, T )

]
.

(26)

To extract the system size (N ) and temperature (T ) depen-
dence of the density ρN (x, T ) we substitute the following
scaling form ansatz

ρN (x, T ) = N−αR ρR(y, c), μN (β ) = NλR μR(c), (27)

with the scaled variables given by

y = x

NαR
, c = T

NγR
, (28)

in Eq. (26). Here αR and γR are scaling exponents which are
determined by requiring that Eq. (26) is N independent in the
scaled variables. Doing so we get

αR = 1, γR = δ, and λR = δ. (29)

The value αR = 1 can be understood from the O(N ) extent of
the density profile at zero temperature. This leads to O(Nδ+1)
energy of the system in the ground state. For the entropy
term to contribute to the free energy one needs to scale the
temperature by Nδ implying γR = δ. Equation (26) finally
becomes

μR(c) = yδ

δ
− c

[
log

(
1 − a ρR(y, c)

ρR(y, c)

)
− 1

1 − a ρR(y, c)

]
.

(30)

It is worth noting that the thermal equilibrium properties of
hard rods in an external potential were studied in Ref. [42].
Equation (30) can be obtained from Eq. (13) of Ref. [42],
when the density is assumed to vary slowly on the rod length
scale a. Since Eq. (30) is a transcendental equation, it is diffi-
cult to obtain an exact solution. We solve Eq. (30) numerically
by fixing μR(c) such that the normalization constraint,∫ ∞

−∞
dy ρR(y, c) = 1, (31)

is satisfied. In Fig. 2 we show the comparison between the
scaled density profile [obtained by solving Eq. (30)] and data
from MC simulations (using the standard Metropolis algo-
rithm) for three rescaled temperatures c = 0.1, 1.0, 10.0 and
three system sizes N = 32, 64, 128. We find quite remarkable
scaling collapse of the MC data with system size which also
agrees with the field theory results for both the quadratic
(δ = 2) and quartic (δ = 4) traps.

Although explicit analytical solution of the saddle point
given in Eq. (30) is highly nontrivial to obtain, one can study
the behavior of the density for low c � 1 and high c � 1
analytically using asymptotic analysis (see Appendix B 1 a).
At zero temperature the hard rods have a density profile given
by

ρR(y, 0) =
{

1
a for y �

∣∣ a
2

∣∣,
0 for y >

∣∣ a
2

∣∣. (32)

The density profile at low temperatures can then be approxi-
mated as

ρR(y, c)
c�1≈ ρR(y, 0) + ρ1(y, c), (33)

where the deviation from the zero temperature density up to
first iteration (see Appendix B 1 a for more details) is given by

ρ1(y, c) ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

− 1
a

c δ(
yδ

c−yδ

) for |y| < yc − O(c),

ρ∗
R(1 − a ρ∗

R)2

×
(

1 − exp
[
− yδ

c−yδ

c δ

])
for |y − yc| < O(c),

1
e exp

(
yδ

c−yδ

c δ

)
for |y| > yc + O(c).

(34)
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(d) (e) (f)

(a) (b) (c)

FIG. 2. Comparison of scaled equilibrium density profiles ρR(y, c), obtained from Monte Carlo simulations with field theory [Eq. (30)]
denoted by “FT,” for the HR model with (a–c) quadratic trap (δ = 2) and (d–f) quartic trap (δ = 4). We show Monte Carlo data for three
values of c: c = 0.1, c = 1.0, and c = 10.0, for N = 32, 64, 128. Here the scaled variables are related to the unscaled variables as y = x/N
and c = T/N δ as given in Eq. (28).

Here yc is the position at which the term in the parenthesis
of Eq. (30) changes sign and is given by

yc = (μRδ)
1
δ . (35)

The density at y = yc is denoted by

ρ∗
R = ρR(yc, c). (36)

Note that yc given in Eq. (35) determines the three regions
(see Appendix B 1 a) (i) bulk region where |y| < yc − O(c),
(ii) edge region where |y − yc| � O(c), and (iii) tail region
where |y| > yc + O(c), which are displayed in Eq. (34). The
higher-order corrections have also been computed and are pre-
sented in Appendix B 1 a. The expression Eq. (33) is verified
with numerical solution of Eq. (30) for c = 0.01 in Fig. 3
showing the three regions. For this comparison the value of
the chemical potential μR(c) is taken from Fig. 4. Note that
in Fig. 4 the behavior of μR(c) is nonmonotonic: it increases
initially as c is increased from zero and thereafter decreases.
This nonmonotonicity can be explained by noting that at
smaller c, particles can only be added to the edges of the
system which requires more energy (owing to the confining
potential), without a large increase in entropy. Hence, μR(c)
increases initially. However, for larger c, the gas expands and
this opens up gaps, larger than the size of the rods, between
the particles in the bulk of the system. Consequently, one can
easily add an extra rod with a small energy cost and a large
entropy gain, essentially lowering the free-energy change.
Hence, μR(c) decreases with c for larger c.

In the high temperature regime (c � 1) the spread of the
gas increases which in turn dilutes the gas, i.e., ρR(y, c) � 1.
Using this low-density approximation in Eq. (30), we obtain
the approximate analytical expression of the density profile

(up to the first iteration), given by (see Appendix B 1 b)

ρR(y, c)
c�1≈ 1

e
exp

(
μR(c)

c
− yδ

cδ

)
, (37)

where the chemical potential μR(c) is obtained numerically
by solving Eq. (30) along with the normalization condition
[Eq. (31)] as shown in Fig. 4 and e = 2.71828 is the Euler’s
number. We can obtain higher-order terms of the density by
also considering subdominant corrections originating due to
the presence of interaction as shown in Appendix B 1 b. The
expression Eq. (37) and the subdominant corrections (up to
third order) are verified with the numerical solution of Eq. (30)
for both traps in Fig. 5 for c = 10.0.

B. Hyperbolic Calogero model

Unlike the HR model, for the HC model, each particle
is coupled to all the other particles. The field theoretic for-
mulation of the hyperbolic Calogero model has been studied
[26]. However, the average thermal density profiles at finite
temperatures have not been computed yet. Based on the the
approximate scheme outlined in Sec. III and the approach de-
scribed in Refs. [29,30,43], we compute the finite-temperature
density profiles for the hyperbolic Calogero model below. The
free energy in this case is given by (see Appendix A 2)

FC[ρ(x), β]

=
∫ ∞

−∞
dx ρ(x)

{
Uδ (x) + Jζ (2)ρ(x)2 + 1

β
log[ρ(x)]

}
,

(38)

where ζ (k) = ∑∞
n=1 n−k is the Riemann Zeta function. Note

that, despite the all-to-all coupling, the contribution to the free
energy per particle due to interactions gets renormalized to a
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(d)

(e) (f)

(a)

(b) (c)

FIG. 3. A comparison of the asymptotic densities up to third iteration (see Appendix B 1 a) with the densities obtained from the numerical
solution of Eq. (30), denoted by “FT,” at low temperature c = 0.01 for the HR model in (a–c) quadratic trap (δ = 2) and (d–f) quartic
trap (δ = 4). show the densities for hard rods confined to quadratic trap (δ = 2). Here (a, d) show the bulk (|y| < yc − O(c)), (b, e) edge
(|y − yc| � O(c)), and (c, f) tail (|y| > yc + O(c)) regions. The vertical dotted line represent the position y = yc given in Eq. (35) and this
determines these three regions.

local term in the density field, and is given by

fint (ρ(x), β ) = Jζ (2)ρ(x)2 + 1

β
log ρ(x). (39)

Here β−1 log ρ(x) is the contribution due to the configu-
rational entropy. To compute the average thermal density
ρ∗(x, T ), we extremize the free-energy functional given in
Eq. (38) along with the normalization condition [Eq. (19)]
which gives the chemical potential

μN (β ) = Uδ (x) + 3ζ (2)ρ∗(x, T )2 + T {1 + log[ρ∗(x, T )]}.
(40)

FIG. 4. Chemical potential, μR(c), for the HR model obtained
using Eqs. (30) and (31), plotted as a function of the rescaled temper-
ature c for quadratic trap with δ = 2 (blue dashed line) and quartic
trap with δ = 4 (red solid line). At large values of c the chemical
potential is negative and diverges.

