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In this study, the migration of microparticles towards the inertial equilibrium positions in a straight mi-
crochannel with a square cross section in the presence of an inhomogeneous oscillating electric field was
examined. The dynamics of microparticles were simulated using the immersed boundary–lattice Boltzmann
method of fluid-structure interaction simulation. Moreover, the lattice Boltzmann Poisson solver was applied
to calculate the electric field required for calculation of the dielectrophoretic force using the equivalent dipole
moment approximation. These numerical methods were implemented on a single GPU coupled with the AA
pattern of storing distribution functions in memory to speed up the computationally demanding simulation
of microparticles dynamics. In the absence of an electric field, spherical polystyrene microparticles migrate
to four symmetric stable equilibrium positions corresponding to the sidewalls of the square cross-sectional
microchannel. The equilibrium distance from the sidewall was increased by increasing the particle size. The
equilibrium positions near electrodes disappeared and particles migrated to the other equilibrium positions
far from the electrodes by the application of the high-frequency oscillatory electric field at voltages beyond a
threshold value. Finally, a two-step dielectrophoresis-assisted inertial microfluidics methodology was introduced
for particle separation based on the crossover frequencies and the observed threshold voltages of different
particles. The proposed method exploited the synergistic effect of dielectrophoresis and inertial microfluidics
methods to remove their limitations, allowing the separation of a broad range of polydisperse particle mixtures
with a single device in a short time.
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I. INTRODUCTION

The separation of particles and cells has extensive ap-
plications in engineering and medicine including blood
fractionation, circulating tumor cells detection, and water
purification [1]. Centrifugation and filtration are two con-
ventional particle separation methods which suffer from
limitations such as the risk of working with high-speed ro-
tating devices, filter clogging, and fouling [2,3]. Microfluidic
particle separation methods have recently attracted a con-
siderable deal of attention. Microfluidic particle separation
methods include two leading groups of active and passive
approaches [4]. While active methods utilize an external force
to separate particles, hydrodynamic forces and microchannel
structures are the basis of passive separation methods [4].

In active separation methods, the fluid flow rate should be
low enough to expose particles to the sufficient amount of ex-
ternal force, leading to low-throughput and a time-consuming
separation approach. On the other hand, separation is highly
controllable through manipulating the applied external force
[5]. Dielectrophoresis, magnetophoresis [6], optophoresis [7],
and acoustophoresis [8] are some examples of phenomena
generating active forces based on the difference in dielec-
tric properties, magnetic susceptibility, refractive index, and
compressibility. Dielectrophoresis refers to the migration of
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polarized particles in a nonuniform electric field, which has
been extensively employed for label-free separation and ma-
nipulation of particles in microfluidic systems. This method
can be controlled by voltage and frequency of the applied
electric field [9,10].

Conventional dielectrophoresis-based microfluidic separa-
tion devices typically work at low flow rates. At high flow
rates, hydrodynamic forces acting on the particle are stronger
than the dielectrophoretic force and determine the lateral
position of the particle. The dielectrophoretic force has a
negligible effect on the final position of the particle, especially
at the dead electrical field spaces far away from electrodes.
Wang et al. [11] tried to remove dead electrical field spaces by
using electrodes at the left and right walls of the microchan-
nel. Using different frequencies and voltages at electrodes
corresponding to each wall, this method increases the con-
trollability of the separation. Although their method increased
the separation efficiency, the flow rate was still less than
1 µl min−1.

In a group of passive separation methods relying on in-
ertial microfluidics, inertial effects (Dean drag and inertial
lift forces) act on microparticles and are the basis of parti-
cle manipulation. Depending on the microchannel structure,
there exist few points at the cross section where the resultant
of all forces normal to the flow direction acting on the im-
mersed particle is zero, where the particle is in equilibrium.
The number and position of these points depend on the fluid
and particle properties and microchannel structure. In these
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methods, separation occurs based on the difference be-
tween the equilibrium positions of different particles. High-
throughput and fast separation are the advantages of inertial
methods as inertial forces increase by increasing the fluid flow
rate. Nevertheless, these methods are not easily controllable,
and it is practically difficult to design and fabricate a device to
separate a broad range of polydisperse particle mixtures [5].

The advantages of each leading group can suppress the
disadvantages of the other one, thus, a combination of active
and passive methods can be used to overcome the limitations.
In this regard, the combination of dielectrophoresis and in-
ertial microfluidics has already been studied [12–14], where
the dielectrophoretic force generated from the electrodes lo-
cated at the bottom of the serpentine microchannel modifies
the equilibrium position of particles presorted at the lower
part of the microchannel using the sheath flow. Although
the configuration provides a high-throughput and controllable
separation, the existence of sheath flow which contaminates
the processing specimen and the need for continuous exertion
of dielectrophoretic force which increases the possibility of
cell lysis in the case of bioparticle separation are the main
drawbacks.

In this study, the synergistic effect of dielectrophore-
sis and inertial microfluidics particle separation methods
is examined in a straight microchannel to present a high-
throughput sheath-less particle separation methodology in
which, dielectrophoretic force is only used to switch parti-
cles between equilibrium positions at the microchannel cross
section. Therefore, the proposed method does not require the
continuous exertion of dielectrophoretic force.

To design this hybrid methodology, the dynamics of
microparticles in the proposed microchannel have been sim-
ulated using the immersed boundary and lattice Boltzmann
methods. In the lattice Boltzmann method, macroscale quan-
tities (fluid velocity, density, and electric potential) are
calculated using a set of mesoscale probability distribution
functions which must be stored in memory along with the
macroscale quantities. Thus, the lattice Boltzmann method
requires large memory compared to other numerical methods
for solving the Navier-Stokes equations which deal only with
the macroscale quantities. Moreover, in the immersed bound-
ary method, the mesh or grid size around the immersed object
should be sufficiently small to enable accurate simulations;
hence, the immersed boundary–lattice Boltzmann simulation
of fluid-structure interaction phenomena is computationally
expensive.

One solution involves the use of parallel computing. Ow-
ing to its several computational cores, calculations by the
graphics processing units (GPUs) are much faster than central
processing units (CPUs). GPUs, however, suffer from limited
memory in comparison with CPUs, necessitating memory
management in performing the immersed boundary–lattice
Boltzmann calculation by GPUs. In this study, the AA pattern
of storing or reading distribution functions in or from mem-
ory was utilized in immersed boundary–lattice Boltzmann
simulations to enable the fast and efficient simulations of
fluid-particle systems. It is noteworthy that the AA memory
pattern provides a single lattice streaming method [15] that de-
creases the required memory of the lattice Boltzmann method
to half.

The remainder of this study is organized as follows. The
physics behind the inertial migration of microparticles and
dielectrophoresis phenomena is explained in the theory sec-
tion. In the numerical method section, the immersed boundary
and lattice Boltzmann methods have been proposed for solv-
ing governing differential equations. The inertial focusing of
spherical particles and the effect of dielectrophoretic force
on the number and location of inertial equilibrium positions
are addressed in the results and discussion section. Finally,
the separation of different-sized polystyrene microparticles
as well as the separation of same-sized CTCs and WBCs by
the developed dielectrophoresis-assisted inertial microfluidics
approach are simulated.

II. THEORY

Consider a particle in a straight microchannel with a square
cross section where the electrodes are located at the walls of
the microchannel to generate a nonuniform oscillatory electric
field. The inertial migration and electrokinetic phenomena
should be considered to investigate the dynamics of the par-
ticle. For this purpose, the physics underlying the inertial
migration phenomenon is presented in the first part of this
section, in which the inertial forces modulating the dynamics
of microparticles are explained. Note that the forces origi-
nate from the convective terms (u · ∇)u of the Navier-Stokes
equation

ρ

[
∂u
∂t

+ (u · ∇)u
]

= μ∇2u − ∇P + ρgd + Fb, (1)

where ρ, u, and P denote fluid density, velocity, and pressure,
respectively. ρgd is the force density driving the fluid in the
microchannel. Fb represents the immersed boundary force
density, which is used to simulate fluid-particle interaction.
The second part of this section is devoted to the equations gov-
erning the dielectrophoretic migration of a spherical particle
in an oscillatory electric field.

