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Improved hybrid Allen-Cahn phase-field-based lattice Boltzmann method
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In this work we develop an improved phase-field based lattice Boltzmann (LB) method where a hybrid
Allen-Cahn equation (ACE) with a flexible weight instead of a global weight is used to suppress the numerical
dispersion and eliminate the coarsening phenomenon. Then two LB models are adopted to solve the hybrid
ACE and the Navier-Stokes equations, respectively. Through the Chapman-Enskog analysis, the present LB
model can correctly recover the hybrid ACE, and the macroscopic order parameter used to label different phases
can be calculated explicitly. Finally, the present LB method is validated by five tests, including the diagonal
translation of a circular interface, two stationary bubbles with different radii, a bubble rising under the gravity,
the Rayleigh-Taylor instability in two-dimensional and three-dimensional cases, and the three-dimensional
Plateau-Rayleigh instability. The numerical results show that the present LB method has a superior performance
in reducing the numerical dispersion and the coarsening phenomenon.
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I. INTRODUCTION

The multiphase flows are universal and important in both
nature and industrial processes; however, modeling such flows
is a rather challenging work due to the topological changes of
the interface among different phases. The phase-field method
[1], as one of widely used techniques in the study of multi-
phase flows, has received increasing attention for its distinct
advantages in capturing the complex interface. In this method,
a nonzero but thin diffuse interface is adopted to replace the
sharp interface among different phases, and the fluid proper-
ties vary smoothly across the diffuse interface.

There are two basic kinds of interface-capturing equa-
tions commonly used in the phase-field method: the Cahn-
Hilliard equation (CHE) [2] and the Allen-Cahn equa-
tion (ACE) [3]. In the CHE, the chemical potential based on
the phase field theory is introduced into the diffusion term,
but a fourth-order spatial derivative leads to a reduction in the
locality and the accuracy. As an alternative, the second-order
ACE is also used to capture the interface, but the original ACE
cannot preserve the total mass conservation [3]. Later, sev-
eral different solutions have been proposed to overcome the
problem. The first one is to introduce a Lagrange multiplier
to enforce the total mass conservation, which gives rise to
the nonlocal ACE [4]. However, the nonlocal ACE involves
the coarsening process, and it will lead to the smaller bubbles
disappearing when bubbles with different radii coexist. The
second one is to bring a counterterm related to local spacial
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derivatives into the original ACE to preserve the total mass
conservation, and this leads to the popular local ACE [5,6].
Although the local ACE can ensure the mass conservation,
it suffers from the numerical dispersion, which may also in-
fluence the accuracy of numerical results in the bulk region
[7–9]. The third one is to develop the hybrid ACE with a
combination of the local and nonlocal ACEs such that the
problems of mass conservation and numerical dispersion can
be addressed. To this end, Hu et al. [8] first proposed a hybrid
ACE by using a single global weight to couple the local and
nonlocal ACEs. The results showed that the hybrid ACE not
only can reduce the numerical dispersion better as compared
with local ACE, but also can capture the small features of
a complex interface as compared with the nonlocal ACE.
Nonetheless, due to use of a single global weight, the hybrid
ACE still inherits the coarsening process from the nonlocal
ACE, in which the smaller bubbles are unavoidably trans-
ferred to the bigger ones. Based on this work, Kang and Yun
[9] further developed a local hybrid ACE through adopting a
local weight, and it is also found that the numerical disper-
sion and the coarsening phenomenon can be suppressed. The
lattice Boltzmann (LB) method [10–15], as one of mesoscopic
numerical approaches, has been developed into a powerful nu-
merical tool [7–9,16–20] for its distinct advantages in kinetic
backgrounds, treatment of complex boundary conditions, and
computational efficiency in parallel systems. In the framework
of the LB method, most of early works [17,21,22] mainly
focused on the CHE for its property in mass conservation;
nevertheless from a theoretical point of view, the CHE is a
fourth-order partial differential equation and cannot be recov-
ered from the second-order LB method. For this reason, the
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second-order conservative ACE is also considered. Geier et al.
[23] first proposed a local ACE-based LB model (hereafter
ACE-LB model) and found that the ACE-LB model has a
high-order convergence rate in space than the CHE-based
LB model (hereafter CHE-LB model); however, this model
cannot recover the local ACE correctly [23]. Based on the
above work [23], Ren et al. [7] and Wang et al. [16] indepen-
dently developed two improved LB models and demonstrated
that the local ACE can be recovered correctly through the
Chapman-Enskog analysis. On the other hand, Chai et al. [24]
presented a LB model for the nonlocal ACE and conducted a
comparative study of the local and nonlocal ACE-LB models.
They found that the nonlocal ACE-LB model is more stable
than the local ACE-LB model, but it cannot preserve the small
features of system. To reduce the numerical dispersion in the
local ACE-LB model, Hu et al. [8] constructed a hybrid ACE-
LB model where a global weight is used to combine the local
and nonlocal ACEs. The results showed that compared to the
local ACE-LB model, the hybrid ACE-LB model can reduce
the numerical dispersion, but the coarsening process inher-
ited in the nonlocal ACE-LB cannot be removed. Recently,
Kang and Yun [9] developed another hybrid ACE-LB model
to suppress the coarsening phenomena through introducing a
local weight. Here it should be noted that the local weight
depends on the estimation of interface region; to this end, the
morphological dilation is adopted, but it would be a difficult
task to estimate the interface region for the three-dimensional
problem.

To reduce the numerical dispersion and to solve the coars-
ening problem, in this work we first develop an improved
hybrid ACE with a flexible weight, in which the diffusion
of the order parameter in the bulk region is controlled by
the nonlocal term, while in the interface region, it is gov-
erned by the local term. Different from the morphological
dilation used in the available work [9], the flexible weight
adopted here is related to the signed distance function where
its estimation is easier even for three-dimensional problem.
Then we propose an improved hybrid ACE-LB method for
incompressible two-phase flows, and the order parameter can
be calculated explicitly. The rest of the paper is organized
as follows. In Sec. II the phase-field theory-based governing
equations for incompressible two-phase flows are presented,
and followed by the corresponding multiple-relaxation-time
(MRT) LB method for these governing equations in Sec. III.
In Sec. IV we test the hybrid ACE-LB method with five
numerical examples. Finally, some conclusions are given in
Sec. V.