As in the case of HR model, to obtain a scaling form for
the density profile, we use the density normalized to unity

(a)

(b)

FIG. 5. Comparison of the asymptotic densities up to third or-
der (see Appendix. B 1 b) with the numerical solution of Eq. (30),
denoted by “FT,” at high temperature c = 10.0 for the HR model
confined to (a) quadratic trap (δ = 2) and (b) quartic trap (δ = 4).
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(d) (e) (f)

(a) (b) (c)

FIG. 6. Comparison of scaled equilibrium density profiles ρC (y, c), obtained from Monte Carlo simulations with field theory [Eq. (45)],
denoted by “FT,” for the HC model with (a–c) quadratic trap (δ = 2) and (d–f) quartic trap (δ = 4). We show MC data for three values
of c: c = 0.1, c = 1.0, and c = 10.0, for N = 32, 64, 128. Here the scaled variables are related to the unscaled variables as y = x/NαC and
c = T/NγC , where αC and γC are given in Eq. (44).

ρN (x, T ) = ρ∗(x, T )/N in Eq. (40) and get

μN (β ) =Uδ (x) + 3ζ (2)N2ρN (x, T )2

+ T {1 + log[NρN (x, T )]}. (41)

We can extract the system size (N ) and temperature (T ) de-
pendence of the density ρN (x, T ) by substituting the scaling
form ansatz

ρN (x, T ) = N−αC ρC (y, c), μN (β ) = μC (c)NλC , (42)

with the scaled variables

y = x

NαC
, c = T

NγC
, (43)

in Eq. (41). Here αC and γC are scaling exponents which are
determined by requiring that Eq. (41) is N independent for
large-N and depends only on the scaling variables. Doing so,
we get

αC = 2

2 + δ
, γC = 2δ

2 + δ
, and λC = 2δ

2 + δ
. (44)

The value αC = 2/(2 + δ) can be understood from the
O(N

2
2+δ ) extent of the gas at zero temperature [29]. This leads

to O(NαCδ+1) energy of the system in the ground state. For the
entropy term to contribute to the free energy one needs to scale
the temperature by NαCδ implying γC = αCδ. Equation (41)
finally becomes

μC (c) = yδ

δ
+ 3ζ (2)ρC (y, c)2 + c log ρC (y, c). (45)

We solve Eq. (45) numerically by fixing μC (c) such that the
normalization constraint,∫ ∞

−∞
dy ρC (y, c) = 1, (46)

is satisfied. In Fig. 6, we show the comparison between the
scaled density profile obtained by solving Eq. (45) and data
from MC simulations for c = 0.1, 1.0, 10.0. We observe good
agreement albeit with some small discrepancies, the origin
of which is not understood clearly at present. The value of
the chemical potential μC (c) is obtained as a function of c
by numerically solving Eq. (45) subject to the normaliza-
tion condition Eq. (46), which is shown in Fig. 7. Unlike
the HR model, we find that μC (c) decreases monotonically
in this case. Similar to the HR case, obtaining the exact
solution of Eq. (45) is highly nontrivial for an arbitrary c.
However, we can study the average thermal density profiles
using asymptotic analysis for small c � 1 and large c � 1

FIG. 7. Chemical potential μC (c) for HC model, computed by
using Eq. (45) along with the normalization condition Eq. (46),
plotted as a function of the rescaled temperature c for quadratic trap
with δ = 2 (blue dashed line) and quartic trap with δ = 4 (red solid
line). At large values of c the chemical potential is negative and
diverges.
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(d)

(e)

(f)

(a)

(b)

(c)

FIG. 8. A comparison of the asymptotic densities up to third order (see Appendix. B 2 a) with the densities obtained from the numerical
solution of Eq. (45), denoted by “FT,” at low temperature c = 0.01 for the HC model. Here we show the densities for HC model confined to
(a–c) quadratic trap (δ = 2) and (d–f) quartic trap (δ = 4). Here (a, d) show the bulk (|y| < yc ), (b, e) edge (|y − yc| � O(c)), and (c, f) tail
(|y| > yc ) regions. The dotted vertical line represent the position y = yc which determines the three regions. In panels (c) and (f), as y = yc

falls outside of the domain of the x axis, for the sake of presentation, we do not show the dotted line.

(see Appendix B 2). At zero temperature, c = 0, the density is
exactly known and is governed by the interaction term only,
since the contribution to the free energy from the entropy is
zero. The zero temperature density is given by [29,30]

ρC (y, 0) =
{

Aδ (lδ − yδ )
1
2 for |y| < l,

0 for |y| > l,
(47)

where

Aδ = [3δζ (2)]−
1
2 (48)

and the edge of the support of the density is given by

l = (μC (0)δ)
1
δ =

(
δ

2AδB
(

1
δ
, 3

2

)
) 2

2+δ

, (49)

with

B(x, y) =
∫ 1

0
dr rx−1(1 − r)y−1, (50)

being the Beta function. μC (0) in Eq. (49) is the scaled chem-
ical potential at zero temperature, obtained by imposing the
normalization condition [Eq. (46)], and is given by

μC (0) = lδ

δ
=

(π

2

) δ
δ+2

(
δ−1/δ�

(
3
2 + 1

δ

)
�
(
1 + 1

δ

)
) 2δ

δ+2

, (51)

where

�[n] =
∫ ∞

0
dx xn−1e−x, (52)

is the Gamma function.
For c �= 0, the entropy starts contributing to the density. As

the rescaled temperature is increased from zero, i.e., c � 1,

we can obtain the approximate analytical form of the density
profile, as shown in the Appendix B 2 a, which is given by

ρC (y, c)
c�1≈ ρC (y, 0) + ρ1(y, c). (53)

Here the deviation from zero temperature density (up to first
iteration) is given by

ρ1(y, c) ≈

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ρC (y, 0)
×μC (c)−μC (0)−c log ρC (y,0)

c+6ζ (2)ρC (y,0)2 for |y| < yc − O(c),

ρ∗
C (yδ

c−yδ )
δ(c+6ζ (2)ρ∗2

C ) for |y − yc| < O(c),

exp
(

yδ
c−yδ

cδ

)
for |y| > yc + O(c),

(54)

and the higher-order corrections are provided in Ap-
pendix B 2 a. Similar to the HR model, here yc = (μC (c)δ)

1
δ

and ρ∗
C = ρC (yc, c) is the value of the density at y = yc. In

Fig. 8, we find a good agreement between the expression
Eq. (53) and the numerical solution of Eq. (45) for c = 0.01.
Note that, for this comparison the value of the chemical po-
tential μC (c) is taken from Fig. 7, where we recall that μC (c)
is obtained by solving Eq. (45) along with the normalization
condition [Eq. (46)].

As temperature increases the particles spread spatially over
a wider region. Therefore, at high temperatures, c � 1, the
gas becomes dilute, i.e., ρC (y, c) � 1. Using this low-density
approximation in Eq. (45) yields (see Appendix B 2 b)

ρC (y, c)
c�1≈ exp

(
μC (c)

c
− yδ

cδ

)
, (55)

where μC (c) is obtained numerically from Fig. 7. The form
of the density in Eq. (55) comes from the entropy which
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(a)

(b)

FIG. 9. Comparison of the asymptotic densities up to third order
(see Appendix B 2 b) with the numerical solution of Eq. (45), denoted
by “FT,” at high temperature c = 10.0 for the HC model confined to
(a) quadratic trap (δ = 2) and (b) quartic trap (δ = 4).

provides the dominant contribution to the density for c � 1.
In Fig. 9, for c = 10, we find a good agreement between the
approximate expression of the density profile given in Eq. (55)
(see Appendix B 2 b for higher correction) and the numerical
solution of Eq. (45).