A. Inertial migration

First observed by Segre and Silberberg [16,17], particles
dispersed in a channel flow experience inertial forces, con-
centrating them to specific locations at the channel cross
section called equilibrium positions depending on the par-
ticle and fluid characteristics as well as channel structure.
Of these inertial forces, we can mention wall-induced lift,
shear-induced lift, Saffman lift, Magnus, and Dean drag forces
(generated by secondary flow in curved microchannels) [18].
Hu and Leal [19] showed that wall- and shear-induced lift
forces are dominant inertial forces in a straight microchannel.
Wall-induced lift force is assigned to the interaction of the
flow field with the particle and confining wall, which repels
the suspending particle away from the channel wall. Shear-
induced lift force is originated from the interaction of curved
fluid velocity profile with the immersed particle, which repels
the particle away from the channel center. Various methods
have been developed for calculating these forces [20]; the
most precise one is fluid-structure interaction simulation. In
this study, fluid-structure interaction simulation was utilized
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through the immersed boundary method, which includes all
the inertial forces at different Reynolds numbers.

B. Dielectrophoresis

Dielectrophoresis refers to a phenomenon in which a
nonuniform electric field exerts a net body force on a di-
electric particle polarized in the electric field. The net body,
so-called dielectrophoretic, force can be calculated by the
equivalent dipole moment approximation, in which the po-
larized particle is addressed—in an approximate manner—as
an induced dipole. This assumption is reasonable at regions
where the characteristic variation length of the electric field
is sufficiently large compared to the particle size [21]. Using
equivalent dipole moment approximation, the time-averaged
dielectrophoretic force acting on a spherical particle of radius
rp in an oscillatory electric field is calculated as [22]

FDEP = 2πεmr3
pRe[CM]∇|Erms|2, (2)

where Erms is the root-mean-squared value of the electric field
and εm denotes the permittivity of fluid medium surrounding
the spherical particle. Re[CM] also indicates the real part of
the Clausius-Mossotti factor

CM = ε∗
p − ε∗

m

ε∗
p + 2ε∗

m

. (3)

Indices p and m denote particle and fluid medium, respec-
tively. ε∗ represents the complex permittivity given by

ε∗ = ε − i
σ

ω
, (4)

where σ is the electrical conductivity and ω = 2π f is the
angular frequency in which f stands for the frequency of the
applied oscillatory electric field.

According to Eq. (2), the sign of Re[CM] determines the
direction of the dielectrophoretic force. When Re[CM] > 0,
the particle migrates towards regions with a higher value
of the electric field, and when Re[CM] < 0, the particle moves
towards regions with a lower value of the electric field. In
the present study, dielectrophoretic force has been utilized to
manipulate inertial equilibrium positions of polystyrene mi-
croparticles, large lymphocytes, and MDA-231 cancer cells.
The Clausius-Mossotti factors are presented in Appendix C
for these particles.

However, Erms must be determined to calculate the di-
electrophoretic force. For this purpose, the electric field
distribution is calculated from the electric potential distribu-
tion by

E = −∇φ (5)

for a domain with uniform permittivity and electrical conduc-
tivity. Electric field distribution is related to the charge density
distribution (q) through the Gauss law

∇ · E = q

ε
. (6)

The Poisson equation governing the electric potential distri-
bution in the microchannel is derived by combining Eqs. (5)
and (6),

∇2φ = −q

ε
. (7)

When the electrical double layer is very thin and there is no
charge in the bulk of fluid, Eq. (7) is simplified to the Laplace
equation [23]

∇2φ = 0. (8)

For an oscillatory voltage of φ = φp sin(ωt ), the peak volt-
age (φp) is related to the root-mean-squared voltage (φrms)
through

φ2
rms = 1

T

∫ T

0
φp sin2 (ωt ) dt = φ2

p

2
. (9)

Substituting the oscillatory voltage in Eq. (8) and using Eq. (9)
leads to

∇2φrms = 0. (10)

By solving Eq. (10) and calculating φrms, Erms is determined
from Eq. (5) throughout the simulation domain. Then the
dielectrophoretic force is calculated by Eq. (2). It must be
realized that the electric field is considered to be unperturbed
by the presence of the particle; thus, Eq. (10) is solved only
once, which significantly reduces the computational cost.

III. NUMERICAL METHODS

The distribution of fluid velocity and electric potential must
be determined to investigate the effect of dielectrophoretic
force on the inertial migration of microparticles. The lat-
tice Boltzmann method was employed in the present study
to solve the governing equations. The details of the lattice
Boltzmann method for solving the Navier-Stokes and Poisson
equations are presented in the following subsections, followed
by the implementation of Dirichlet and Neumann boundary
conditions. Subsequently, the immersed boundary method is
proposed for the fluid-structure interaction simulation to im-
plement the no-slip condition at the surface of the immersed
particle. Finally, some remarks are presented on the selection
of simulation parameters and the stability of the simulation.

A. Navier-Stokes solver

D3Q19 lattice Boltzmann method was used to solve the
governing equations for the fluid flow. This method solves the
discrete form of the Boltzmann equation [24]

fi(x + ei	t, t + 	t ) = fi(x, t ) + 

f
i (x, t )	t + Fi(x, t )	t,

(11)

which describes the evolution of distribution functions fi.
According to Eq. (11), distribution functions fi at point x and
time t are transferred with the lattice velocity vectors ei to
the neighboring points x + ei	t as one time step elapses. The
velocity vectors are depicted in Fig. 1.



f
i is the collision operator for the rate of change in distri-

bution function fi due to the elastic collisions of gas particles
with different velocities. In the present study, Bhatnagar-
Gross-Krook (BGK) collision model was used:



f
i (x, t ) = − 1

τ f

[
fi(x, t ) − f eq

i (x, t )
]
. (12)

In the BGK model, the distribution functions tend to relax to
their equilibrium values f eq

i after time τ f .
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FIG. 1. Discrete velocity vectors of the D3Q19 lattice Boltzmann
method.

Using the Chapman-Enskog analysis, τ f is related to the
fluid kinematic viscosity ν as [25]

ν
	t

	x2
= c2

s (τ f − 0.5), (13)

where cs( = 1/
√

3) is the speed of sound.
In Eq. (12), f eq

i , the so-called the equilibrium distribution,
is the discrete form of the Maxwell-Boltzmann distribu-
tion. Using the orthogonality of Hermite polynomials, the
Maxwell-Boltzmann distribution is expanded as [24]

f eq
i (x, t ) = wiρ(x, t )

[
1 + ei · u(x, t )

c2
s

+ [ei · u(x, t )]2

2c4
s

− u2(x, t )

2c2
s

]
, (14)

where wi is the weight coefficient corresponding to the lattice
velocity vector ei, which is defined as

wi =

⎧⎪⎪⎨
⎪⎪⎩

1
3 i = 0
1
18 i = 2, 3, . . . , 8
1
36 i = 9, 10, . . . , 18

. (15)

Returning to Eq. (11), Fi is the lattice Boltzmann force
model. In the present study, the force model proposed by Guo
et al. [26] was used:

Fi(x, t ) = wi

(
1 − 1

2τ f

)[
ei − u(x, t )

c2
s

+ei · u(x, t )

c4
s

ei

]
· f (x, t ),

(16)

where f is the force density exerted on the fluid. In Eqs. (14)
and (16) fluid density and velocity are calculated as

ρ(x, t ) =
18∑

i=0

fi(x, t ), (17)

ρu(x, t ) =
18∑

i=0

ei fi(x, t ) + 	t

2
f (x, t ), (18)

which are, respectively, the zeroth- and first-order moments
of fi.

B. Poisson solver

A time derivative term is added to the Poisson equation to
solve the elliptic Poisson equation

∂φ

∂ t̃
= γ∇2φ + γ q

ε
, (19)

where γ is an arbitrary constant. We employed a new dis-
tribution function to solve Eq. (19) with the D3Q19 lattice
Boltzmann method [27]:

gi(x + ei	t̃, t̃ + 	t̃ ) = gi(x, t̃ ) + 

g
i (x, t̃ )	t̃ + Qi(x, t̃ )	t̃ .