II. GOVERNING EQUATIONS

A. The nonlocal ACE with mass conservation

In the phase-field theory, the free energy density of a sys-
tem can be written as

f (φ,∇φ) = κ

2
|∇φ|2 + ψ (φ), (1)

where the first term κ|∇φ|2/2 is gradient energy, and the
second term ψ (φ) is bulk energy for a two-phase system.
Usually, the bulk energy can be approximated by

ψ (φ) = β(φA − φ)2(φ − φB)2. (2)

Here φ is the order parameter, and φA,B is used to label dif-
ferent phases. Based on the free energy density f (φ,∇φ), the
mixing energy F (φ,∇φ) and chemical potential μ can be also
given by

F (φ,∇φ) =
∫

�

f (φ,∇φ)d� =
∫

�

[κ

2
|∇φ|2 + ψ (φ)

]
d�,

(3)

μ = δF

δφ
= −κ∇2φ + ψ ′(φ), (4)

where � is the physical domain, and ψ ′(φ) = 4β(φ −
φA)(φ − φB)[φ − (φA + φB)/2] is the derivative of function
ψ with respect to φ. The parameters β and κ are related to
the surface tension coefficient σ and interfacial thickness W
through β = 12σ/W and κ = 3σW/2. Based on the phase-
field theory, the dynamics of the order parameter φ can also
be described by [25]

φt + ∇ · (φu) = −Mμ, (5)

where M is the mobility. It should be noted that the original
ACE (5) cannot conserve the mass of system under the appro-
priate boundary conditions (n · u|∂� = 0 and n · ∇φ = 0). To
overcome this problem, Rubinstein and Sternberg [4] intro-
duced a nonlocal Lagrange multiplier β0(t ) and obtained the
following nonlocal ACE:

φt + ∇ · (φu)

= M

[
∇2φ − 4β

κ
(φ − φA)(φ − φB)

(
φ − φA + φB

2

)

+β0(t )(φA − φ)(φ − φB)

]
, (6)

and β0(t ) is defined as

β0(t ) =
∫
�

4β

κ
(φ − φA)(φ − φB)

(
φ − φA+φB

2

)
dx∫

�
(φA − φ)(φ − φB) dx

. (7)

Based on the definition of β0(t ), it is easy to show the property
of mass conservation,

d

dt

∫
�

φ dx = 0. (8)

B. The local ACE with mass conservation

Based on the previous work [5], the order parameter φ

can also be governed by the following interface advection
equation:

φt + (unn + u) · ∇φ = 0, (9)

where u is the velocity, and n and un are the unit normal vector
and normal interface speed, which are given by

n = ∇φ

|∇φ| , un = −Mk0. (10)

Here k0 is the interface curvature, and it is defined as

k0 = ∇ · n = ∇ ·
( ∇φ

|∇φ|
)

= 1

|∇φ|
[
∇2φ − (∇φ · ∇)|∇φ|

|∇φ|
]
.

(11)
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To describe the case of no curvature-driven interface motion
[5,6], a local counterterm is introduced into Eq. (11) [26],
which gives rise to the local ACE,

φt + u · ∇φ = M

[
∇2φ − (∇φ · ∇)|∇φ|

|∇φ|

−|∇φ|∇ ·
( ∇φ

|∇φ|
)]

. (12)

With the help of ∇ · u = 0 and |∇φ| = √
2β/k(φA − φ)(φ −

φB), the conservative and local ACE (12) can be finally written
as [5,6]

φt + ∇ · (φu) = M∇ ·
[

1 −
√

2β

k

(φA − φ)(φ − φB)

|∇φ|

]
∇φ.

(13)

C. The hybrid ACE with mass conservation

As pointed out in some previous works [8,9,24], the non-
local ACE fails to capture small features due to the inherent
coarsening process, while for the local ACE, it suffers from
numerical dispersion, resulting in the fluctuation of order pa-
rameter in the bulk region. In order to reduce the numerical
dispersion, Hu et al. [8] considered a hybrid ACE for the phase
field

∂φ

∂t
+ ∇ · (φu) = M(∇2φ + DL + DN ), (14)

where the local and nonlocal terms are given by

DL = −∇ · λ

√
2β

k

(φA − φ)(φ − φB)

|∇φ| ∇φ, (15)

DN = −(1 − λ)
4β

κ
(φ − φA)(φ − φB)

(
φ − φA + φB

2

)

+
∫
�

(1 − λ) 4β

κ
(φ − φA)(φ − φB)

(
φ − φA+φB

2

)
dx∫

�
(φA − φ)(φ − φB) dx

× (φA − φ)(φ − φB). (16)

In Eq. (14) a single global weight λ is used to combine
the local AC and nonlocal AC equations. But the coarsening
phenomenon cannot be removed since the nonlocal terms still
exist partially in the interface region. To settle this problem,
we consider a flexible weight λ depending on the phase re-
gion,

λ(x) =
{

0, x ∈ �±,

1, x ∈ �.
(17)

From above equation, one can find that the local term plays a
role only in the interface region �(λ = 1), and the advantage
of local ACE in capturing small features is remained; at the
same time, the nonlocal terms used to reduce the numerical
dispersion of order parameter in the bulk region �± are also
retained. To distinguish the bulk and interface regions, we
introduce a signed distance function ψ (x), and Eq. (17) can
be rewritten as

λ(x) =
{

0, |ψ (x)| � dmin,

1, |ψ (x)| < dmin,
(18)

where dmin is the threshold distance to the interface. In this
work the signed distance function ψ (x) is reconstructed by
using a predictor-corrector method [27,28]. In the predictor
step, ψ (x) is given by

ψ (x) =

⎧⎪⎨
⎪⎩

−W
4 ln

(
φA−φB

φ−φB
− 1

)
, (φB + 0.01) � φ(x) � (φA − 0.01),

−W
4 ln

(
φA−φB

φA−0.01−φB
− 1

)
, φ(x) > (φA − 0.01),

−W
4 ln

(
φA−φB

φB+0.01−φB
− 1

)
, φ(x) < (φB + 0.01).