C. Integrable models with particle-crossing

In the previous sections, we studied HR and HC mod-
els which have strong interparticle repulsions that prevent
their trajectories from crossing. In this section, we study two
models, namely Toda and Harmonic chains, which allow for
crossing of particle trajectories due to their weak interparti-
cle repulsion. For these models, the interactions are nearest
neighbor. The Toda model takes the form

VT (ri ) = J exp
(
− ri

d

)
, (56)

where ri = xi+1 − xi, J > 0 (we set J = 1) is the interaction
strength and d determines the length scale of the interaction.
The subscript T in Eq. (56) stands for the Toda model. For the
case of harmonic chain, the interaction takes the form

VH (ri) = k2

2
r2

i − k3ri, (57)

where k2 and k3 are the interaction strengths. The subscript
H in Eq. (57) stands for the harmonic chain. Note that in
the absence of the trap these models are integrable, similar to
HR and HC. Furthermore, note that the form of the harmonic
chain interaction in Eq. (57) is obtained by expanding the
Toda interaction given in Eq. (56) up to the quadratic order

in the nearest-neighbor separation ri, with

k2 = 1

d2
and k3 = 1

d
. (58)

This is an analytically tractable model even in the presence of
a quadratic trap given by Uδ (x) = k1xδ/δ with δ = 2. We set
k1 = 1.

In contrast to the HR (Sec. IV A) and HC (Sec. IV B)
models, we find that the field theoretic description fails to
describe the equilibrium properties of the trapped Toda and
harmonic chain models. The failure of the field theory in this
case can be ascribed to the fact that the particles stay confined
to a region of length ∼O(N0) or smaller, due to the lack of
strong repulsion in presence of external confining trap. To
understand this, we consider the behavior of the system at
zero temperature. By minimizing the energy one can find the
particle positions and it turns out that for both the models a
large number [∼O(N )] of particles are confined to a distance
of ∼O(N0) around the minimum of the external potential.
This fact can be understood as follows. Assuming there is a
length scale of order O(Nα ), i.e., the particle positions are
of order xi ∼ Nαyi, we compute the contributions from the
potential and interaction energy. The contribution from the
external potential is of order

∑N
i=1 Uδ (xi ) ∼ O(Nαδ+1). The

contribution from the interaction energy for the Toda model
scales as

∑N−1
i=1 VT (xi+1 − xi ) ∼ O[N exp(−Nα )] and for the

Harmonic chain it scales as
∑N−1

i=1 VH (xi+1 − xi ) ∼ O(N2α+1).
Comparing these energy contributions, we obtain α = 0, for
both models and for all values of δ > 0, implying a length
scale of O(N0). As a consequence the total energy is of O(N ).

As the temperature T is increased, maintaining T ∼ O(1),
the particles still stay extended over a region ∼O(N0). This
is because the contribution to the free energy due to entropy
is O(N ) which is of the same order as the energy contribu-
tion. This is in sharp contrast to the HR (Sec. IV A) and HC
(Sec. IV B) models as discussed in the previous sections where
the length scale increases with N . Hence, a field theory con-
struction does not make sense for both the Toda model and the
Harmonic chain due to the lack of a macroscopic length scale.

Therefore, to understand the equilibrium properties of
such models, we have performed detailed MC simulations
of the Toda model with quadratic and quartic traps. In
Fig. 10 we plot the density profile for the Toda model at
T = 1 for d = 0.01, 1.0, 10.0 with N = 32, 64, 128. For d =
0.01, 1.0, 10.0, we find that the density profiles converge with
increasing system size and have O(N0) spread as expected.
However, for d = 0.1 we do not observe the convergence for
the system sizes studied.

It is interesting to consider two special limits in the inter-
action length scale (d ) in the Toda model. For small d � 1,
the Toda interactions become similar to hard point gas, and
for large d � 1 it can be approximated by nearest-neighbor
weakly interacting harmonic chain. In these two limits, the
density profile has the form ∼e−βUδ (x). More precisely, in our
case we get

ρT (x, β ) ≈ β
1
δ

δ
1
δ �[1 + 1/δ]

exp

(
−β

xδ

δ

)
, (59)
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(d)

(e) (f) (g) (h)

(a) (b) (c)

FIG. 10. Equilibrium density profiles obtained from MC simulations of the Toda model when confined to the (a–d) quadratic trap (δ = 2)
and (e–h) quartic trap (δ = 4), for different values of the interaction length scale, d = 0.01, 0.1, 1.0 and 10.0. Except for d = 0.1 (b, f), density
collapse for different system sizes N = 32, 64, 128 is observed for all the other values of d .

for both quadratic (δ = 2) and quartic trap (δ = 4) as verified
in Fig. 11. Furthermore, note that the free energy of the Toda
model FT (β, d, J ) at temperature 1/β can be related to the
free energy of a Toda model at β = 1 as

FT (β, d, J ) = FT (1, dβ
1
δ , βJ ) + N

βδ
ln β. (60)

Interestingly, Eq. (60) implies that the Toda model at any
temperature can be mapped to Toda model at temperature
1/β = 1 with rescaled interaction strength J → βJ and in-
teraction length scale d → dβ

1
δ . Therefore, studying density

profiles for various values of d is equivalent to studying the
density profiles for different values of temperatures. Note

(d)

(a) (b)

(c)

FIG. 11. Equilibrium density profiles obtain from MC simulations for the Toda model confined to (a, b) quadratic trap (δ = 2) and (c, d)
quartic trap (δ = 4), for (a, c) small d = 0.01 and (b, d) large d = 10.0. In both these limits of d , the density profile fits well with the form
ρN (x) ∼ exp[−β xδ

δ
] given in Eq. (59) which is denoted by “Theory.” Here β = 1 and N = 32, 64, 128.
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(b)

(a)

FIG. 12. Comparison of equilibrium density profiles, obtained
using MC simulations, with theory Eq. (C30) for the nearest-
neighbor harmonic chain confined to quadratic trap, with the
parameters k1 = 1.0, k2 = 1/d2, and k3 = 1/d with different values
of (a) d = 1.0 and (b) d = 10.0.

that, the Toda model at high temperatures (β � 1) can be
approximated as a hard point gas (d � 1) and for low tem-
peratures (β � 1) it can be approximated as a harmonic chain
with nearest-neighbor interactions (d � 1) under an external
pressure.

To better understand the features of the density profiles
of the Toda model we study its harmonic limit [Eq. (57)
with k2 = 1/d2 and k3 = 1/d], which is analytically tractable
for the quadratic trap. We obtain the exact expression (see
Appendix C) for the density profile of the harmonic chain in a
quadratic trap which is given by (see Appendix C)

ρH (x, β ) = 1

N

N∑
l=1

1√
2πVar(xl )

exp

(
− (x − 〈xl〉β )2

2 Var(xl )

)
, (61)

where the mean position of the lth particle 〈xl〉β and its
variance Var(xl ) are given in Eq. (C28) and Eq. (C29) of
Appendix C, respectively. This is plotted in Fig. 12 and com-
pared with the corresponding MC simulation of the Toda
model for d = 1.0 and 10.0. We find good agreements both
for d = 1.0, 10.0. Note that already for N = 32, 64, 128 the
density profiles have converged to an N-independent form.
As mentioned earlier for the Toda model at d = 0.1, a slower
convergence with N was observed for the density profile [see
Figs. 10(b) and 10(f)]. Interestingly, a similar slow conver-
gence can be analytically demonstrated (see Appendix C) for a
stiff (large k2) harmonic chain. In Fig. 13, the density profiles
for the harmonic chain with T = 1, k1 = 1, k2 = 100, and
k3 = 10 for N = 32, 64, 128, 256, and N → ∞ are shown.

FIG. 13. Analytically computed density profiles [Eq. (61)] of the
harmonic chain in quadratic trap for d = 0.1, k1 = 1.0, k2 = 1/d2

and k3 = 1/d . For N = 32, 64, 128, 256 density profile converges
very slowly to Eq. (C38) of the Appendix C.

It can be seen that for increasing N the density profiles con-
verges slowly to the N → ∞ curve.

V. CONCLUSION

To summarize, we have presented the equilibrium density
profiles at finite temperatures of two integrable models, the
hard rods and the hyperbolic Calogero model, in quadratic
and quartic traps. For these models interparticle repulsion is
strong enough to avoid particle trajectories from crossing. The
trap confines these systems spatially and breaks integrability.
For these two models, we studied equilibrium density profiles
using a field theory approach and MC simulations.