(20)

It must be noted that the steady-state solution of Eq. (19) is
the same as the solution of the Poisson equation. t̃ in Eq. (19)
does not represent the real time and is only introduced to solve
the Poisson equation. 


g
i is the BGK collision operator:



g
i (x, t̃ ) = − 1

τg

[
gi(x, t̃ ) − geq

i (x, t̃ )
]
. (21)

In the BGK collision model, τg is the relaxation time, which
is related to γ as [25]

γ
	t̃

	x2
= c2

s (τg − 0.5). (22)

In Eq. (21) geq
i is the equilibrium distribution function

geq
i (x, t̃ ) = wiφ(x, t̃ ). (23)

Returning to Eq. (20), Qi(x, t̃ ) shows the source term [27]

Qi(x, t̃ ) = wi

(
1 − 1

2τg

)
γ q(x, t̃ )

ε
. (24)

Also, electric potential φ is determined by

φ(x, t̃ ) =
18∑

i=0

gi(x, t̃ ) + 	t̃

2

γ q(x, t̃ )

ε
(25)

as the zeroth moment of gi.

C. Boundary conditions

Each time step of the lattice Boltzmann method is regarded
as the collision [Eqs. (26) and (27)] and propagation [Eqs. (28)
and (29)] steps:

f ∗
i (x, t ) = fi(x, t ) + 


f
i (x, t )	t + Fi(x, t )	t, (26)

g∗
i (x, t̃ ) = gi(x, t̃ ) + 


g
i (x, t̃ )	t̃ + Qi(x, t̃ )	t̃, (27)

fi(x + ei	t, t + 	t ) = f ∗
i (x, t ), (28)

gi(x + ei	t̃, t̃ + 	t̃ ) = g∗
i (x, t̃ ), (29)

where f ∗
i and g∗

i are postcollision, as well as fi and gi are
postpropagation distribution functions. In each time step, dis-
tribution functions propagating into the boundaries of the
computational domain are unknown and must be determined
by the lattice Boltzmann boundary condition methods.

We have used the bounce-back method to implement the
no-slip boundary condition at the channel walls of the devel-
oped Navier-Stokes solver. For this purpose, computational
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nodes (cubic lattice nodes) are distributed in the fluid domain
such that the physical boundary is placed in the middle of the
lattice nodes to ascertain second-order accuracy [24]. In this
way, the bounce-back method is applied to the postpropaga-
tion distribution functions as [28]

fi(xb, t + 	t ) = f−i(xb − ei	t, t + 	t ), (30)

where xb is the coordinates of the lattice nodes adjacent
to the physical boundary. Index i denotes the directions of
lattice velocity vectors corresponding to the unknown distri-
bution functions for which the boundary condition must be
enforced and −i is the direction opposite to i. Moreover, the
bounce-back method, which was employed for the postcolli-
sion distribution functions, is

f ∗
i (xb − ei	t, t ) = f ∗

−i(xb, t ). (31)

In addition, the nonequilibrium extrapolation method was
used to implement the Dirichlet and Neumann boundary con-
ditions for solving the Poisson equation using the lattice
Boltzmann method. For this purpose, the physical boundary
is located on the first computational node xb. In this regard,
the nonequilibrium extrapolation method is applied to the
postpropagation distribution functions as [29]

gi(xb, t̃ + 	t̃ ) = geq
i (xb, t̃ + 	t̃ ) + gneq

i (x f , t̃ + 	t̃ ), (32)

where x f is the first fluid node adjacent to the boundary node
xb. The nonequilibrium part of the distribution function is
equal to the difference between the postpropagation distri-
bution function and equilibrium distribution function (gneq

i =
gi − geq

i ). In the case of a Neumann boundary condition,
the electric potential required to obtain geq

i (xb, t̃ + 	t̃ )[ =
wiφ(xb, t̃ + 	t̃ )] at the boundary node is calculated using the
extrapolation from fluid values. Furthermore, the nonequilib-
rium extrapolation method was applied to the postcollision
distribution functions as

g∗
i (xb − ei	t̃, t̃ ) = geq

i (xb, t̃ + 	t̃ ) + g∗
i (x f − ei	t̃, t̃ )

− wi

j=18∑
j=0

g∗
j (x f − e j	t̃, t̃ ). (33)

In the case of Dirichlet boundary condition, the value of
geq

i (xb, t̃ + 	t̃ )[ = wiφ(xb, t̃ + 	t̃ )] is known at the bound-
ary node. In the case of a Neumann boundary condition,
however, the electric potential should be obtained for
geq

i (xb, t̃ + 	t̃ ) using the extrapolation from fluid values at
time t̃ as

φ(xb, t̃ + 	t̃ ) =
j=18∑
j=0

g∗
j (x f − e j	t̃, t̃ ). (34)

D. Immersed boundary method

As previously stated, the fluid-structure interaction simu-
lation allows for precise simulation of the inertial migration
phenomena. In this study, immersed boundary method was
used to simulate fluid-structure interaction; in which the lin-
ear and angular momentums transferred from the fluid to
the particle lead to the translational and rotational motion
of the particles. The linear momentum balance governs the

translational motion of a solid particle suspended in a fluid
[30]:

mp
dUp

dt
=

∫
CS

(σ · n) ds + (ρp − ρ f )Vpg + FDEP, (35)

where mp, Vp, and ρp are the particle mass, volume, and
density, respectively. ρ f also shows the fluid density and σ

(= μ[∇u + (∇u)T ] − Pδ with δ the identity tensor) denotes
the fluid stress tensor. The first term on the right side of
Eq. (35) shows the interaction between the surrounding fluid
and the particle, while the second term arises from the net
buoyancy force acting on the particle.

In the immersed boundary method, the momentum transfer
between fluid and particle is modeled using the force terms
in the fluid and particle momentum equations. In this re-
gard, the suspended solid particle is replaced with a very thin
fluid-loaded shell. Subsequently, the imaginary surface force
density Fs is imposed to move the imaginary shell with the
same velocity as the solid particle

m f
dUp

dt
=

∫
CS

(σ · n) ds +
∫

CS
Fs ds, (36)

where m f = Vpρ f . Using Eq. (36), Eq. (35) is rewritten as

mp
dUp

dt
= −

∫
CS

Fs ds + (ρp − ρ f )Vpg + m f
dUp

dt
+ FDEP.

(37)

In addition, discretization of Eq. (37) results in

Up(t + 	t ) = Up(t ) − 	t

mp

[∑
s

Fs(xs, t )	S

]

+
(

1 − ρ f

ρp

)
g	t + ρ f

ρp
[Up(t ) − Up(t − 	t )]

+ 	t

mp
FDEP, (38)

where xs shows the location of computational nodes at the
particle surface. The particle center of mass position xc is
updated as

xc(t + 	t ) = xc(t ) + 1
2 [Up(t + 	t ) + Up(t )]. (39)

Similarly, the angular momentum balance governing the
rotational motion of the particle is

Ip

�B
p

dt
=

∫
CS

(x − xc)B × (σ · n)B ds, (40)

where �B
p is the particle angular velocity. Ip denotes the parti-

cle moment of inertia (Ip = 0.4ρpVpr2
p for spherical particle).