(19)

Then a reinitialization equation is solved to correct ψ (x)
[27,28]:

∂t ′ψ + S(ψ0)(|∇ψ | − 1) = 0, (20)

where t ′ is the pseudotime and ψ0 = ψ (x, t ′ = 0) = ψ (x, t ),
and the smeared-out signed function S(ψ0) is expressed as

S(ψ0) = ψ0√
ψ2

0 + �x2
. (21)

Once the signed distance function ψ (x) is determined, we can
get the order parameter through solving the hybrid ACE (14).

D. Navier-Stokes equations

In addition to the above ACEs for phase field, the follow-
ing Naiver-Stokes equations (NSEs) for incompressible fluid
flows are also considered here [18,29]:

∇ · u = 0, (22a)

∂t (ρu) + ∇ · (ρuu) = −∇p + ∇ · [ρν(∇u + ∇uT )]

+ Fs + G, (22b)

where ρ is density, p is pressure, ν is kinematic viscosity, Fs =
μ∇φ is surface tension, and G is body force.

III. NUMERICAL METHOD

A. The MRT-LB model for the improved hybrid ACE

In the past decades, the mesoscopic LB method has gained
great success in the study of complex fluid flows and physical
systems [10–13]. According to the work of Chai and Shi [30],
the evolution equation of MRT-LB model for the improved
hybrid ACE can be written as

f j (x + c j�t, t + �t ) = f j (x, t ) − � jk
[

fk (x, t ) − f eq
k (x, t )

]
+ �t

(
δ jk − � jk

2

)
F1k (x, t )

+ �t

[
F2 j (x, t ) + �t

2
∂t F2 j (x, t )

]
,

(23)

where f j (x, t ) is the particle distribution function of order
parameter φ at position x and time t , and f eq

j (x, t ) is the
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equilibrium distribution function. � = � jk is a q × q invert-
ible collision matrix and can be given by � = M−1S f M. Here
S f = diag(s0

f , s1
f , s2

f , . . . , sq−1
f ) is a diagonal relaxation, and

M is the transformation matrix [17,30]. To correctly recover
Eq. (14), the equilibrium distribution function f eq

j (x, t ), the
distribution functions of the source terms F1 j and F2 j should
be designed by

f eq
j = ω jφ

(
1 + c j · u

c2
s

)
, (24)

F1 j = ω j

c j · [∂t (φu) + c2
s λ

√
2β

k
(φA−φ)(φ−φB )∇φ

|∇φ|
]

c2
s

,

F2 j = ω jMDN , (25)

where ω j is the weight coefficient, c j is the discrete velocity,
and cs is the lattice sound speed. It should be noted that differ-
ently from Refs. [8,9], the order parameter can be calculated
explicitly by

φ =
∑

j

f j . (26)

In addition, it can be shown that the improved hybrid ACE
(14) can be recovered correctly with Mφ = �tc2

s (τ f − 1/2)
(see Appendix A).

To compute the time derivative term ∂t ′ψ in Eq. (20) and
∂t (φu) in Eq. (25), the first-order Euler method is adopted,

∂t ′ψ (x, t ′) = [ψ (x, t ′) − ψ (x, t ′ − �t ′)]/�t ′, (27a)

∂t (φu)(x, t ) = [(φu)(x, t ) − (φu)(x, t − �t )]/�t . (27b)

To calculate the gradient and Laplacian terms appeared in
the chemical potential and the reinitialization equation, the
second-order isotropic central schemes are applied [12,31]:

∇χ (x, t ) =
∑
i �=0

wiciχ (x + ci�t, t )

c2
s �t

, (28a)

∇2χ (x, t ) =
∑
i �=0

2wici[χ (x + ci�t, t ) − χ (x, t )]

c2
s �t2

. (28b)

B. The MRT-LB model for the incompressible NSEs

We now consider the MRT-LB model for the incompress-
ible NSEs (22), and the evolution equation of the model

reads [18,19]

g j (x + c j�t, t + �t )

= g j (x, t ) − (M−1SgM) jk
[
gk (x, t ) − geq

k (x, t )
]

+ �t[M−1(I − Sg/2)M] jkGk (x, t ), (29)

where gj (x, t ) represents the distribution function for the flow
field, Sg = diag(s0

g, s1
g, s2

g, . . . , sq−1
g ) is the diagonal relaxation

matrix, and geq
j (x, t ) is the equilibrium distribution function

and is given by [18]

geq
j =

{ p
c2

s
(ω j − 1) + ρs j (u), j = 0,

p
c2

s
ω j + ρs j (u), j �= 0,

(30)

with

s j (u) = ω j

[
c j · u

c2
s

+ (c j · u)2

2c4
s

− u · u
2c2

s

]
. (31)

The distribution function of the force term Gj is defined as

Gj = ω j

[
u · ∇ρ + c j · F

c2
s

+ u∇ρ :
(
c jc j − c2

s I
)

c2
s

]
, (32)

where F = Fs + G. In addition, the macroscopic velocity and
pressure are calculated by

ρu =
∑

j

c jg j + �t

2
F, (33a)

p = c2
s

1 − ω0

⎡
⎣∑

j �=0

g j + �t

2
u · ∇ρ + ρs0(u)

⎤
⎦. (33b)

With the help of Chapman-Enskog expansion, the incom-
pressible NSEs can be recovered exactly by using ν =
�tc2

s (τg − 0.5). In the commonly used lattice models, the
mesoscopic velocities c j , the weight coefficients ω j , and lat-
tice sound speed cs can be given by the following [32]:

D2Q9:

[c0, c1, c2, c3, c4, c5, c6, c7, c8] =
[

0 1 0 −1 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1

]
c,

ωi =
⎧⎨
⎩

4/9, i = 0,

1/9, i = 1, . . . , 4, cs = c/
√

3.