We developed appropriate field theory for these two models
by extending the approaches used in Ref. [29]. From the
field theory we computed the equilibrium density profiles,
and their dependence on system size N and temperature T .
The field theory calculations predict precise scaling forms
for the equilibrium density profiles with respect to N and T .
A summary of the scaling forms are given in Table I. We
find that the predictions from field theory for hard rods agree
remarkably well with MC simulations (Fig. 2). For the hyper-
bolic Calogero model the agreement is also reasonably good
(Fig. 6). However, for integrable models that allow crossing of
particle trajectories, such as the Toda model in quadratic and

TABLE I. A summary of the scaling behavior of the densities
for the hard rods (HR) and the hyperbolic Calogero (HC) models in
quadratic and quartic traps.

Model/Trap Quadratic (δ = 2) Quartic (δ = 4)

Hard rods Eq. (27), Eq. (27),
αR = 1, γR = 2, αR = 1, γR = 4,

λR = 2 λR = 4
Figs. 2(a)–2(c) Figs. 2(d)–2(f)

Hyperbolic Calogero Eq. (42), Eq. (42),
αC = 1

2 , γC = 1, αC = 1
3 , γC = 4

3 ,
λC = 1 λC = 4

3
Figs. 6(a)–6(c) Figs. 6(d)–6(f)
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quartic trap, a field theoretic description is ill-suited due to
the lack of a macroscopic length scale. For this case, we have
presented microscopic analytical calculations, by employing
Hessian approximation, and results from MC simulations.

Our work provides a framework for investigating the
nonequilibrium dynamics, thermalization and transport in
integrable models confined in external potentials. More pre-
cisely, one can ask whether these systems under Hamiltonian
dynamics are ergodic, chaotic, and whether or not they
equilibrate/thermalize, when placed in different confining
traps. This is an area of active current research both theoreti-
cally [15] and experimentally [5].
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APPENDIX A: DERIVATION OF THE FREE ENERGY

To obtain the free energy F [ρ, β] in Eq. (18), one first
needs to compute fint (ρ(x), β ) defined in Eq. (17), where we
recall that fint (ρ(x), β ) is the contribution to the free energy
of the subsystem (recall Fig. 1) due to interactions (i.e., ex-
cluding the external confining potential). In the following, we
present the calculation of fint (ρ(x), β ) for the hard rods (HR)
model in Appendix A 1 and the hyperbolic Calogero (HC)
model in Appendix A 2 separately.

1. Free energy for hard rods

The free energy per particle for hard rods of length a,
fint (ρ(x), β ), can be calculated using the partition function
[term in the parenthesis (square bracket) of Eq. (15)]

Zint (ns, xs,�, β ) =
∫ xs+�/2−(ns− 1

2 )a

xs−�/2+ a
2

dy1...

∫ xs+�/2−(ns−i+ 1
2 )a

yi−1+a
dyi...

∫ xs+�/2− a
2

yns−1+a
dyns

=
∫ �−(ns− 1

2 )a

a
2

dy1...

∫ �−(ns−i+ 1
2 )a

yi−1+a
dyi...

∫ �− a
2

yns−1+a
dyns , (A1)

where yi is the position of the ith rod of the subsystem which
is centered at xs and has a size �. In each subsystem there are
ns hard rods. Note that, since the integrand in the second line
of Eq. (A1) is constant and translationally invariant, we have
shifted the limits of the integrals from yi → yi − (xs − �/2).
This shift results in the integrals given in the third line of
Eq. (A1). These integrals can be computed using the variable
transformation zi = yi − (i − 1

2 )a, which gives

Zint (ns, xs,�, β ) = exp

[
ns log

(
1 − ρ(xs)a

ρ(xs)

)
− ns

]
, (A2)

where we introduce the density in the given subsystem

ρ(xs) = ns

�
. (A3)

The free energy per particle in a given subsystem in the large
ns limit is given by [19]

fint (xs, β ) = − 1

nsβ
log

[
Zint (ns, xs,�, β )

]

= − 1

β
log

[
1 − aρ(xs)

ρ(xs)

]
+ 1

β
. (A4)

One can see that, from the partition function in Eq. (A1), the
logarithmic term in Eq. (A4) is the configurational entropy
which includes the effect of hard rod exclusion. Note that the
free energy due to interaction is a function of the density field

and we rewrite the arguments of

fint (xs, β ) ≡ fint (ρ(xs), β ). (A5)

The total (i.e., including the contribution due to the external
potential) free energy of the entire system FR[ρ(xs), β] is
obtained by summing over the total free energy,

ns f (xs, β ) = ns fint (ρ(xs), β ) + nsUδ (xs), (A6)

associated with each subsystem. We therefore get

FR[ρ(xs), β] =
Nb∑

s=1

ns f (xs, β ),

=
Nb∑

s=1

ρ(xs) �[ fint (ρ(xs), β ) + Uδ (xs)]. (A7)

Converting the summation to integration, i.e.,
∑Nb

s=1 � →∫ ∞
−∞ dx we obtain

FR[ρ(x), β] =
∫ ∞

−∞
dx ρ(x)[ fint (ρ(x), β ) + Uδ (x)]. (A8)

Using Eq. (A4) in Eq. (A8), we obtain

FR[ρ(x), β] =
∫ ∞

−∞
dx ρ(x)

[
Uδ (x) − 1

β
log

(
1 − aρ(x)

ρ(x)

)]
,

(A9)
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which is the free energy of the hard rods in an external trap
Uδ (x) given in Eq. (21) of the main text. In Eq. (A9) we have
ignored the density independent term from Eq. (A4).

2. Free energy for hyperbolic Calogero model

The field theoretic description of the hyperbolic Calogero
model in external traps is well understood [26]. In this sec-
tion we present an alternative derivation of the total free
energy FC[ρ(x), β] of the system. Using the approximate
scheme described in Refs. [29,43] we compute the free energy
per particle fint (ρ(x), β ) of the subsystem due to the interac-
tion which is described below.

The free energy per particle for the HC model,
fint (ρ(x), β ), can be calculated using the partition function
which we recall to be

Zβ (ns, xs,�) ≈ exp
( − βnsUδ (xs)

)
×
[∫ xs+ �

2

xs− �
2

dxns

ns∏
i, j=1

j �=i

exp

(
−β

2
[V (xi − x j )]

)]
.

(A10)

For the HC model Eq. (A10) becomes

Zβ (ns, xs,�) ≈ exp(−βnsUδ (xs))Zint (ns, xs,�, β ),

where

Zint (ns, xs,�, β ) =
∫ �

0
dxns

× exp

⎡
⎢⎢⎣−βJ

2

ns∑
i=1

ns∑
j=1
j �=i

1

sinh2(|xi − x j |)

⎤
⎥⎥⎦,

(A11)

where xi is the position of the ith particle and J is the interac-
tion strength. As mentioned in the main text (Sec. III), the xi is
a running integration variable not to be confused with the po-
sition of the center of the subsystem xs. One can approximate
the exponential term in the integrand of Eq. (A11) as

exp

⎛
⎜⎜⎝−βJ

2

ns∑
i=1

ns∑
j=1
j �=i

1

sinh2(|xi − x j |)

⎞
⎟⎟⎠

≈ exp

⎛
⎜⎜⎝−βJ

2

n2
s

�2

ns∑
i=1

ns∑
j=1
j �=i

1

(|i − j|)2

⎞
⎟⎟⎠,

≈ exp

(
−βJ

n3
s

�3
ζ (2)�

)
, (A12)

where in the second line of Eq. (A12) we approximated
xi ≈ i�/ns for all i since � is assumed to be small enough
to ensure uniform density over the subsystem. We have also
used ζ (2) = ∑∞

i=1 1/i2, where ζ (k) = ∑∞
i=1 1/ik represents

the Riemann Zeta function. Using Eq. (A12) the partition

function in Eq. (A11) takes the form

Zint (ns, xs,�, β ) ≈ exp

(
−βJ

n3
s

�3
ζ (2)�

)∫ �

0
dxns ,

= exp

(
−βJ

n3
s

�3
ζ (2)�

)
�ns

ns!
, (A13)

which can be rewritten using Stirling’s approximation
log[n!] ≈ n log[n] − n as

Zint (ns, xs,�, β )

� exp(−ns[log[ρ(xs)] + ζ (2)βJρ(xs)2]), (A14)

where we recall that ρ(xs) = ns/�. Hence, using the first line
in Eq. (A4), the free energy per particle of the subsystem
becomes

fint (ρ(xs), β ) = Jζ (2)ρ(xs)2 + 1

β
log [ρ(xs)]. (A15)

Similar to procedure detailed in Appendix A 1, using the
above expression Eq. (A15) we can compute the total free
energy of the system as

FC[ρ(x), β]

=
∫ ∞

−∞
dx ρ(x)

[
Uδ (x) + Jζ (2)ρ(x)2 + 1

β
log ρ(x)

]
,

(A16)

which is the expression for the free energy [see Eq. (38) of the
main text] of the HC model in an external trap Uδ (x).