The superscript B indicates the body-fixed reference frame.
By introducing the surface force density Fs, Eq. (40) is sim-
plified to

Ip

d�B
p

dt
= −

∫
CS

(x − xc)B × FB
s ds + I f

d�B
p

dt
, (41)

where I f shows the moment of inertia for the thin fluid-loaded
spherical shell (I f = 0.4ρ f Vpr2

p). Discretization of Eq. (41)
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leads to

�B
p (t + 	t ) =�B

p (t ) − 	t

Ip

[∑
s

(xs − xc)B × FB
s (xs, t )	S

]
+ ρ f

ρp

[
�B

p (t ) − �B
p (t − 	t )

]
. (42)

The unit quaternion Q[ = (q0, q1, q2, q3)T ] is used to express the particle orientation, where q2
0 + q2

1 + q2
2 + q2

3 = 1. Using
�B

p (t + 	t )[ = (
x,
y,
z )T ], calculated from Eq. (42), the quaternion is updated as

Q(t + 	t ) = Q(t ) + 1

2

⎡
⎢⎢⎣

0 −
x −
y −
z


x 0 
z −
y


y −
z 0 
x


z 
y −
x 0

⎤
⎥⎥⎦Q(t ). (43)

Equation (42) is written in the body-fixed reference frame where FB
s is defined, while Eq. (38) is written in the Eulerian reference

frame where Fs is defined. Fs is transformed into the body-fixed reference frame using [31]

FB
s = SFs, (44)

where S is the rotation matrix

S =

⎡
⎢⎢⎣

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎤
⎥⎥⎦. (45)

The surface force density in Eqs. (37) and (41) changes the velocity distribution around the particle surface, fulfilling the
no-slip boundary condition. The value of this force density at the location of immersed boundary nodes, xs, is calculated by
[32,33]

Fs(xs, t ) = 2ρ(xs, t )
Ud (xs, t ) − U∗(xs, t )

	t
	x, (46)

where Ud is the desired velocity of boundary nodes which is calculated in each time step using

Ud (xs, t ) = Up(t ) + S−1[�B
p (t ) × (xs − xc )B

]
, (47)

where S−1 is the inverse of the rotation matrix, which transforms the quantity into the Eulerian reference frame where Up is
defined as

S−1 =

⎡
⎢⎢⎣

q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 − q0q3) 2(q1q3 + q0q2)

2(q1q2 + q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q2q3 + q0q1) q2
0 − q2

1 − q2
2 + q2

3

⎤
⎥⎥⎦. (48)

In Eq. (46), U∗ is the unforced velocity at the boundary node, which is calculated by interpolation of the velocity field calculated
by the lattice Boltzmann method

U∗(xs, t ) =
∑

x

u∗(x, t )D(x − xs)	x3, (49)

where u∗ is calculated using Eqs. (17) and (18) by setting f = ρgd , where ρgd is the force density driving the fluid. D is the
discrete form of the Dirac delta function

D(x) = 1

	x3 D
( x

	x

)
D

( y

	x

)
D

( z

	x

)
, (50)

where D is given by

D (r) =

⎧⎪⎨
⎪⎩

1
8 (3 − 2 | r | +

√
1+ | r | −4r2) r � 1

1
8 (5 − 2 | r | −

√
−7 + 12 | r | −4r2) 1 � r � 2

0 2 � r

. (51)

The calculated immersed boundary force is distributed to the fluid nodes near the boundary nodes using

Fb(x, t ) =
∑
xs

Fs(xs, t )D(x − xs)	S, (52)

where 	S is the surface area corresponding to each boundary node. The fluid velocity around the boundary is modified using
Eq. (18) by setting f = ρgd + Fb.
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E. Simulation details

To solve the governing equations using the lattice Boltzmann method, simulation parameters must be first determined. These
parameters include driving force density ρgd , lattice spacing 	x, time increment 	t , and relaxation time τ (τ f and τg). The
driving force density ρgd in Eq. (1) is calculated as [34]

ρgd =
(

H4

12Qρ f ν

{
1 − 192

π5

∞∑
n=0

1

(2n + 1)5
tanh

[
(2n + 1)

π

2

]})−1

î, (53)

where ρ f and ν are density and kinematic viscosity of the Newtonian fluid, respectively. Q is the fluid flow rate in a straight
channel with a square cross section of side length H .

According to Eqs. (13) and (22), only two of the three parameters 	x, 	t , and τ can be independently determined. In this
study, the values of 	x and τ were set. The value of 	t was calculated using Eqs. (13) and (22). Lattice spacing, 	x, and time
increment, 	t , must be sufficiently small to guarantee the accuracy of the simulation. These parameters must also guarantee the
stability of the numerical simulation. To guarantee a stable simulation, relaxation time must not be too close to 0.5 while the
maximum nondimensional fluid velocity must be less than 0.2 [24],

umax	t

	x
� 0.2, (54)

where the maximum velocity occurs at the center of the square cross section

umax =
∞∑

n=0

4gd H2

νπ3

1

(2n + 1)3

{
1 − 1

cosh

[
(2n + 1)

π

2

]}
sin

[
(2n + 1)

π

2

]
. (55)

The lattice spacing, 	x, was set to 0.5 µm to ensure
grid independency. The relaxation time for the Navier-Stokes
solver, τ f , was also set at 0.7. Using Eq. (13), the time step is
calculated as 1.94×10−8 s. According to Eq. (53), the driving
force density was set 1.897×107 N m−3 to ascertain a fluid
flow rate of 250 µl min−1, which was the opted flow rate in
all our simulations. Using Eq. (55), the maximum fluid ve-
locity, umax, was calculated to be 3.493 m s−1, which satisfies
the stability condition given in Eq. (54). The relaxation time
for the Poisson solver, τg, was set to 0.9; thus, according
to Eq. (22), the imaginary time step, 	t̃ , was obtained to
be 3.3 × 10−8 s.

In fluid-structure interaction simulation, the lattice spacing
must be small enough to resolve the details of the parti-
cle surface. According to Eq. (54), by reducing the lattice
spacing 	x, the time increment 	t should also be reduced
to guarantee the stability of the calculations, which further
increases the computational cost. In the present study, parallel
computing using GPUs was used for the intensive calculations
of the immersed boundary–lattice Boltzmann simulation.
Thanks to their many computational cores, GPUs are much
faster than CPUs. Therefore, the application of GPUs sig-
nificantly speeds up the computations for cost-demanding
three-dimensional simulations. One constraint in the use of
GPUs lies in their limited memory compared to CPUs, further
highlighting the necessity of memory management, especially
in the memory-hungry lattice Boltzmann method.

AA pattern of storing distribution functions refers to the
smart use of memory by combining two successive time
steps of the lattice Boltzmann method into a collision and
a propagation-collision-propagation steps and changing the
sequence of storing distribution functions in memory after
these steps [15]. AA memory pattern, in combination with the
GPU implemented immersed boundary and lattice Boltzmann
methods, facilitates faster and more-involved simulations.

C++ and CUDA API are used to develop the parallel
double-precision solver. The details of the simulation algo-
rithm are presented in Appendix A, followed by the validation
of the developed solvers in Appendix B. The first step of the
algorithm and the dielectrophoretic force calculation method
were validated by comparing the numerical and analytical
solution of the Poisson equation and the dielectrophoretic
force. To validate the developed immersed boundary–lattice
Boltzmann code, sedimentation of a single spherical particle
was simulated in fluids of different properties. The numerical
results were also compared with the previously published
experimental data.

IV. RESULTS AND DISCUSSION

The aim of this study is to introduce a robust microparti-
cle separation method utilizing the synergistic effect of the
hydrodynamic and electric phenomena. In this regard, the
hydrodynamic response of different-sized particles is first
examined to determine their migration pattern to the equi-
librium positions. In the second part of this section, the
dielectrophoretic force is applied to the particles to manip-
ulate their equilibrium positions. The effect of voltage and
frequency of the applied electric field on the final position
of the particle is also explored. It has been demonstrated that
the number and location of the equilibrium positions in the
microchannel can be modulated by the applied electric field at
specific voltages and frequencies. Thus, a hybrid microparti-
cle separation methodology is proposed based on our results.
The separation of microparticles in two challenging particle
mixtures is numerically simulated to examine the robustness
of the proposed method.

A. Inertial focusing pattern in a square microchannel

The inertial focusing patterns of 5 and 8 µm particles were
determined in a straight microchannel [Fig. 2(a)] using the
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FIG. 2. The geometry of one period of the straight microchannel
and the configuration of microelectrodes at the bottom wall for in-
vestigating the dielectrophoretic manipulation of inertial equilibrium
positions (a), and the distribution of nondimensional electric poten-
tial in one simulated period of the straight microchannel (b).

immersed boundary and lattice Boltzmann methods. For this
purpose, the no-slip boundary condition was implemented
at the microchannel walls using the bounce-back method.
Moreover, the periodic boundary condition was used for both
particle and fluid along the flow direction.