1/36, i = 5, . . . , 8,

(34)

D3Q7:

[c0, c1, c2, c3, c4, c5, c6] =
⎡
⎣0 1 0 0 −1 0 0

0 0 1 0 0 −1 0
0 0 0 1 0 0 −1

⎤
⎦c,

ωi =
{

1/8, i = 0,

1/4, i = 1, . . . , 6,
cs = c/2. (35)
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D3Q15:

[c0, c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14]

=
⎡
⎣0 1 0 0 −1 0 0 1 −1 1 1 −1 1 −1 −1

0 0 1 0 0 −1 0 1 1 −1 1 −1 −1 1 −1
0 0 0 1 0 0 −1 1 1 1 −1 −1 −1 −1 1

⎤
⎦c,

ωi =
⎧⎨
⎩

2/9, i = 0,

1/9, i = 1, . . . , 6, cs = c/
√

3.

1/72, i = 7, . . . , 14,

(36)

In this work, we consider the D2Q9 lattice model for
both phase and flow fields of two-dimensional prob-
lems, while for three-dimensional problems, the D3Q7 and
D3Q15 lattice models are used for phase and flow fields,
respectively.

IV. NUMERICAL TESTS

In this section, five numerical tests, i.e., the diagonal trans-
lation of a circular interface, two stationary bubbles with
different radii, a bubble rising under the gravity, the Rayleigh-
Taylor instability, and the Plateau-Rayleigh instability, are
used to show the capacity of the present LB method in
suppressing the numerical dispersion and in capturing small
features of two-phase flows. In order to evaluate the numerical
dispersion in the bulk region, the largest value of the fluctua-
tion of the order parameter δφb,max is adopted:

δφb,max = max{a, b},
a = max{|φ(x) − φA|}, ψ (x) > dmin,

b = max{|φ(x) − φB|}, ψ (x) < −dmin, (37)

where the threshold distance to the interface dmin is set as 3W .

A. The diagonal translation of a circular interface

We first consider a simple periodic problem, the diagonal
translation of a circular interface, to test the accuracy and
convergence of the improved hybrid ACE-LB model. For this
problem, a circle with R = 0.25L0 is placed in the center
of physical domain � = (L0, L0) under a constant velocity
u = (U0,U0), and the initial condition of the phase field is

given by

φ(x, y, 0) = φA + φB

2
+ φA − φB

2

× tanh
2[R −

√
(x − 0.5L0)2 + (y − 0.5L0)2]

W
.

(38)

Under above conditions, the time interval for the circle
returning to the initial center position is T0 = L0/U0. In
our simulations, the physical parameters are set as φA =
0.5, φB = −0.5, L0 = 128, U0 = 2/L0, Mφ = 0.01, σ =
0.001, s0

f = 1.0, s1
f = s2

f = 1.1, s3
f = s4

f = s5
f = s6

f = 1/τ f ,
and s7

f = s8
f = 1.0. To quantitatively measure the accuracy

and the convergence of the present ACE-LB model for this
time-periodic problem, the relative error of the order parame-
ter φ is defined by

Err(φ) =
√∑

x [φ(x, t ) − φ(x, 0)]2∑
x φ(x, 0)2

. (39)

First, we present a comparison of different models with dif-
ferent values of interface thickness W for the diagonal motion
of a circular interface where the flow field is not considered.
From Table I, one can find that considering the relative error
Err(φ) and the largest value of the fluctuation δφb,max, the
interface thickness W = 3L0/64 for the interface is a good
choice in the simulations. Then Fig. 1 depicts a comparison
between the present ACE-LB model, the nonlocal ACE-LB
model [24], the local ACE-LB model [16], and the hybrid
ACE-LB model [8]. As seen from this figure, one can find that
the results of the present model at one period, five periods, and
ten periods are in good agreement with the initial shape, while
the nonlocal model produces a slight deviation. In Table II one

TABLE I. The effect of the interface thickness W on diagonal translation of a circular interface at one period.

W Present Nonlocal Local Hybrid

L0/64 Err(φ) 4.9904 × 10−2 1.4602 × 10−1 5.0085 × 10−2 1.8701 × 10−2

δφb,max 2.5964 × 10−4 2.5860 × 10−4 8.3240 × 10−4 2.9287 × 10−4

2L0/64 Err(φ) 2.5677 × 10−3 2.1910 × 10−2 2.5681 × 10−3 4.5412 × 10−3

δφb,max 3.7983 × 10−6 3.8276 × 10−6 2.5180 × 10−5 9.0224 × 10−6

3L0/64 Err(φ) 1.4117 × 10−3 7.7310 × 10−3 1.4119 × 10−3 2.1068 × 10−3

δφb,max 3.6319 × 10−6 6.8287 × 10−6 6.6944 × 10−6 6.7309 × 10−6

4L0/64 Err(φ) 9.6777 × 10−4 4.2373 × 10−3 9.6805 × 10−4 1.3760 × 10−3

δφb,max 4.2862 × 10−6 8.3453 × 10−6 8.0565 × 10−6 8.1116 × 10−6
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FIG. 1. The phase-field contours (φ = 0) of diagonal motion of a circular interface at t = 0 (solid line), t = T0, t = 5T0, and t = 10T0

(dashed line) [(a) the present ACE-LB model, (b) the nonlocal ACE-LB model [24], (c) the local ACE-LB model [16], (d) the hybrid ACE-LB
model [8]].

can also observe that the nonlocal and hybrid ACE-LB models
have poor performance in capturing the interface, especially
after ten periods, while the present model can still work well
and give satisfactory results. Besides, the value of δφb,max

generated by the present model is slightly smaller than those
given by other models. Moreover, the present ACE-LB model
can also preserve the mass of system. From above compar-
isons, we can conclude that the present ACE-LB model is
more accurate than the nonlocal and hybrid ACE-LB models
in capturing the interface and shows a good performance in

reducing the numerical dispersion. Finally, this problem is
also used to test the convergence rate of the present ACE-LB
model in space, and the results shown in Fig. 2 indicate that
the present model has a second-order accuracy.