APPENDIX B: ANALYTICAL FORMS OF DENSITY
PROFILES FOR HARD RODS AND HYPERBOLIC

CALOGERO MODEL AT LOW AND HIGH
RESCALED TEMPERATURES c

To obtain the exact analytical expression for the equilib-
rium density profiles by solving the transcendental equations,
Eq. (30) for HR model and Eq. (45) for HC model, is highly
nontrivial. However, we can obtain approximate expressions
for the densities at low (c � 1) and high (c � 1) rescaled
temperatures c. For c � 1, this is done by approximating the
equilibrium density profile to be a small deviation around
the zero temperature density profile. However, for c � 1, the
particles expected to spread far apart, thereby diluting the
gas. Thus, in this regime (c � 1) it is reasonable to assume
the density to be very small. In this section, using the above
mentioned assumptions for the saddle point equations, i.e.,
Eq. (30) for HR model and Eq. (45) for HC model, we discuss
the analytical forms of the density profiles.

1. Analytical forms of the density profiles for hard rods

In this subsection, we discuss the case of hard rods, recall-
ing that the saddle point equation for the hard rods is

μR(c) = yδ

δ
− c

[
log

(
1 − a ρR(y, c)

ρR(y, c)

)
− 1

1 − a ρR(y, c)

]
.

(B1)
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We now analyze Eq. (B1) for both small and large rescaled
temperatures c. In the following, we use the value of chem-
ical potential μR(c) which is obtained by numerical solving
Eq. (B1) with the constraint that the density is normalized to
unity.

a. Small rescaled temperature c � 1

At zero temperature, i.e., c = 0, all the hard rods arrange
themselves leaving no gaps. In other words the center to center
distance between the rods is a, thereby making the density
ρN (x, 0) = N/a where we recall that N is number of hard
rods. In the rescaled density variables this corresponds to a
scaled density profile

ρR(y, 0) =
{

1
a for y �

∣∣ a
2

∣∣,
0 for y >

∣∣ a
2

∣∣. (B2)

We now study the effects of turning on a small temperature.
More precisely we address how the zero temperature profile
given in Eq. (B2) gets smeared. Note that at

y = yc = (μcδ)
1
δ , (B3)

the square bracket in Eq. (B1) changes sign. This in turn
determines the following three distinct regions

(i) Bulk region (|y| < yc): The density profile deviates
from the value 1/a.

(ii) Edge region [a zone where |y − yc| � O(c)]: The den-
sity profile deviates from a value ρR(yc, c) = ρ∗

R which is the
density at y = yc. At this value of ρ∗

R the square bracket in
Eq. (B1) becomes zero.

(iii) Tail region (|y| > yc): The density profile for finite
temperature in this region deviates from its zero temperature
value ρR(y, 0) = 0.
We now compute the density profile at low temperatures of
these three regions separately.

(i) Bulk region |y| < yc : In this region, we assume that the
density takes the form

ρR(y, c) = 1

a
+ ρ1(y, c), (B4)

where ρ1(y, c) denotes the deviation about the zero temper-
ature density. For sake of brevity, we henceforth omit the
arguments of ρ1(y, c). Using Eq. (B4) in Eq. (B1) we get

μc − yδ

δ
= −c

[
log

( −a2ρ1

1 + a ρ1

)
+ 1

a ρ1

]
. (B5)

It turns out that a convenient perturbation parameter is the
following:

ν(y) = cδ(
yδ

c − yδ
) , (B6)

where we have used Eq. (B3). Using Eq. (B6) in Eq. (B5) we
obtain

− 1

ν(y)
= log

( −a2ρ1

1 + a ρ1

)
+ 1

a ρ1
. (B7)

To solve Eq. (B7) we first perform a Taylor expansion

− 1

ν(y)
= log (−a2ρ1) − a ρ1 − a2

2
ρ2

1 + 1

a ρ1
, (B8)

which can be again rearranged to give

a ρ1 = −ν(y)
1

1 + ν(y)
(
log [−a2ρ1] − a ρ1 − a2

2 ρ2
1

) . (B9)

We perform a Taylor series expansion [up to second order in
ν(y)] of the fraction on the right-hand side of Eq. (B9), since
ν(y) � 1. This gives

ρ1 ≈ − ν(y)

a

[
1 − ν(y)

(
log [−a2ρ1] − a ρ1 − a2

2
ρ2

1

)

+ ν(y)2

(
log [−a2ρ1] − a ρ1 − a2

2
ρ2

1

)2
]
. (B10)

Since the correction to the zero temperature density ρ1 � 1
and ν(y) � 1, we can invert Eq. (B10) to express ρ1 as a
function of ν(y) order by order. This gives

ρ
(0)
1 = −ν(y)

a
, (B11)

ρ
(1)
1 = −ν(y)

a
+ ν(y)2

a
log[aν(y)], (B12)

ρ
(2)
1 = −ν(y)

a
+ ν(y)2

a
log[aν(y)] − ν(y)3

a
log[aν(y)]2,

(B13)

where recall that ν(y) is defined in Eq. (B6). The super-
script associated with ρ1 in Eqs. (B11)–(B13) represents their
respective orders. In Figs. 3(a) and 3(d), using Eqs. (B11)–
(B13), we find a good agreement between the analytically
obtained series solutions and the numerical solution of
Eq. (B1).

(ii) Edge region |y − yc| � O(c): Recall that this region
is a zone defined by |y − yc| � O(c). Here ν(y) � O(1),
and therefore, the above expressions Eqs. (B11)–(B13) fail.
Hence, in this zone [|yc − y| � O(c)], we assume that the
density takes the form

ρR(y, c) = ρ∗
R + φ(y), (B14)

where ρ∗
R is the value of the density at y = yc and the

correction φ(y) � 1. The value of ρ∗
R can be obtained by

numerically solving Eq. (B1) at y = yc which gives

log

(
1 − aρ∗

R

ρ∗
R

)
− 1

1 − aρ∗
R

= 0. (B15)

In this region, we define the perturbation parameter

b(y) = 1 − exp

[
−yδ

c − yδ

cδ

]
� 1. (B16)

Using Eq. (B16) in Eq. (B1) we get

log [1− b(y)] = log

[
1− aρ∗

R − aφ(y)

ρ∗
R + φ(y)

]
− 1

1− aρ∗
R − aφ(y)

,

(B17)
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which upon Taylor series expansion, up to third order in φ(y),
yields

b(y) ≈ φ(y)

(
1

ρ∗
R(1 − aρ∗

R)2

)
− φ(y)2

( −1 + 3aρ∗
R

2ρ∗2
R (1 − aρ∗

R)3

)

− φ(y)3

(−1 + 4aρ∗
R − 6(aρ∗

R)2

3ρ∗3
R (1 − aρ∗

R)4

)
. (B18)

We can represent the correction to density φ(y) as a function
of b(y) by inverting Eq. (B18) order by order which gives

φ(0)(y) = b(y)ρ∗
R(1 − aρ∗

R)2, (B19)

φ(1)(y) = b(y)ρ∗
R(1 − aρ∗

R)2

+ b(y)2

2
ρ∗

R(1 − aρ∗
R)3

( − 1 + 3aρ∗
R

)
, (B20)

φ(2)(y) = b(y)ρ∗
R(1 − aρ∗

R)2

+ b(y)2

2
ρ∗

R(1 − aρ∗
R)3(−1 + 3aρ∗

R)

+ b(y)3

6
ρ∗

R(1 − aρ∗
R)4[1 − 10aρ∗

R + 15(aρ∗
R)2].