Figure 3(a) demonstrates the position of a 5 µm particle
at the microchannel cross section as a function of time for
different initial positions. Additionally, Fig. 3(b) depicts the
cross-sectional view of the migration process. It is observed
that the particles migrate to four equilibrium positions close to

the center of each microchannel confining wall. When the par-
ticle is close to the channel wall, the dominant wall-induced
lift force repels the particle away from the wall towards the
equilibrium position. On the other hand, when the particle
is close to the channel center, the dominated shear-induced
lift force leads to the migration of the particle towards the
microchannel walls. However, the equilibrium position of a
particle depends on its initial position. In this regard, each
of the four equilibrium positions corresponds to one of the
four isosceles right triangles made by the diagonals of the
microchannel cross section. Particles with the initial position
in each triangle section migrate to the equilibrium position
corresponding to the same section.

According to Figs. 3(a) and 3(b), the migration to the
equilibrium positions occurs in two stages, which has already
been reported (see [35] and references therein). In stage I, both
wall- and shear-induced lift forces govern the migration of
particles towards channel walls. In this stage, the net effect of
wall- and shear-induced lift forces results in rapid migration
of the particles towards a curve, which is a squircle shape as
shown in Fig. 3(b). In stage II, due to the rotation-induced lift
force, particles follow the minimum lift force curve to the final
four equilibrium positions. This two-stage migration process
also validates our developed fluid-structure interaction solver

FIG. 3. Inertial focusing pattern of 5 and 8 µm particles in the microchannel of Fig. 2(a).
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FIG. 4. Vorticity contours around same-sized 8 µm particles (a). Vorticity contours around different-sized particles of 5 and 8 µm diameters
(b). Contours are plotted at the plane perpendicular to the top and bottom walls of Fig. 2(a) at y = 25 µm.

in addition to the other validations presented in this work.
Furthermore, Figs. 3(c) and 3(d) demonstrate the migration
process of an 8 µm particle towards equilibrium positions for
different initial positions. This particle migrates slower than
the 5 µm particle.

Thus far, the dynamics of a solely single particle within
a channel flow has been examined. When two or more parti-
cles are present in a channel flow, they may interact through
the suspending medium leading to the emergence of new
phenomena [36,37]. To account partly for the migration of
particles within many-body suspensions in a channel flow, two
scenarios were simulated to investigate the hydrodynamic in-
teractions of the particles at the inertial equilibrium positions.

In the first scenario, the inertial migration of four 8 µm
particles was simulated. The initial position of each particle
in the cross section was inside the isosceles right triangle cor-
responding to the upper wall. Figure 4(a) shows the vorticity
contours around 8 µm particles in the plane perpendicular to
the top and bottom walls at y = 25 µm. The same-sized parti-
cles have migrated to the equilibrium position corresponding
to the top wall. This observation was expected from the results
revealed in Fig. 3.

A train of particles is, however, formed at the equilib-
rium position. This phenomenon is associated with a two-step
dynamics. In the first step, they migrate to the inertial equi-
librium position governed by the inertial forces. Afterwards,
they continue their motion in the flow direction as the second
step. In this step, a repulsive force acts between the adjacent
particles, which prevents them from approaching each other.
The repulsive force is of the similar nature to the wall-induced
lift force, which prevents particles from approaching the wall.

In the second scenario, the inertial migration of two 5 µm as
well as two 8 µm particles was simulated. The initial position
of the particles at the cross section was inside the isosceles
right triangle corresponding to the top wall. According to
the results illustrated in Fig. 4(b), the different-sized parti-
cles also migrate to the equilibrium position corresponding
to the top wall and form a train in the flow direction. In
this scenario, the different-sized particles experience different
drag forces, which modulates their equilibrium distance in
the flow direction. Furthermore, the surface-to-surface dis-
tance of two adjacent particles is approximately equal to the
sum of their corresponding diameters. This fact is associated
with the impact of the particles on the far-field fluid hydro-
dynamics, which vanishes for distances beyond the particle
size [38].

Returning to Fig. 3, a comparison of Figs. 3(b) and 3(d)
indicates that the equilibrium positions of the 8 µm particle
are slightly closer to the channel centerline than those of the
5 µm particle. Such a negligible difference cannot be used to
separate these particles. For separation purposes, it is required
to increase the difference by introducing new forces on the
particles.

In this regard, different strategies can be adopted including
the use of a passive force. For example, an introduction of
a curvature into the microchannel geometry generates Dean
vortices, leading to Dean drag force on the particles changing
their equilibrium positions. The manipulating force can also
be an active force generated from external electric, magnetic,
or acoustic fields. In the following, the dielectrophoretic force
acting on particles is utilized in an oscillatory electric field
to manipulate the equilibrium positions and increase the dif-
ference between the equilibrium positions of different-sized
particles.

B. Dielectrophoretic control of inertial equilibrium positions

Figure 2(b) demonstrates the contours of dimensionless
electric potential in one period of the simulated microchannel
[Fig. 2(a)]. Dirichlet boundary conditions of +1 and −1 V
were alternately applied at the electrodes located at the bottom
wall using the nonequilibrium extrapolation method. The peri-
odic boundary condition was used in the horizontal direction.
A Neumann boundary condition of electric insulation was
also applied at the other boundaries using the nonequilibrium
extrapolation method [25]. The density and magnitude of the
electric potential contours approach zero by increasing the
distance from the electrodes.

According to Eq. (2), the real part of the Clausius-Mossotti
factor determines the direction of the dielectrophoretic force.
In this context, Fig. 5(a) demonstrates the real part of the
Clausius-Mossotti factor for the 5 and 8 µm polystyrene par-
ticles as a function of electric field frequency. It is observed
that the real part of the Clausius-Mossotti factor for the 8 µm
particle is zero at the crossover frequency, which is ∼170 kHz.
Similarly, the crossover frequency of the 5 µm particle is
∼290 kHz. At frequencies less than the crossover frequency,
the real part of the Clausius-Mossotti factor is positive
for the polystyrene microparticles, and the dielectrophoretic
force is towards the electrodes. Conversely, at frequencies
higher than the crossover frequency, the real part of the
Clausius-Mossotti factor for the polystyrene microparticle is
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FIG. 5. The real part of the Clausius-Mossotti factor for 5 and 8 µm polystyrene microparticles (a) as well as MDA-231 CTC and
lymphocytes white blood cells (b) as a function of the applied electric field frequency.

negative, and the dielectrophoretic force is directed away from
electrodes.

Figure 6 demonstrates the migration of 5 and 8 µm
polystyrene particles towards equilibrium positions in the
presence of dielectrophoretic force generated from the elec-
trodes at the bottom wall of the microchannel [Fig. 2(b)].
At low frequencies [Figs. 6(a) and 6(b)], the polystyrene
microparticles experience a positive dielectrophoretic force
causing the equilibrium position to approach the bottom wall.
Increasing the voltage reduces the distance between the equi-
librium position and the wall. As the particle approaches the
wall, the value of the upward net lift force opposing the
positive dielectrophoretic force is increased.

At high electric field frequencies, the particles experience
a negative dielectrophoretic force [Figs. 6(c) and 6(d)]. In
this case, the magnitude of the upward dielectrophoretic force
increases by increasing the applied voltage from 5 to 25 V,
which displaces the equilibrium position corresponding to the
bottom wall away from the electrodes [Figs. 6(e) and 6(f)].
Further increase of the voltage [Figs. 6(g) and 6(h)] leads to a
threshold voltage at which dielectrophoretic force dominates
over the opposing shear-induced lift force, and the corre-
sponding particle passes the channel centerline. The threshold
voltage for this configuration ranges from 25 to 30 V. After
passing the channel centerline, the shear-induced lift force
changes its direction and boosts the dielectrophoretic force to
displace the particle away from the channel centerline towards
the original equilibrium position corresponding to the top
wall, where the resultant of all inertial forces on the particle
normal to the flow direction is zero.

