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No sign problem in one-dimensional path integral Monte Carlo simulation of fermions:
A topological proof
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This paper shows that, in one dimension, due to its topology, a closed-loop product of short-time propagators
is always positive, despite the fact that each antisymmetric free fermion propagator can be of either sign.
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I. INTRODUCTION

In their first path-integral Monte Carlo (PIMC) simulation
of fermions in a one-dimensional harmonic oscillator, Taka-
hashi and Imada were surprised that, “In the calculation of
one-dimensional fermions, we do not find any cases of nega-
tive weight function in ten thousands Monte Carlo steps even
at low temperature” [1]. They surmised that their situation
maybe similar to the one-dimensional lattice fermions studies
of Hirsch et al. [2]. The two are not similar. By a clever lattice
arrangement, the matrix elements of the lattice fermions of
Hirsch et al. can be chosen to be positive [2], whereas the free
fermion propagator used by Takahashi and Imada [1] can have
either sign. However, 24 yr earlier, Girardeau [3] has shown
that, in one dimension, the ground state wave function of N
impenetrable bosons {x1, x2 · · · xn}, which vanishes whenever
xi = x j , is the same as the modulus of the ground state wave
function of N free fermions,

ψB
0 = ∣∣ψF

0

∣∣. (1)

This means that, in one dimension, N interacting fermions can
always be mapped into the ordered subspace,

x1 < x2 < · · · < xN , (2)

with vanishing wave function at xi = xi+1. The ground state
wave function in this subspace can then be taken to be pos-
itive, the same as that of N impenetrable, interacting bosons
[4]. At any other subspace, corresponding to a permutation
of (2), the fermion wave function is, then, this wave function
multiplied by the sign of the permutation. Alternatively, one
can view the subspace (2) as having the correct wave function
nodes at xi = xi+1, thereby reduced a many-fermion problem
to that of a many-boson problem in a single nodal region
[5]. Since the determinant wave function det |φi(x j )| for any
reasonable one-dimensional single particle state φi(x) has this
nodal structure, diffusion Monte Carlo will also have no sign
problem when restricted to any single subspace, such as (2).
These views explain that fermions in one dimension do not
have the sign problem because it is basically a boson problem.

However, these views do not explain why there is no sign
problem specifically for PIMC simulations, despite the fact
that the antisymmetric free fermion propagator can have either
sign and that the simulation is not restricted to any particular
nodal region.

This paper found that there is a surprisingly simple, but
overlooked topological proof, that there is no sign problem for
PIMC simulation of one-dimensional fermions. This topolog-
ical explanation is related to the original insight of Girardeau
[6], that any statistics is permissible in one dimension, but
only Fermi-Dirac or Bose-Einstein statistics is mandated in
more than one dimension.

II. FERMION PATH INTEGRAL MONTE CARLO

Consider the single particle imaginary time Schrödinger
equation in one-dimension,

−∂ψ (x, τ )

∂τ
= (T̂ + V̂ )ψ (x, τ )

=
(

−1

2

∂2

∂x2
+ V (x)

)
ψ (x, τ ), (3)

with dimensionless spatial variable x and imaginary time τ ∝
β = (kBT )−1. In PIMC, one is mostly interested in extracting
the ground state wave function squared ψ2

0 (x) and energy E0

from the diagonal element of the imaginary time propagator
(or the density matrix) at the large τ , zero temperature limit,

lim
τ→∞ G(x, x; τ ) −→ ψ2

0 (x)e−τE0 + · · · , (4)

where

G(x′, x; τ ) = 〈x′|e−τ (T̂ +V̂ )|x〉 =
∑

n

ψ∗
n (x′)ψn(x)e−τEn . (5)

Since G(x′, x; τ ) is generally unknown, it is approximated by
k short-time high temperature propagators via

Gk (x′, x; τ ) = 〈x′|(e−ε(T̂ +V̂ ) )k|x〉

=
∫ ∞

−∞
dx1 · · · dxk−1 G1(x′, x1; ε)

× G1(x1, x2; ε) · · · G1(xk−1, x; ε), (6)

where ε = τ/k and G1(x′, x, ε) is usually the second-order
short-time approximation of 〈x′|e−ε(T̂ +V̂ )|x〉, the primitive ap-
proximation (PA) propagator,

G1(x′, x; ε) = 〈x′|e−(ε/2)V̂ e−εT̂ e−(ε/2)V̂ |x〉
= 1√

2πε
e−(ε/2)V (x′ )e−(x′−x)2/(2ε)e−(ε/2)V (x). (7)
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Since the PA propagator is only second order, it is accurate
only at small ε. Therefore, many PA propagators are usually
needed in (6) to extract the ground state properties at the large
τ , zero temperature limit.