(B21)

In Figs. 3(b) and 3(e), using Eqs. (B19)–(B21), we compare
the analytically obtained series solutions with the numerical
solution of Eq. (B1) and see reasonable agreement.

(iii) Tail region |y| > yc: In this region we assume that the
density is very small and takes the form ρR(y, c) = ρ1 with
ρ1 � 1. Using this assumption in Eq. (B1) we get

μc = yδ

δ
− c

[
log

(
1 − a ρ1

ρ1

)
− 1

1 − a ρ1

]
. (B22)

We introduce the perturbation parameter

ε(y) = exp

(
yδ

c − yδ

cδ

)
. (B23)

Since in this region |y| > yc and c � 1, it implies ε(y) � 1.
Using Eq. (B23) in Eq. (B1) we get

log
[
ε(y)

] = − log

(
1 − a ρ1

ρ1

)
+ 1

1 − a ρ1
. (B24)

After some algebra and assuming ρ1 � 1 in Eq. (B24), we
obtain the transcendental equation

ρ1 ≈ ε(y)

e
exp

(
− 2aρ1 − (aρ1)2

2

)
, (B25)

where e ≈ 2.71828 is the Euler’s number. We can now repre-
sent the density in terms of ε(y)/e as a series given by

ρ
(0)
1 = ε(y)

e
, (B26)

ρ
(1)
1 = ε(y)

e
− 2a

(
ε(y)

e

)2

, (B27)

ρ
(2)
1 = ε(y)

e
− 2a

(
ε(y)

e

)2

+ 11

2
a2

(
ε(y)

e

)3

. (B28)

In Figs. 3(c) and 3(f), using Eqs. (B26)–(B28), we show a
good agreement between the analytically obtained series solu-
tions with the numerical solution of Eq. (B1). Recall that the
chemical potential μR(c) in the perturbation parameter ε(y)
given in Eq. (B23) is obtained from the numerical solution of
Eq. (B1) along with the constraint of unit normalized density.

b. Large rescaled temperatures: c � 1

When the temperature is high the particles explore a larger
region in space thereby diluting the system as a consequence
of which we get ρR(y, c) � 1. We introduce a convenient
perturbation parameter

η(y) = exp

(
μcδ − yδ

cδ

)
, (B29)

where η(y) � 1, since the chemical potential (see Fig. 4 in
the main text), obtained by numerically solving Eq. (B1), is
negative and diverges for c � 1.

We use the approximation ρR(y, c) � 1 in Eq. (B1), and
use a procedure mathematically similar to the low temperature
tail region (Appendix. B 1 a), to obtain the expressions

ρ
(0)
R (y, c) = η(y)

e
, (B30)

ρ
(1)
R (y, c) = η(y)

e
− 2a

(
η(y)

e

)2

, (B31)

ρ
(2)
R (y, c) = η(y)

e
− 2a

(
η(y)

e

)2

+ 11

2
a2

(
η(y)

e

)3

. (B32)

Note that the superscript in Eqs. (B30)–(B32) represents the
order in η(y). In Fig. 5, we see a decent agreement of the ana-
lytically obtained series solutions with the numerical solution
of Eq. (B1).

2. Asymptotic densities for hyperbolic Calogero model

In the following subsections, we compute the asymptotic
densities for the hyperbolic Calogero model at low and high
rescaled temperature c using a similar approach as described
above for the HR model in Appendix B 1. Here we recall that
the saddle point equation for the HC model is

μC (c) = yδ

δ
+ 3ζ (2)ρC (y, c)2 + c log ρC (y, c). (B33)

As before we analyze Eq. (B33) for small and large c. In
the following, we use the value of chemical potential μC (c)
which is obtained by numerically solving Eq. (B33) with the
constraint that the density is normalized to unity.

a. Small rescaled temperatures c � 1

For c � 1 the densities ρC (y, c) are assumed to be a
small deviation from the zero temperature which is obtained
by solving Eq. (B33) for c = 0. The density profile is then
given by

ρC (y, 0) =
{

Aδ (lδ − yδ )
1
2 for |y| < l,

0 for |y| > l,
(B34)

where

Aδ = [3δζ (2)]−
1
2 (B35)
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and the edge of the support of the density is given by

l =
[

δ

2AδBeta
(

1
δ
, 3

2

)
] 2

2+δ

. (B36)

Here

Beta(x, y) =
∫ 1

0
dr rx−1(1 − r)y−1, (B37)

is the Beta function. The zero temperature chemical potential
is given by [Eq. (51) of main text]

μC (0) =
(π

2

) δ
δ+2

[
δ−1/δ�

(
3
2 + 1

δ

)
�
(
1 + 1

δ

)
] 2δ

δ+2

. (B38)

Similar to the HR model [Appendix B 1 a], at low tempera-
tures the value of chemical potential μC (c) [in Eq. (B33)],
determines the (i) bulk |y| < yc, (ii) edge |y − yc| � O(c), and
the (iii) tail regions |y| > yc, where

yc = [μC (c)δ]
1
δ . (B39)

We compute the density profile at low temperatures separately
for the three regions.

(i) Bulk region |y| < yc: In this region we assume that the
density takes the form

ρC (y, c) = ρC (y, 0) + ρ1(y, c), (B40)

where ρ1(y, c) is the correction to the zero temperature
density. We use the following notations in the rest of the
calculations

ρ1(y, c) ≡ ρ1, ρC (y, 0) ≡ ρ0,

μC (c) ≡ μc, μC (0) ≡ μ0. (B41)

Using Eq. (B41) in Eq. (B33) gives

μc = yδ

δ
+ c log ρ0 + c log

[
1 + ρ1

ρ0

]

+ 3ζ (2)(ρ0 + ρ1)2. (B42)

Since the temperature is low (c � 1), the correction to the
zero temperature density ρ1 � ρ0. Furthermore, we introduce
the perturbation parameter in the bulk region

ν(y) = μ0 + c log ρ0 − μc

c + 6ζ (2)ρ2
0

� 1. (B43)

For c � 1, it turns out that μc and μ0 are very close, which
implies ν(y) � 1 and therefore a suitable perturbative param-
eter. Using Eq. (B43) in Eq. (B42) and expanding Logarithmic
term up to (ρ1/ρ0)3 gives

ρ1

ρ0
≈ −ν(y) − 1

2

(
ρ1

ρ0

)2

− 1

3

(
ρ1

ρ0

)3 c

c + 6ζ (2)ρ2
0

. (B44)

We can solve Eq. (B44) iteratively which gives

ρ
(0)
1

ρ0
= −ν(y), (B45)

ρ
(1)
1

ρ0
= −ν(y) − ν(y)2

2
, (B46)

ρ
(2)
1

ρ0
= −ν(y) − ν(y)2

2
− ν(y)3

[
1

2
− 1

3

c

c + 6ζ (2)ρ2
0

]
,

(B47)

where the superscript represents their respective orders. In
Figs. 8(a) and 8(d), using Eqs. (B45)–(B47) we find a good
agreement between the analytically obtained series solution
and the numerical solution of Eq. (B33).

(ii) Edge region |y − yc| � O(c): Recall that this region
is a zone defined by |y − yc| � O(c). Here ν(y) defined in
Eq. (B43) is no longer a small parameter and therefore ill-
suited to be a perturbation parameter. Hence, as in the case of
HR model we assume the density to takes the form

ρC (y, c) = ρ∗
C + φ(y), (B48)

where ρ∗
C is the value of the density at y = yc and the deviation

φ(y) � ρ∗
C . The value of ρ∗

C can be obtained by numerically
solving Eq. (B33) at y = yc where yc is given in Eq. (B39).
This gives

3ζ (2)ρ∗2
C + c log ρ∗

C = 0. (B49)

We now introduce a perturbative parameter

b(y) = yδ
c − yδ

δ
(
c + 6ζ (2)ρ∗2

C

) � 1, (B50)

since in this region |y − yc| � O(c) and c � 1. Substituting
Eq. (B48) and using Eq. (B50) in Eq. (B33) and expanding,
we get

φ(y)

ρ∗
C

= b(y) − 1

2

(
φ(y)

ρ∗
C

)2

− 1

3

(
φ(y)

ρ∗
C

)3 c

c + 6ζ (2)ρ∗2
.