According to Fig. 6, in the case of negative dielectrophore-
sis, the equilibrium positions corresponding to the side walls
are slightly displaced upward, while the equilibrium position
corresponding to the top wall remains almost intact by the
dielectrophoretic force generated from the electrodes located
at the bottom wall. The reason could be the short-range nature
of the dielectrophoretic force, which exponentially decays by
the distance from the electrodes [13].

Before addressing the dielectrophoresis-assisted separation
of microparticles, we briefly digress to compare dielec-
trophoretic and inertial effects that address the dynamics of
microparticles within the straight microchannel. To this end,

the dielectrophoretic and inertial migration velocities of a
5 µm particle were calculated in two distinct situations. In all
the simulations, the particle was initially located at y = 25 µm,
leading to the centerline symmetry and, in turn, zero velocity
for the particle in the y direction. As such, the particle was
able to move only in the x and/or z directions. The particle
velocity in the z direction is, however, a measure of the di-
electrophoretic and inertial effects.

To investigate the dielectrophoretic effects, the particle was
initially located at z = 5 µm. The frequency of the applied
electric potential was fixed at 100 MHz such that the particle
was experiencing a negative dielectrophoretic force. The sim-
ulations were performed at the voltages of 5, 10, 15, 20, 25,
and 30 V. Moreover, the driving force was absent to ensure
the solely dielectrophoretic-driven particle motion.

In addition, other simulations were performed for four
different initial vertical distances of z = 5, 24.9, 25.1, and 45
µm to investigate the inertial effects. For these simulations, the
voltage was fixed at 0 V to ensure the solely flow rate-driven
particle motion.

Figure 7 shows the z component of the particle velocity
for the two aforementioned distinct simulations. The parti-
cle velocity increases under the influence of inertial forces.
The particle velocity asymptotes to zero by approaching
the equilibrium positions. A comparison of the dielec-
trophoretic and inertial migration velocities indicates that the
dielectrophoretic effects are dominant near the electrodes.
By increasing the distance from electrodes, the dielec-
trophoretic effects exponentially decay [13] such that dielec-
trophoretic effects disappear beyond 30 µm distance from the
electrodes.

C. Dielectrophoresis-assisted separation of microparticles

It was observed in the previous section that a strong neg-
ative dielectrophoretic force releases trapped particles from
inertial equilibrium positions in the vicinity of electrodes.
As the dielectrophoretic force is highly controllable through
the voltage and frequency of the applied electric field, it is
possible to displace target particles to specific equilibrium po-
sitions using the controllable negative dielectrophoretic force
for their complete separation from the nontarget particles.
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↓ 5 µm particle ↓ 8 µm particle

(a) φp = 5 V , f = 1 kHz (b) φp = 5 V , f = 1 kHz

(c) φp = 5 V , f = 100 MHz (d) φp = 5 V , f = 100 MHz

(e) φp = 25 V , f = 100 MHz (f) φp = 25 V , f = 100 MHz

(g) φp = 30 V , f = 100 MHz (h) φp = 30 V , f = 100 MHz

FIG. 6. Effect of dielectrophoretic force on the number and
location of inertial equilibrium positions for the 5 µm (left) and
8 µm (right) polystyrene particles. At a low frequency (1 kHz), the
polystyrene microparticles experience a positive dielectrophoretic
force. Using a voltage of 5 V at the electrodes located at the
bottom wall, the equilibrium position corresponding to the bottom
wall approaches the electrodes, where the upward net lift force
balances the downward dielectrophoretic force (a, b). At a high
frequency (100 MHz), the particles experience a negative dielec-
trophoretic force. A voltage of 5 V at the electrodes, located at the
bottom wall, displaces the equilibrium position from electrodes to
the position where the downward net lift force balances the upward
dielectrophoretic force (c, d). By increasing the voltage at the high
frequency, the equilibrium distance from electrodes increases (e, f).

Here a two-step mechanism is presented to separate the
microparticles. The steps are schematically demonstrated in
Fig. 8. In the first step, electrodes are located at the top and
bottom walls of the microchannel, while in the second step,
electrodes are located at the side walls of the microchannel.
The microelectrodes are configured in this way to provide
more degrees of freedom in separation. In each step, a specific
particle manipulation can be applied with no interference from
the electrodes of the other step. In the first separation step,
a strong negative dielectrophoretic force is generated from
the electrodes located at the top and bottom walls of the
microchannel, which leads to the migration of all particles
to the inertial equilibrium positions corresponding to the mi-
crochannel side walls. At the end of the first separation step,
the equilibrium positions corresponding to the top and bottom
walls are free from particles.

In the second step, by setting the frequency to the crossover
frequency of the nontarget particles, only target particles are
affected by the negative dielectrophoretic force. In this case,
using a high voltage which displaces target particles to the
equilibrium positions corresponding to the top and bottom
walls, target particles leave the microchannel through outlet
2 in Fig. 8 at the end of the separation. In contrast, nontarget
particles leave the microchannel through outlets 1 and 3.

The proposed method has many advantages over the
current microfluidics particle manipulation methods. This
method is based on the negative dielectrophoresis such that
particles are not exposed to the strong electric fields near
the electrodes. This is especially important for bioparti-
cles, where prolonged exposure to the strong electric fields
leads to cell damage. Conventional microparticle manipula-
tion devices that hinge upon inertial effects are not easily
controllable. In contrast, our proposed method synergistically
exploits both the dielectrophoretic and inertial forces; thus,
the performance of the inertial forces can be modulated by the
voltage and frequency of the applied electric field. In addition,
the prefocusing of particles with the aid of a sheath flow
is not required, which avoids the possibility of any external
contamination.

In the following, the presented method is used to separate
particles in two challenging mixtures: same-type particles of
different sizes and same-size particles of different types.

1. Same-type particles of different sizes

The functionality of the proposed mechanism to separate
different-sized microparticles is explored in this section. The
periodic boundary condition was considered in the flow direc-
tion. Figure 9(a) depicts the configuration of the electrodes in
one simulated period of the first separation step. Figure 9(b)
also demonstrates the distribution of nondimensional electric
potential in the periodic domain generated from electrodes at
the top and bottom walls of the first step of the separation
system. Figure 9(c) depicts the cross-sectional position of

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
At a threshold voltage particle passes the channel centerline where
the change occurs in the direction of the shear-induced lift force, and
the particle migrates to the original equilibrium position correspond-
ing to the top wall (g, h).
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FIG. 7. Dielectrophoretic and inertial migration velocities as a function of vertical distance from electrodes located at the bottom wall
(z = 0 µm) for a 5 µm particle initially located at y = 25 µm.

two 5 µm and two 8 µm polystyrene particles as a function of
time in the first separation step. Based on the phenomenon
observed in the preceding section, the voltage of 30 V and the
frequency of 100 MHz generates a negative dielectrophoretic
force, which can remove equilibrium positions near elec-
trodes. According to Fig. 9(c), as time passes, all particles
gradually migrate to the equilibrium positions corresponding
to the side walls.

Figure 9(d) depicts the configuration of the electrodes
in one simulated period of the second separation step. Fig-
ure 9(e) demonstrates the distribution of nondimensional
electric potential in the periodic domain generated from elec-
trodes at the left and right walls in the second step of the
separation system. Figure 9(f) shows the position of the parti-
cles as a function of time in the second separation step. At the
frequency of 200 kHz and voltage of 30 V, two 8 µm particles
migrate to the equilibrium positions of the top and bottom
walls, while two 5 µm particles are slightly displaced in their
position as 200 kHz is close to the crossover frequency of 5 µm
particles where they experience almost zero dielectrophoretic
force.

FIG. 8. Schematic representation of the proposed two-step
dielectrophoretic-controlled inertial microfluidic separation method.
In the first step, electrodes are located at the top and bottom
walls, while electrodes are located at the side walls in the second
step.