B. Two stationary bubbles with different radii

The classic nonlocal ACE inherently includes the coarsen-
ing process such that the smaller bubble eventually disappears
when the bubbles with different sizes coexist. We note that this

TABLE II. A comparison of different ACE-LB models for diagonal translation of a circular interface (MS: mass of system).

Present Nonlocal Local Hybrid Initial solution (38)

T0 Err(φ) 1.4117 × 10−3 7.7310 × 10−3 1.4119 × 10−3 2.1068 × 10−3 0
δφb,max 3.6319 × 10−6 6.8287 × 10−6 6.6944 × 10−6 6.7309 × 10−6 0

MS −4.9518 × 103 −4.9518 × 103 −4.9518 × 103 −4.9518 × 103 −4.9518 × 103

5T0 Err(φ) 1.5196 × 10−3 3.5057 × 10−2 1.5180 × 10−3 6.1011 × 10−3 0
δφb,max 3.6063 × 10−6 7.4224 × 10−6 6.6742 × 10−6 7.0247 × 10−6 0

MS −4.9518 × 103 −4.9518 × 103 −4.9518 × 103 −4.9518 × 103 −4.9518 × 103

10T0 Err(φ) 1.7187 × 10−3 6.9631 × 10−2 1.7135 × 10−3 1.1644 × 10−2 0
δφb,max 3.6150 × 10−6 7.0421 × 10−6 6.6501 × 10−6 7.1857 × 10−6 0

MS −4.9518 × 103 −4.9518 × 103 −4.9518 × 103 −4.9518 × 103 −4.9518 × 103
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FIG. 2. The convergence rate of the present ACE-LB model in
space.

coarsening phenomenon may be undesirable for some two-
phase flow problems. Here we take two stationary bubbles
with different radii as an example to validate the property
of the present LB method in suppressing the coarsening
phenomenon. To this end, two bubbles with the radii R1 =
0.1L0 and R2 = 0.15L0 are initially placed at a periodic do-
main � = (L0, L0), and the distribution of order parameter φ

is initialized by

φ(x, y, 0) = φA + φB

2
+ φA − φB

2

[
tanh

(
2ψ1

W

)

+ tanh

(
2ψ2

W

)
− 1

]
, (40)

where ψ1 = R1 −
√

(x − 0.25L0)2 + (y − 0.25L0)2 and
ψ2 = R2 −

√
(x − 0.57L0)2 + (y − 0.57L0)2. In the

following simulations, the physical parameters are set as
φA = 0.5, φB = −0.5, Mφ = 1/6, σ = 0.01, ρA = 1.0,
ρB = 0.1, νA = νB = 0.01, L0 = 300, W = 4, s0

f = 1.0,
s1

f = s2
f = 1.1, s3

f = s4
f = s5

f = s6
f = 1/τ f , s7

f = s8
f = 1.2,

s0
g = s3

g = s5
g = 1.0, s1

g = s2
g = s4

g = s6
g = 1.1 and s7

g = s8
g =

1/τg. The simulations are suspended at a sufficiently large
number of iterations (about 2.0 × 106), and the interface
distributions are plotted at different times in Fig. 3. As seen
from this figure, the positions of both bubbles predicted by the
present LB method are well maintained. For the nonlocal and
hybrid LB methods, however, the smaller bubble gradually
shrinks and eventually disappears, while the larger one
enlarges with the increase of time. These phenomena also
can be observed in Fig. 4(a) where the evolutions of bubble
radii in time are presented. Although the results of the
local LB method indicate that the radii of both bubbles are
approximately conserved during the iterations [see Fig. 4(a)],
a large numerical dispersion δφb,max inside the bulk phase
accelerates the amplification of the artifact owing to the
negative feedback by the unexpected surface tension force.
Furthermore, both smaller and larger bubbles deviate from
the initial position [see Fig. 3(c)]. Additionally, we would
also like to point out that δφb,max generated by the present
LB method almost remains about 10−7, much less than 10−3

obtained by the local LB method. These results indicate that
the present LB method has a better performance in preserving
small features and suppressing the coarsening phenomenon.

C. A bubble rising under the gravity

In this section, a more complicated problem, a rising bub-
ble in water, is also adopted to test the capacity of the present
LB method in capturing the large topological changes of in-
terface. The initial setup problem is a stationary gas bubble
(B) with diameter D placed in water (A) at (D, D) in com-
putational domain � = (2D, 4D), and the density ratio and
viscosity ratio are set to be 1000 and 100, respectively. The
periodic boundary condition is applied in the horizontal direc-
tion, and the nonslip boundary condition is used on the top and
bottom walls. To describe the dynamic behavior of the rising
bubble, two dimensionless parameters, the Reynolds number
Re and the Eötvös number Eo, are introduced and defined by

Re = ρAUgD

μA
, Eo = ρAU 2

g D

σ
, (41)

where Ug = √
g0D, g0 is the gravitational acceleration,

and the characteristic time is T0 = tUg/D. The initial order

FIG. 3. The evolutions of phase-field contours (φ = 0) of two stationary bubbles with different radii in time [(a) the present LB method,
(b) the nonlocal LB method [24], (c) the local LB method [16], (d) the hybrid LB method [8]].
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FIG. 4. The evolution process of two bubbles with different radii [(a) the radii of bubbles, (b) the numerical dispersion δφb,max].