(B51)

Using a similar iterative approach as before we can represent
the correction to the zero temperature density φ(y) as

φ(0)(y)

ρ∗
C

= b(y), (B52)

φ(1)(y)

ρ∗
C

= b(y) − b(y)2

2
, (B53)

φ(2)(y)

ρ∗
C

= b(y) − b(y)2

2
+ b(y)3

(
1

2
− 1

3

c

c + 6ζ (2)ρ2
0

)
.

(B54)

In Figs. 8(b) and 8(e), using Eqs. (B52)–(B54), we find a good
agreement between the analytically obtained series solution
and the numerical solution of Eq. (B33).

(iii) Tail region |y| > yc: Unlike the bulk and the edge
regions, in the tail region we assume that the density is small
and takes the form ρC (y, c) = ρ1 where ρ1 � 1. Using this
assumption in Eq. (B33) we obtain

μc = yδ

δ
+ c log ρ1 + 3ζ (2)ρ2

1 . (B55)

We now introduce a suitable perturbation parameter

ε(y) = exp

(
yδ

c − yδ

cδ

)
. (B56)

044101-16



FINITE-TEMPERATURE EQUILIBRIUM DENSITY … PHYSICAL REVIEW E 107, 044101 (2023)

In the tail region, since |y| > yc and c � 1, the perturbation
parameter ε(y) � 1. Using Eq. (B56) in Eq. (B55) and rear-
ranging the terms gives

ρ1 = ε(y) exp

(
− 3ζ (2)ρ2

1

c

)
. (B57)

We can now represent the density in terms of ε(y) by using
the iterative scheme, similar to bulk and edge regions, on
Eq. (B57). This then gives

ρ
(0)
1 = ε(y), (B58)

ρ
(1)
1 = ε(y)

[
1 − 3ζ (2)

c
ε(y)2

]
, (B59)

ρ
(2)
1 = ε(y)

[
1 − 3ζ (2)

c
ε(y)2 + 5

2

(
3ζ (2)

c

)2

ε(y)4

]
. (B60)

In Fig. 8(c) and 8(f), using Eqs. (B58)–(B60), we show the
analytically obtained asymptotic densities of the matches well
with the numerical solution of Eq. (B33).

b. Large rescaled temperature: c � 1

Similar to the HR model (Appendix B 1 b), when the tem-
perature is high the particles are spread out over a larger
region of space hence diluting the system as a consequence of
which we get ρC (y, c) � 1. We again introduce a convenient
perturbation parameter,

η(y) = exp

(
μcδ − yδ

δc

)
. (B61)

Since the chemical potential (see Fig. 7 in the main text),
obtained by numerically solving Eq. (B33), is negative and
diverges for c � 1, the perturbation parameter becomes
small, i.e., η(y) � 1. Using Eq. (B61) along with the low-
density approximation in Eq. (B33) and following a procedure
mathematically similar to low temperature tail region (Ap-
pendix B 2 a) we obtain the expressions

ρ
(0)
C (y, c) = η(y), (B62)

ρ
(1)
C (y, c) = η(y)

[
1 − 3ζ (2)

c
η(y)2

]
, (B63)

ρ
(2)
C (y, c) = η(y)

[
1 − 3ζ (2)

c
η(y)2 + 5

2

(
3ζ (2)

c

)2

η(y)4

]
.

(B64)

In Fig. 9, using Eqs. (B62)–(B64), we see a good agreement
of the analytically obtained series solutions with the numerical
solution of Eq. (B33).

APPENDIX C: NEAREST-NEIGHBOR HARMONIC CHAIN

In this Appendix, we derive the analytical results of the
density profiles for the nearest-neighbor harmonic chain in a
quadratic trap. Recall that, the equilibrium density in the Toda
model shows a distinctly different behavior when compared
with the HR and HC models as shown in Fig. 10 of the main
text. We find that, unlike HR and HC models, the spatial

spread of the equilibrium density profile is N independent.
We suspect that this peculiarity is rooted in the fact that the
interparticle repulsion is weak in the Toda model, thereby
allowing the particle trajectories to cross. To elucidate the
effects of weak interparticle repulsion in the Toda model,
we study the harmonic (Hessian) approximation of the Toda
interaction VT (ri) [Eq. (56) of the main text], given by

VH (ri ) = k2

2
r2

i − k3ri, (C1)

where ri = xi+1 − xi, J > 0 (we set J = 1), k2 = 1/d2, and
k3 = 1/d are the interaction strengths and d determines the
length scale of the interaction of the Toda model [Eq. (56)
of the main text]. The subscript H in Eq. (C1) stands for
the harmonic chain. Since the harmonic chain in quadratic
trap is analytically tractable, it provides a transparent way for
understanding the behavior of the Toda model in a suitable
parameter regime.

In the following section, we find the equilibrium density
profile of the harmonic oscillator in the quadratic trap which
has the Hamiltonian

H = k1

2

N∑
i=1

x2
i + k2

2

N−1∑
i=1

(xi+1 − xi )
2 + k3(x1 − xN ). (C2)

Here k1 is the strength of the quadratic trap, k2 is the spring
constant and k3 is the magnitude of the effective external
force. The average thermal density is given by

ρH (x, β ) = 1

N

N∑
l=1

〈δ(x − xl )〉β = 1

N

N∑
l=1

P(xl ), (C3)

where the 〈.〉β is the thermal average in the canonical ensem-
ble and P(xl ) is the marginal distribution of the position of the
lth particle. The task then is to find the marginal distribution,
which is

P(xl = x) = 1

ZH

∫ ∞

−∞
dx1..dxl ..dxNδ(xl − x)

× exp(−βH ({xi})), (C4)

where the partition function is given by

ZH =
∫ ∞

−∞
dx1..dxl ..dxN exp(−βH ({xi})). (C5)

Using the variable transformation yl = √
βk2 xl , Eq. (C4)

becomes

P

(
xl = y√

βk2

)
= (βk2)

1−N
2

ZH

∫ ∞

−∞
dy1..dyl ..dyNδ(yl − y)

× exp

[
−βH

({
yi√
βk2

})]
, (C6)

We note that the δ function in Eq. (C6) has the following
Fourier representation:

δ(yl − y) =
∫ ∞

−∞
dq exp[−iq(yl − y)]. (C7)
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Also note that the Hamiltonian in Eq. (C2) can be recast in the
rescaled variables yT = [y1..yl ..yN ] as

H = 1

β

[1

2
yTAy + bTy

]
= 1

β

[
k

2

N∑
i=1

y2
i + 1

2

N−1∑
i=1

(yi+1 − yi )
2

+ γ (y1 − yN ) + iqyl

]
. (C8)

Here

k = k1

k2
, γ =

√
k2

3β

k2
, and b j = γ (δ1, j − δN, j ) + iqδ jl

(C9)

is the jth element of b. Since the interactions are nearest
neighbor, A = [Ai j] is a N × N tridiagonal matrix given by

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

υ − 1 −1 0 ... 0 0
−1 υ −1 ... 0 0
0 −1 υ ... 0 0
...

...
...

. . .
...

...

0 0 0 ... υ −1
0 0 0 ... −1 υ − 1

⎤
⎥⎥⎥⎥⎥⎥⎦

, (C10)

with

υ = k + 2. (C11)

Using Eqs. (C7) and (C8) in Eq. (C6) we get

P

(
xl = y√

βk2

)

= (βk2)
1−N

2

ZH

∫ ∞

−∞
dq exp(iqy)

∫ ∞

−∞
dy1..dyl ..dyN

× exp

(
−1

2
yTAy − bTy

)
. (C12)

Equation (C12) is a multivariate Gaussian integral which gives

P

(
xl = y√

βk2

)
= (βk2)

1−N
2

ZH

(2π )
N
2√

AN

∫ ∞

−∞
dq exp(iqy)

×exp

(
−1

2
bTA−1b

)
, (C13)

where AN is the determinant of matrix A of size N × N . It
turns out the integral over q in Eq. (C13) is Gaussian which
can be performed to obtain the normalized distribution of lth
particle,

P(xl = x) = 1√
2πVar(xl )

exp

(
− (x − 〈xl〉β )2

2 Var(xl )

)
, (C14)

with the mean position given by

〈xl〉β = γ√
βk2

(
A−1

Nl − A−1
1l

)
, (C15)

and the variance given by

Var(xl ) = 〈
x2

l

〉
β

− 〈xl〉2
β = A−1

ll

βk2
. (C16)

We now have to compute the diagonal elements A−1
ll , along

with the elements in the first and last row of A−1, i.e., A−1
1l and

A−1
Nl . This can be explicitly computed based on the approach

in Ref. [44] which gives

A−1
1l = BN−l

AN
, (C17)

A−1
Nl = Bl−1

AN
, (C18)

A−1
ll = Bl−1BN−l

AN
, (C19)

where recall that AN is the determinant of the A [Eq. (C10)]
and BN is the determinant of an N-dimensional square matrix

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

υ −1 0 ... 0 0
−1 υ −1 ... 0 0
0 −1 υ ... 0 0
...