2. Same-sized particles of different types

Another kind of particle mixture that is challenging to sep-
arate is the mixture of same-size particles with different types
[14]. The separation of 6 µm MDA-231 CTCs from the same-
size lymphocytes (WBCs) was simulated to demonstrate the
ability of the proposed method to separate these challenging
particles. In the first separation step, two WBCs and two CTCs
are randomly distributed in the microchannel cross section.
Figure 5(b) depicts the real part of the Clausius-Mossotti
factor for these cells as a function of applied frequency. The
frequency of 10 kHz was used in the first separation step. The
use of a 30 V voltage leads to a negative dielectrophoretic
force. According to Fig. 10(a), all particles migrate to the
equilibrium positions corresponding to the microchannel side
walls. Figure 10(b) demonstrates the migration of cells in the
second separation step. At the frequency of 80 kHz, close to
the crossover frequency of CTCs, a negative dielectrophoretic
force is formed, which displaces WBCs to the equilibrium
positions corresponding to the top and bottom walls while
CTCs remain in the equilibrium positions close to the side
walls. Following the second step, CTCs leave the microchan-
nel from outlets 1 and 3 in Fig. 8, whereas WBCs leave the
microchannel at outlet 2.

V. CONCLUSION

The dynamics of microparticles were simulated in a
straight microchannel with a square cross section. A hy-
brid dielectrophoresis-assisted inertial microfluidic method
was presented for microparticle separation. The immersed
boundary and lattice Boltzmann methods were implemented
on a single GPU. AA pattern of storing distribution func-
tions on memory was used to overcome the issue of limited
memory of the GPU, making it possible to perform fast and
detailed simulations. Particles immersed in the fluid flow mi-
grated towards four stable positions depending on their initial
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(a)

(b)

(c)

(d)

(e)

(f)

FIG. 9. Configuration of electrodes in one simulated period of the first separation step (a), electric-potential distribution in one period of
the first step (b), and the migration of 5 and 8 µm polystyrene particles to the inertial equilibrium positions corresponding to the side walls
as a function of time in the first separation step (c). Configuration of electrodes in one simulated period of the second separation step (d),
electric-potential distribution in one period of the second step (e), and the migration of 8 µm polystyrene particles to the inertial equilibrium
positions corresponding to the top and bottom walls as a function of time in the second separation step (f).

positions. The dielectrophoretic force was utilized to manipu-
late the location and number of these equilibrium positions. At
a threshold voltage, the negative dielectrophoretic force made
the equilibrium position near the electrodes pass the channel
centerline and merge with other equilibrium positions far from
the electrodes.

This particle separation method comprises two steps. The
first step involves the application of a specific frequency
on the electrodes implemented at the top and bottom walls
such that all particles experience a negative dielectrophoretic
force. Using a high voltage (greater than the threshold volt-
age of all microparticles), all microparticles migrate to the

equilibrium positions corresponding to the microchannel side
walls. In the second step, a frequency close to the crossover
frequency of one set of particles is applied at the elec-
trodes implemented at the side walls (the Clausius-Mossotti
factor for the other set of particles is negative). Using a
high voltage (greater than the threshold voltage of particles
that are intended to be displaced), particles that experi-
ence a strong negative dielectrophoretic force migrate to the
equilibrium positions corresponding to the top and bottom
walls; while no significant variation occurs in the equilibrium
positions of other particles. This approach benefits from the
advantages of both active and passive microfluidic separation
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FIG. 10. Migration of CTCs and WBCs to the inertial equilibrium positions corresponding to the side walls in the first separation step (a).
Migration of WBCs to the inertial equilibrium positions corresponding to the top and bottom walls in the second separation step (b).

methods while avoiding their limitations, thus, offering a
high-throughput and controllable separation approach. The
applicability of the proposed mechanism was demonstrated
by numerical simulation of the separation in two challenging
mixtures: different-sized polystyrene microparticles and the
CTCs-WBCs mixtures.
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APPENDIX A: THE SIMULATION ALGORITHM

The simulation algorithm consists of two parts. The first
one is solving the Poisson equation, which is demonstrated
in Fig. 11 as blue-colored blocks. The second part is the
simulation of fluid-particle interaction in the presence of di-
electrophoretic force using the immersed boundary–lattice
Boltzmann method, which is represented in Fig. 11 as orange-

FIG. 11. The simulation algorithm of inertial migration in an
oscillating electric field. Blue-colored blocks represent the lattice
Boltzmann method for solving the Poisson equation. Orange-colored
blocks represent the immersed boundary-lattice Boltzmann method
for simulation of fluid-particle interaction in the presence of dielec-
trophoretic force.

colored blocks. The first part starts with initializing the
electric potential φ and distribution functions gi. At the start
of each simulation, electric potential is set to zero throughout
the computational domain. Also, distribution functions are set
to zero, which is the equilibrium value corresponding to the
zero potential according to Eq. (23).

In the collision step, distribution functions associated with
the point x of the computational domain at time t are read from
19×8 bytes of memory corresponding to the same fluid point
x according to Fig. 12(a). After that, postcollision distribution
functions are calculated using Eq. (27). Postcollision distri-
bution functions are stored in the corresponding memory of
the same fluid point x according to Fig. 12(b). All distribution
functions that propagate to the boundary nodes are calculated
using the postcollision form of the nonequilibrium extrapola-
tion method [Eq. (33)].

To perform the propagation-collision-propagation step,
distribution functions are read from the 19×8 bytes of mem-
ory corresponding to the fluid node x − ei	t̃ according to
Fig. 12(b), which is equivalent to the first propagation. Post-
collision distribution functions are calculated using Eq. (27)
and stored in consecutive 19×8 bytes of memory corre-
sponding to the fluid point x + ei	t̃ according to Fig. 12(a),
which is equivalent to the second propagation. All distribu-
tion functions at the boundary nodes are calculated using
the postpropagation form of the nonequilibrium extrapolation
method [Eq. (32)]. Simulation is continued until the steady-
state solution of Eq. (19) is attained, which is the electric
potential distribution in the computational domain. Then the
distribution of electric field is calculated using Eq. (5) from
the electric potential.

In order to perform fluid-structure interaction, the surface
of each spherical particle should be partitioned. The algorithm
proposed by Beckers et al. [39] is used to partition the surface
of spherical particles into equal-area segments of unit aspect
ratio, with immersed boundary nodes being located at the
center of each segment. Figures 13(a) and 13(b) depict how
two different-sized particles are partitioned.

The second part of the simulation algorithm starts with the
initialization of fluid velocity u, density ρ, and distribution
functions fi. The fluid velocity is set to zero at the start of
the simulation throughout the simulation domain. The value
of density at the computational nodes is set to the fluid den-
sity ρ f . Distribution functions are set to their corresponding
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FIG. 12. Order of saving distribution functions in memory using AA pattern after propagation-collision-propagation (a) and collision
(b) steps.

equilibrium values, which are calculated using Eq. (14). In
the collision step, distribution functions associated with the
point x of the fluid domain at time t are read from 19×8
bytes of memory corresponding to the fluid point x according
to Fig. 12(a). After that, postcollision distribution functions
are calculated using Eq. (26). Postcollision distribution func-
tions are stored in the corresponding memory of the same
fluid node x, according to Fig. 12(b). Unknown distribution
functions propagated into the computational domain at the
boundary nodes are calculated using the postcollision form of
the bounce-back method [Eq. (31)].

The desired fluid velocity required for the immersed
boundary force calculation at the particle surface is calculated
using Eq. (47). The unforced velocity is calculated using the
postpropagation distribution functions. In this regard, distri-
bution functions of fluid node x are read from the memory
corresponding to the point x − ei	t according to Fig. 12(b).
Unforced velocity at the lattice nodes is calculated using
Eq. (18) by setting f = ρgd . The unforced velocity is in-
terpolated at the location of each boundary node xs using
Eq. (49). According to Eq. (51), 64 fluid nodes are engaged
in the calculation and spreading of the immersed boundary
force at each boundary node, such that one block of 64 threads
[40] has been used for the corresponding calculations of each
immersed boundary node. The summation in Eq. (49) is calcu-
lated using the parallel reduction method [40]. The immersed
boundary surface force density Fs is calculated using Eq. (46)
at the location of immersed boundary nodes xs. Then each
thread calculates the share of its corresponding fluid node,
Fs(xs, t )D(x − xs)	S, from the calculated surface force den-
sity and adds it to the Fb value of that node. The addition is
performed using the GPU function atomicAdd(). This function
temporarily stops the operation of other threads until the task
of the current thread is completed, which removes the possi-
bility of interference when two threads from different blocks

FIG. 13. Partitioning the 5 µm particle surface into 165 equal
area and unit aspect ratio segments (a) and the 8 µm particle surface
into 295 equal area and unit aspect ratio segments (b). Boundary
nodes are located at the center of the segments.

are writing to the same location in memory at the same time
[41].