parameter is given by

φ(x, y, 0) = φA + φB

2
+ φA − φB

2

× tanh
2[
√

(x − D)2 + (y − D)2 − 0.5D]

W
,

(42)

and the other parameters are fixed to be φA = 1.0, φB = 0,
D = 120, Ug = 0.005, W = 5, ρA = 100, ρB = 0.1,
Re = 35, Eo = 125, s0

f = 1.0, s1
f = s2

f = 1.2, s3
f = s4

f =
s5

f = s6
f = 1/τ f , s7

f = s8
f = 1.2, s0

g = s3
g = s5

g = 1.0,
s1

g = s2
g = s4

g = s6
g = 1.1, and s7

g = s8
g = 1/τg. We perform

some simulations and present the evolution of the rising
bubble in Fig. 5. As seen from this figure, under the actions of
the surface tension and buoyancy forces, the bubble rises and

then evolves from the circular shape towards a semicircular
shape. As time goes on, a large topological change can be
observed that the fluid at the back of the air bubble pushes in
and two thin filaments of the bubble are formed. We also make
a comparison of the interface shapes predicted by different
methods at t∗ = 4.2T0 together with the high-accuracy
solution of Aland and Viogt [33] in Fig. 6. From this figure,
one can see that the nonlocal LB method and hybrid LB
method with λ = 0.5 cannot capture the small features, and
to give accurate results, the weight parameter λ of the hybrid
LB method should be not less than 0.9 [8]. In contrast, the
results of the present LB method are in good agreement with
the local LB method and the reported data [33].

Additionally, to give a quantitative comparison, we also
measure the vertical position of the mass center of the bubble
Yc and the numerical dispersion δφb,max during the bubble

FIG. 5. Evolution of bubble shape in time [(a) t∗ = 0, (b) t∗ = T0, (c) t∗ = 2T0, (d) t∗ = 3T0, (e) t∗ = 4T0].
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FIG. 6. A comparison of some different methods in predicting the interface shape of the bubble rising at t∗ = 4.2T0 [(a) the present LB
method, (b) the nonlocal LB method [24], (c) the local LB method [16], (d) the hybrid LB method with λ = 0.5 [8], (e) the hybrid LB method
with λ = 0.9 [8]].

rising process. Mathematically, the mass center of the bubble
Yc can be calculated by

Yc =
∑

i, j y jHd [5(0.5 − φ)]∑
i, j Hd [5(0.5 − φ)]

, (43)

with Hd being the smeared-out Heaviside function

Hd (x) =
⎧⎨
⎩

0, x < −2,

0.5 + 0.25x + 0.5
π

sin(0.5πx), −2 � x � 2,

1, x > 2.

(44)
We conduct some simulations with different methods and
plot the results in Fig. 7. As shown in this figure, although

these methods can give the satisfactory results in predicting
the mass center Yc, the numerical dispersion δφb,max gen-
erated by the present method has the smallest amplitude
oscillation. The results also illustrate that compared to the
commonly used local LB method, the present method can
reduce at least one order of magnitude of the order parameter
fluctuation.

D. The Rayleigh-Taylor instability

To further demonstrate the accuracy of the present method
for more complicated flows, the classic Rayleigh-Taylor in-
stability is also investigated, which takes place when a heavy

FIG. 7. The comparisons of some different methods for the bubble rising problem with Re = 35 and Eo = 125 [(a) the mass center of
bubble Yc, (b) the numerical dispersion δφb,max].
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FIG. 8. Evolution of the interface pattern of the two-dimensional Rayleigh-Taylor instability [(a) t∗ = T0, (b) t∗ = 2T0, (c) t∗ = 3T0,
(d) t∗ = 4T0].

fluid A rests on top of a light fluid B with an initial
perturbation at the interface. We first consider a two-
dimensional Rayleigh-Taylor instability in a rectangular
computational domain [0, d] × [0, 4d] with periodic bound-
ary condition on the left and right sides and no-slip condition
on the top and bottom walls. Initially, the profile of the order
parameter is set as

φ(x, y, 0) = φA + φB

2
+ φA − φB

2
tanh

2(y − h)

W
, (45)

where h = 2d + 0.05d cos(2πx/d ). In order to characterize
the Rayleigh-Taylor instability problem, the dimensionless
Reynolds number Re, the Atwood number At , and the Péclet
number Pe are defined, respectively, as

Re = d

v

√
Atgd

1 + At
, At = ρA − ρB

ρA + ρB
, Pe = d

√
gd

Mφ

, (46)

where g is a gravitational acceleration and the normalized time
is defined by t∗ = t

√
Atg/d . The other simulation parame-

ters are chosen as φA = 1.0, φB = −1.0, d = 256,
√

gd =
0.04, σ = 5.0 × 10−5, Re = 3000, At = 0.1, Pe = 1000,
ρB = 1, s0

f = 1.0, s1
f = s2

f = 1.2, s3
f = s4

f = s5
f = s6

f = 1/τ f ,
s7

f = s8
f = 1.2, s0

g = s1
g = s2

g = s3
g = s5

g = 1.0, s4
g = s6

g = 1.7
and s7

g = s8
g = 1/τg. At the early stage, the heavy (yellow)

fluid forms a spike shape from its initial convex shape and

rolls up into two counterrotating vortices along the sides
of the spike [see Fig. 8(b)]. With the increase of time, the
interface undergoes a chaotic breakup, which results in a
large number of small dissociative droplets in the system [see
Figs. 8(c) and 8(d)]. We also show the interface pattern of the
two-dimensional Rayleigh-Taylor instability among different
methods in Fig. 9, where t∗ = 4T0. From this figure, one can
find that the result of present method is close to that obtained
by the local LB method, but these small dissociative droplets
cannot be captured in detail by using the nonlocal and hybrid
LB methods.