...
...

. . .
...

...

0 0 0 ... υ −1
0 0 0 ... −1 υ − 1

⎤
⎥⎥⎥⎥⎥⎥⎦

. (C20)

We find that the determinants AN and BN are related through
the recursion relations

AN = (υ − 1)BN−1 − BN−2, (C21)

BN = (υ − 1)CN−1 − CN−2. (C22)

Here CN is the determinant of an N × N tridiagonal matrix
given by

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

υ −1 0 ... 0 0
−1 υ −1 ... 0 0
0 −1 υ ... 0 0
...

...
...

. . .
...

...

0 0 0 ... υ −1
0 0 0 ... −1 υ

⎤
⎥⎥⎥⎥⎥⎥⎦

, (C23)

where recall that υ = k + 2. The determinant of the N-
dimensional C matrix has been computed in Ref. [44] and is
given by

CN = χ−N

χ2 − 1
(χ2N+2 − 1), (C24)

where

χ = υ + √
υ2 − 4

2
. (C25)

Using the recursion relations Eqs. (C21) and (C22) with the
determinant of C matrix Eq. (C24) we get

BN = χ−N

χ + 1
(χ2N+1 + 1), (C26)

AN = χ−N (χ − 1)

χ + 1
(χ2N − 1). (C27)

Using these expressions, Eqs. (C26) and (C27), in Eqs. (C15)–
(C19) we get

〈xl〉β = γ√
βk2

(χN+l + χN−l+1 − χ2N−l+1 − χ l )

(χ − 1)(χ2N − 1)
, (C28)

Var(xl ) = χ

βk2

(1 + χ2N + χ2N+1−2l + χ2l−1)

(χ2 − 1)(χ2N − 1)
. (C29)
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(d)

(a) (b)

(c)

FIG. 14. (a), (b) Mean and (c), (d) variance as function of particle index l/N for the harmonic chain in quadratic trap, computed using
Eqs. (C28) and (C29), respectively, for N = 32, 64, 128. The T = 1.0 and k1 = 1.0. For (a), (c) we choose d = 0.1 implying k2 = 100.0,
k3 = 10.0 and for (b), (d) we choose d = 10.0 implying k2 = 0.01, k3 = 0.1.

Using the expression of the marginal distribution P(xl )
[Eq. (C14)] in the expression for average density profile
Eq. (C3), we get the expression, for the case of harmonic chain
in the quadratic trap

ρH (x, β ) = 1

N

N∑
l=1

1√
2πVar(xl )

exp

(
− (x − 〈xl〉β )2

2 Var(xl )

)
.

(C30)

Equation (C30) is the exact result for the harmonic chain
in quadratic trap. We now compare Eq. (C30) with the MC
densities of the Toda model in quadratic trap in appropriate
parameter regimes.

In Fig. 12, we show a comparison of the the MC density
profiles of the Toda model, for N = 32, 64, 128, with the ana-
lytically obtained densities of the harmonic chain model [see
Eq. (C30)], for two values of the Toda interaction length scale
d = 1.0, 10.0. We find a good agreement between the densi-
ties of both the models which suggests the N-independence of
the density profiles. This N-independence can be understood
in the case of harmonic chain in quadratic trap as follows. For
d � 1, Eq. (C25) can be approximated as

χ = υ + √
υ2 − 4

2
≈ d2, (C31)

where υ = 2 + k = 2 + d2. Therefore, the mean [Eq. (C15)]
and variance [Eq. (C16)] of the lth particle position are given
by

〈xN 〉β = −〈x1〉β ≈ 1

d
and 〈xl〉β ≈ 0 ∀ l ∈ {2.., N − 1}

(C32)

Var(xl ) ≈ 1

β
. (C33)

Note that the mean and the variance of the position of the
lth particle given in Eqs. (C32) and (C33), respectively, are
independent of N as can be seen from Figs. 14(b) and 14(d).
This proves that the density has no N dependence for large d
and therefore Eq. (C30) further simplifies to

ρH (x, β ) ≈
√

β

2π
exp

(
−β

x2

2

)
. (C34)

These N-independent density profiles are in accordance with
our observations for both Toda and the harmonic chain models
[see Figs. 10(c), 10(d) and 12].

For small values of d the system behaves as a very stiff
harmonic chain since the spring constant k2 = 1/d2 is very
large. For these values we expect that the thermodynamic limit
can only be attained for extremely large values of N . This can
be understood more clearly when we consider the asymptotic
behavior for the small values of d . For small d � 1, Eq. (C25)
becomes

χ = υ + √
υ2 − 4

2
≈ 1 + d, (C35)

where υ = 2 + k = 2 + d2. Using Eq. (C35) in the expres-
sions Eqs. (C28) and (C29), we obtain the mean and the
variance of the lth particle position

〈xl〉β = d

(
1

(1 + d )N−l+1
− 1

(1 + d )l

)
, (C36)

Var(xl ) = d2

2β

(
1

1 + d
+ 1

(1 + d )2l
+ 1

(1 + d )2(N−l+1)

)
,

(C37)

for Nd � 1. In Figs. 14(a) and 14(c), we show that the mean
and the variance, computed using Eqs. (C28) and Eq. (C29),
respectively, converges very slowly with increasing N to zero
and d/(2β ), respectively. Therefore, we expect the density
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profiles in Eq. (C30) to slowly converge to an N-independent
profile for very large N . The density profile in the large N limit
is then given by

ρH (x, β ) ≈
√

β

dπ
exp

(
− β

x2

d

)
, (C38)

which is the curve corresponding to N → ∞ in Fig. 13. This
slow convergence is similar to what we find for the Toda
model for d = 0.1 as shown in Figs. 10(b).

APPENDIX D: DENSITY OF HARD RODS USING TBA

In this Appendix we show that Eq. (23) can be obtained
from the thermodynamic Bethe ansatz. We first note that for
each subsystem Uδ (x) is constant (flat). Absorbing this con-
stant to the chemical potential we rewrite Eq. (23) as

μ̃ =
[

log

(
1 − a ρ∗

ρ∗

)
− 1

1 − a ρ∗

]
, (D1)

where μ̃ = −[μ − Uδ (x)]/T . Below we present how to arrive
at this Eq. (D1) from TBA. This ansatz is used to understand
the thermodynamic properties of integrable systems based on
quasiparticle description [41].

The TBA formalism relates the quasienergy ε(p) of the
quasiparticle with momentum p with its bare energy V (p).

Using the TBA equation from Eq. (3.42) of Ref. [40] for hard
rods we get

ε(p) = V (p) − μ̃ − a
∫

d p′ exp(−ε(p′)). (D2)

Here we have used that the scattering shift for hard rods of
length a is φ(p) = −a.

We now note the relation between the quasiparticle phase
space density n(p, x) and the particle density ρ∗,

n(p, x) = e−ε(p) = ρ∗

1 − a ρ∗ h(p), (D3)

where the momentum distribution is

h(p) = e−V (p). (D4)

We eliminate V (p) from Eq. (D2) using Eqs. (D3) and (D4) to
obtain the equation of state given in Eq. (D1),

μ̃ = log

(
1 − a ρ∗

ρ∗

)
− 1

1 − a ρ∗ . (D5)

Note that using the TBA formalism for integrable models in
confining traps [34,35] one can obtain the same expression
Eq. (D5).
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