The dielectrophoretic force acting on the particle is calcu-
lated using Eq. (2). The value of ∇|Erms|2 is interpolated at the
particle center of mass from the steady-state solution of the
Poisson equation calculated in the first part of the simulation
algorithm. Dielectrophoretic and hydrodynamic forces update
particle linear and angular velocities using Eqs. (38) and (42),
respectively. After that, the position and orientation of the
particle are updated using Eqs. (39) and (43), respectively.

To perform the propagation-collision-propagation step,
distribution functions are read from the 19×8 bytes of mem-
ory corresponding to the fluid node x − ei	t̃ , according to
Fig. 12(b), which is equivalent to the first propagation. By
using the calculated immersed boundary force, postcollision
distribution functions are calculated using Eq. (26). After
that, postcollision distribution functions are stored in con-
secutive 19×8 bytes of memory corresponding to the fluid
point x + ei	t̃ , according to Fig. 12(a), which is equivalent
to the second propagation. Unknown distribution functions,
propagated into the computational domain at the boundary
nodes, are calculated using the postpropagation form of the
bounce-back method [Eq. (30)].

To calculate the unforced velocity, distribution functions
of fluid node x are read from the consecutive 19×8 bytes
of memory corresponding to the fluid node x according to
Fig. 12(a). Unforced fluid velocity at the fluid nodes is cal-
culated using Eq. (18) by setting f = ρgd . Then the unforced
velocity is interpolated at each immersed boundary node xs

using Eq. (49). The configuration of GPU blocks and threads
is the same as the former immersed boundary force calcula-
tion. The calculated immersed boundary force [using Eq. (46)]
and the calculated dielectrophoretic force at the particle center
[using Eq. (2)] are used to update the linear and angular
velocities of particle using Eqs. (38) and (42), followed by

FIG. 14. Schematic representation of the computational domain
of the single sphere sedimentation due to the gravity (a), and settling
velocity of the single sphere in four different types of silicone oil (b).
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TABLE I. Simulation parameters and properties of silicone oils
used in the particle sedimentation problem.

Density Viscosity Reynolds
Case no. (kg m−3) (10−3 kg m−1 s−1) number

1 970 373 1.5
2 965 212 4.1
3 962 113 11.6
4 960 58 32.2

the linear and angular motion of particle using Eqs. (39) and
(43).

APPENDIX B: VALIDATION OF THE
NUMERICAL METHODS

The validity of the developed parallel immersed boundary–
lattice Boltzmann code is examined by simulating the
sedimentation of a single spherical particle in four different
types of silicone oil, and the simulation results are compared
with experimental data from the literature [42]. As shown in
Fig. 14(a), a spherical particle with diameter 15 mm and den-
sity 1120 kg m−3 is initially located at the height of 120 mm
in a cuboid of size depth × width × height = 100 mm ×
100 mm × 160 mm. At the beginning of the experiment,
the particle starts settling in the fluid. Simulation parameters
and the properties of the silicon oils are shown in Table I.
Figure 14(b) represents the settling velocity of the particle as
a function of time. It is observed that there is a reasonable
agreement between simulation results and experimental data.

To ensure that our developed solver can accurately re-
solve the microscale fluid-structure interaction phenomena,
the migration of a 10 µm particle in a square cross-sectional
microchannel of height H (= 50 µm) is also simulated, and
the results are compared with those reported by Lashgari
et al. [43]. In this simulation, the Reynolds number based
on the bulk flow velocity and hydraulic diameter is set to
100. Figure 15 represents the migration of 10 µm particle in
the upper half of the microchannel. It is observed that the
particle trajectory and the final equilibrium position (0.2H
away from the top wall) well agree with those reported in

FIG. 15. Comparison between the results of this study and those
reported in [43] for the migration of the 10 µm particle in the cross
section and inertial equilibrium position (0.2 H from the top wall).

FIG. 16. Geometry and boundary conditions of the dielec-
trophoresis validation problem (a), and comparison between ana-
lytical and numerical values of electric potential, electric field and
dielectrophoretic force in the domain of panel (a) and (b).

[43], which further confirms the accuracy of the developed
immersed boundary–lattice Boltzmann code.

Moreover, we have provided another validations in the
main text. That was the two-stage migration of particles to
the inertial equilibrium positions, which has already been
published [35]. These validations guarantee that our devel-
oped code accurately simulates the fluid-structure interaction
phenomena in microfluidic systems.

To validate the developed lattice Boltzmann Poisson
solver and the dielectrophoretic force calculation method, the
Laplace equation [Eq. (8)] has been solved for the domain of
Fig. 16(a), and the analytical and numerical values of electric
potential, electric field, and dielectrophoretic force are com-
pared. The boundary conditions in the x and y directions are
shown in Fig. 16(a). The analytical solutions are calculated
using the Fourier series and separation of variable method
[44].

In the numerical simulation using the lattice Boltzmann
method, periodic boundary conditions in the z direction per-
pendicular to the plane has been used, which means that
the solution of the 2D problem has been calculated with the
developed 3D solver. This problem has been chosen as the
validation problem of the proposed dielectrophoretic force
calculation method because it contains Dirichlet, Neumann,
and periodic boundary conditions that have been appeared in
this study. Dirichlet and Neumann boundary conditions are
enforced using the nonequilibrium extrapolation method. The
lattice spacing is chosen to be 	x = 0.5 µm. Figure 16(b)
represents the contours plots of electric potential, electric
field, and dielectrophoretic force. It is observed that there is
a reasonable agreement between the analytical and numerical
solutions.
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TABLE II. Dielectric properties of lymphocyte (WBC) and
MDA-231 (CTC) [14].

Property Lymphocyte MDA-231

rp (µm) 6 6
d (nm) 7 4
σmem (S m−1) 1.4×10−7 1×10−6

εmem/ε0 12.8 11.75
σint (S m−1) 0.83 0.62
εint/ε0 73.2 52

APPENDIX C: CALCULATION OF THE
CLAUSIUS-MOSSOTTI FACTOR

1. Polystyrene microparticles

The electrical conductivity of spherical polystyrene mi-
croparticles is expressed as a function of the particle radius
as [45]

σp = σbulk + 2Ks

rp
, (C1)

where Ks ( = 2 nS), and σbulk ( = 10−14 S m−1) are the sur-
face conductance and the bulk conductivity of the polystyrene

microparticles, respectively. The conductivity and permittiv-
ity of the deionized water as the medium are, respectively,
1.5×10−4 S m−1 and 78 ε0, where ε0 ( = 8.854 × 10−12

F m−1) is the vacuum permittivity [46]. Equation (C1), in
combination with Eqs. (3) and (4), is used to calculate the
Clausius-Mossotti factor of different-sized polystyrene mi-
croparticles.

2. Bioparticles

To characterize the dielectric behavior of bioparticles, the
single-shell model is used in which the effective complex
permittivity of the cell is expressed as [47]

ε∗
cell =

( rp

rp−d

)3 + 2
( ε∗

int−ε∗
mem

ε∗
int+2ε∗

mem

)
( rp

rp−d

)3 − ( ε∗
int−ε∗

mem

ε∗
int+2ε∗

mem

) , (C2)

where rp is the radius of the cell, and d is the membrane thick-
ness. ε∗

mem, and ε∗
int are the complex permittivity of membrane

and cytoplasm, respectively. σmem, and σint are the electrical
conductivity of membrane and cytoplasm, respectively. The
conductivity and permittivity of the medium is considered to
be 0.055 S m−1 and 78 ε0, respectively. The dielectric param-
eters for the cells used in this study are given in Table II.
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