To give a quantitative comparison of different methods,
the positions of the bubble front and spike tip are plotted
in Fig. 10(a). The results show good quantitative agreement
among them, except for a minor discrepancy caused by the
nonlocal LB method. In addition, the numerical dispersion
δφb,max has also been considered in Fig. 10(b), and one can
find that δφb,max obtained by the local LB method is larger
than 10−3, but it is smaller than 10−4 when the present method
is adopted. Moreover, the result of the hybrid LB method has
a large oscillation in the chaotic stage, which indicates that a
global weight λ fails to suppress the numerical dispersion for
complex two-phase flows.

Next, the three-dimensional Rayleigh-Taylor instability is
also used to test the present LB method for more com-
plicated flows. In a rectangular box with [0, d] × [0, d] ×
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FIG. 9. A comparison of some different methods for the interface patterns of the two-dimensional Rayleigh-Taylor instability at t∗ = 4T0

[(a) the present LB method, (b) the nonlocal LB method [24], (c) the local LB method [16], (d) the hybrid LB method [8]].

[0, 4d], the initial position of the interface is set by h =
0.05d[cos(2πx/d ) + cos(2πy/d )]. To be consistent with the
previous study [34], the Reynolds number is chosen as Re =

d3/2g1/2/ν = 128, the capillary number Ca = μA
√

gd/σ =
960, t∗ = t/

√
d/g, and other parameters are fixed to be

φA = 1, φB = 0, d = 64,
√

gd = 0.04, At = 0.5, Pe = 1024,

FIG. 10. The comparisons of some different methods for the two-dimensional Rayleigh-Taylor instability [(a) the positions of the bubble
front and spike tip, (b) the numerical dispersion δφb,max].
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FIG. 11. Evolution of the interface pattern of the three-
dimensional Rayleigh-Taylor instability [(a) t∗ = T0, (b) t∗ = 2T0,
(c) t∗ = 3T0, (d) t∗ = 4T0].

W = 5, ρA = 1, s0
f = s4

f = s5
f = s6

f = 1.0, s1
f = s2

f = s3
f =

1/τ f , s0
g = s1

g = s2
g = s3

g = s10
g = s11

g = s12
g = s13

g = 1.0 and
s4

g = s5
g = s6

g = s7
g = s8

g = s9
g = s14

g = 1/τg. Under the influ-
ence of gravity, the heavy and light fluids penetrate into each
other to form the spike and bubble. Meanwhile, four saddle
points are formed at the middle of the four sides of the
rectangular box. We also consider the spike tip, saddle point,
and bubble front [see Fig. 11(a)] and carry out a comparison
between the present method and the available data [34] in
Fig. 12. As seen from this figure, there is a good agreement be-
tween them, which also demonstrates that the present method
can be used to deal with the three-dimensional two-phase
flows.

FIG. 12. A comparison between the present method and the pre-
vious work [34] for the positions of the bubble front, saddle point
and spike tip in the three-dimensional Rayleigh-Taylor instability.

FIG. 13. A comparison of some different methods for the inter-
face patterns of the three-dimensional Plateau-Rayleigh instability at
t∗ = 8 and t∗ = 10 [(a) the present LB method, (b) the nonlocal LB
method [24], (c) the local LB method [16], (d) the hybrid LB method
[8]].

E. The three-dimensional Plateau-Rayleigh instability

To show the potential of the present LB method in the study
of the three-dimensional complex flows, the Plateau-Rayleigh
instability that causes the breakup of a liquid ligament into
smaller droplets is studied in this section. The simulations
are carried out in a domain [0, 8d] × [0, 3d] × [0, 3d] with
periodic boundary condition, and the initial order profile is set
to be

φ(x, y, z, 0) = φA + φB

2
+ φA − φB

2

× tanh
2[r(x)−

√
(z − 1.5d )2+ (y − 1.5d )2]

W
,

(47)

where r(x) = R0 + δ sin(πx/2d ), R0 is the unperturbed liga-
ment radius, and δ is the perturbation. In order to characterize
the Plateau-Rayleigh instability, the Ohnesorge number Oh
and the capillary time tcap are defined as

Oh = μA√
ρAσR0

, tcap =
√

ρAR3
0

σ
. (48)

The other simulation parameters are set as φA = 1.0,
φB = 0, M = 0.5, W = 3, ρA = 2.1, ρB = 0.078, d = 32,
R0 = 14, Oh = 0.1, tcap = 800, s0

f = 1.0, s4
f = s5

f = s6
f =

1.2, s1
f = s2

f = s3
f = 1/τ f , s0

g = s1
g = s2

g = s3
g = s10

g = s11
g =

s12
g = s13

g = 1.0, and s4
g = s5

g = s6
g = s7

g = s8
g = s9

g = s14
g =

1/τg. For the case of Oh = 0.1, the liquid ligament first
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FIG. 14. The comparisons of some different methods for the three-dimensional Plateau-Rayleigh instability [(a) the influence of the initial
perturbation on the nondimensional breakup time, (b) the numerical dispersion δφb,max].

begins to contract and then breaks into two mother droplets
and two satellite droplets [see Figs. 13(a) and 13(c)]. How-
ever, the satellite droplets still cannot be captured by using
the nonlocal and hybrid LB methods. To give a quantitative
comparison of different methods, the influence of the initial
perturbation δ/R0 on the nondimensional breakup time are
plotted in Fig. 14(a). One can be found that the present and
local LB methods are well aligned with some available data
[35,36], whereas it takes less time for the liquid ligament to
break up by using the nonlocal or hybrid LB method. In addi-
tion, the numerical dispersion δφb,max has also been shown in
Fig. 14(b), and the results show that δφb,max obtained by the
local LB method is larger than that obtained by the present
method.

V. CONCLUSIONS

In this paper, we developed a conservative phase-field
LB method for incompressible two-phase flow where a hy-
brid ACE with a flexible weight for the phase field is
performed. Then we conducted comparative studies of the
present method, the local method, the nonlocal method, and
the hybrid method for the two-phase flow in reducing the
numerical dispersion and the coarsening phenomenon, and the
numerical results show that the present LB method produces
better performance in capturing small features than the non-
local and hybrid methods; besides, it can be reduced almost
one order of magnitude of the order parameter fluctuation than
the local method. Finally, considering the above advantages
of the present method in depicting an incompressible two-
phase flow, the present LB method could be developed as an
effective tool for multiphase flows in a future work.
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APPENDIX A: THE CHAPMAN-ENSKOG ANALYSIS OF
THE LB MODEL FOR THE HYBRID AC EQUATION

We first perform a Chapman-Enskog analysis in which f j ,
F1 j , F2 j , ∂t , and ∇ are expanded as

f j = f (0)
j + ε f (1)

j + ε2 f (2)
j ,

F1 j = εF (1)
1 j + ε2F (2)

1 j , F2 j = εF (1)
2 j + ε2F (2)

2 j , (A1)

∂t = ε∂t1 + ε2∂t2 , ∇ = ε∇1,

where ε is a small parameter. Applying the Taylor expansion
to Eq. (23), we have

Dj f j + �t

2
D2

j f j + · · ·

= − 1

�t
� jk f ne

k +
(

δ jk − � jk

2

)
F1k (x, t ) + F2 j (x, t )

+ �t

2
∂t F2 j (x, t ), (A2)

where Dj = ∂t + c j · ∇. Substituting Eq. (A1) into Eq. (A2)
yields the following equations at different orders of ε:

ε0 : � jk
(

f (0)
k − f eq

k

) = 0, (A3a)

ε1 : D1 j f (0)
j

= − 1

�t
� jk f (1)

k +
(

δ jk − � jk

2

)
F (1)

1k (x, t ) + F (1)
2 j (x, t ),

(A3b)
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ε2 : ∂t2 f (0)
j + D1 j f (1)

j + �t

2
D2

1 j f (0)
j

= − 1

�t
� jk f (2)

k +
(

δ jk − � jk

2

)
F (2)

1k (x, t ) + F (2)
2 j (x, t )

+�t

2
∂t1 F (1)

2 j (x, t ), (A3c)

where D1 j = ∂t1 + c j · ∇1. With the help of Eq. (A3b), we can
rewrite Eq. (A3c) as

∂t2 f (0)
j + D1 j

(
δ jk − � jk

2

)(
f (1)
k + �t

2
F (1)

1k

)
+ �t

2
D1 jF

(1)
2 j

= − 1

�t
� jk f (2)

k +
(

δ jk − � jk

2

)
F (2)

1k (x, t ) + F (2)
2 j (x, t )

+ �t

2
∂t1 F (1)

2 j (x, t ). (A4)

In addition, one can also obtain that the equilibrium distribu-
tion function and discrete source terms satisfy the following
moment conditions:∑

i

ei�i j = s0e j,
∑

i

ci�i j = s1c j,
∑

j

f eq
j = φ,

∑
j

c j f eq
j = φu,

∑
j

c jc j f eq
j = c2

s φI,
∑

j

F1 j = 0,

∑
j

c jF1 j = ∂t (φu) + c2
s λ

√
2β

k

(φA − φ)(φ − φB)∇φ

|∇φ| ,

∑
j

F2 j = MDN ,
∑

j

c jF2 j = 0. (A5)

With the help of above equation and summing Eqs. (A3b)
and (A4) over j, we have

∂t1φ + ∇1 · (φu) = MD(1)
N , (A6)

∂t2φ + ∇1 ·
(

1 − 1

2τ f

){∑
k

ck f (1)
k

+�t

2

[
∂t1 (φu) + c2

s λ

√
2β

k

(φA − φ)(φ − φB)∇1φ

|∇φ|

]}

= MD(2)
N , (A7)

where MDN = εMD(1)
N + ε2MD(2)

N . Based on Eq. (A3b), we
can also derive the first-order moment of f (1)

j ,

∑
j

c j f (1)
j = −�tτ f

[
∇1 · c2

s φI + 1

2τ f
∂t1 (φu)

−
(

1 − 1

2τ f

)
c2

s λ

√
2β

k

(φA − φ)(φ − φB)∇1φ

|∇φ|

]
.

(A8)

Substituting Eq. (A8) into Eq. (A7), one can get

∂t2φ = ∇1 · �tc2
s

(
τ f − 1

2

)

×
[
∇1φ − λ

√
2β

k

(φA − φ)(φ − φB)∇1φ

|∇φ|

]
+ MD(2)

N .

(A9)

Then combining Eqs. (A6) and (A9) and taking M =
�tc2

s (τ f − 1/2), one can correctly recover the hybrid ACE
(14).

APPENDIX B: THE STATIC DROPLET

In this Appendix the static droplet is used to verify the
present LB method. A liquid droplet with the radius R = 50 is
located at the center of the domain [0, 4R] × [0, 4R] with the

FIG. 15. (a) The density distribution along the horizonal center line, (b) the velocity distribution of the whole domain at the equilibrium
state with |u|max = 4.26 × 10−9.
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periodic boundary condition. The order profile is initialized
by

φ(x, y, 0) = φA + φB

2
+ φA − φB

2

× tanh
2[R −

√
(x − 2R)2 + (y − 2R)2]

W
. (B1)

In the simulation, the other parameters are set as φA = 1,
φB = 0, ρA = 1000, ρB = 1, νA = 0.1, νB = 0.1, σ = 0.001,
and W = 5. Figure 15(a) shows that the density distribution of
the droplet at the equilibrium with the initial one. It is found
that they are close to each other. As seen in Fig. 15(b), one
can observe that the spurious velocities indeed exist around
the interface, and their maximum magnitude computed by
|u|max = √

u2 + v2
max has an order of 10−9.
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