To generalize the above to N fermions, one replaces x by
x = (x1, x2 · · · xN ) and G1(x′, x, ε) by

G1(x′, x; ε) = e−(ε/2)V (x′ )G0(x′, x; ε)e−(ε/2)V (x), (8)

where G0(x′, x; ε) is the antisymmetric free-fermion
propagator,

G0(x′, x; ε) = 1

N!
det

(
1√
2πε

exp

[
− 1

2ε
(x′

i − x j )
2

])
. (9)

Note that any pair exchange x′
i ↔ x′

j (xi ↔ x j) interchanges
two rows (columns) of the determinant and, hence, the sign of
G0(x′, x; ε), whereas G0(x′, x; ε) = G0(x, x′; ε).

When the fermion propagator (9) is negative, it cannot be
directly sampled using Monte Carlo methods. One is then
forced to sample its absolute value and attaches a sign to
any observable when computing its expectation value. As one
increases the number of propagators to reach the large τ limit,
the sign of the product of fermion propagators tends equally
likely to be negative as positive. The resulting cancellation
then washes away any signal of the observable and one has
the sign problem. However, as first noted by Takahashi and
Imada [1], this does not happen for fermion propagators in
one dimension. The goal of this work is to give a simple proof
of this unexpected result.

III. NO SIGN PROBLEM IN ONE DIMENSION

The sign of the integrand in the discrete path integral (6)
depends only on the product of k free-fermion propagators,

G0(x, x1; ε)G0(x1, x2; ε) · · · G0(xk−1, x; ε). (10)

For extracting ψ2
0 (x), the propagators must start at x and loop

back to x. The integral is that of a closed-end path integral.
Consider first, the case of two (spinless) fermions. The anti-
symmetric free propagator is then,

G0(x′
1, x′

2, x1, x2; ε)

= 1

2

1

2πε
det

(
e− 1

2ε
(x′

1−x1 )2
e− 1

2ε
(x′

1−x2 )2

e− 1
2ε

(x′
2−x1 )2

e− 1
2ε

(x′
2−x2 )2

)

= 1

2

1

2πε
e− 1

2ε
[(x′

1−x1 )2+(x′
2−x2 )2](1 − e− 1

ε
(x′

1−x′
2 )(x1−x2 ) ).

(11)

Thus, G0(x′
1, x′

2, x1, x2; ε) < 0 if and only if

(x′
1 − x′

2)(x1 − x2) < 0, (12)

i.e., either x′
1 > x′

2 and x1 < x2 or vice versa. This means that
the prime and unprime positions are on opposite sides of the
line x1 = x2 dividing the x1-x2 plane.

The key contribution of this paper is to rephrase the above
condition in topological terms: the propagator is negative
when the line connecting the prime and unprime position of
the propagator crosses the line x1 = x2. This is shown in part
A of Fig. 1. The trace, or the diagonal element of a single

FIG. 1. Case A illustrates the sign change of the antisymmetric
two-particle propagator when the line connecting its initial and final
particle positions crosses the line x2 = x1. The propagator is not
traced over. Cases B and C illustrate the tracing, or closed-loop
products of three and seven antsymmetric propagators, respectively.
They show that any closed-loop product of propagators must cross
the line x2 = x1 an even number of times and, therefore, must remains
positive.

propagator is always non-negative,

G0(x, x; ε) ∝ (
1 − e− 1

ε
(x1−x2 )2) � 0. (13)

So is the product of two propagators G0(x, x1; ε)G0(x1, x; ε)
since the line is either not crossed or crossed twice.
The same is true for the product of three propagators
G0(x, x1; ε)G0(x1, x2; ε)G(x2, x; ε) as shown in part B. More
generally, any closed-loop product of propagators must be
positive (or, at least, non-negative) as shown in part C since
topologically, any planar closed curve must intersect an infi-
nite straight line even a number of times.

For N fermions, the positions of the antisymmetric prop-
agator are defined in a N-dimensional manifold. The propa-
gator changes sign whenever its initial and final position cross
any one of the N (N − 1)/2, (N − 1)-dimensional hyperplanes
defined by xi = x j . Since each such (N − 1)-dimensional
hyperplanes completely divides the N-dimensional manifold
into two halves, any closed curve in the N-dimensional mani-
fold must pierce each such hyperplane even number of times.
Thus, a closed-loop product of free-fermion propagators for
N fermions is also always positive.

IV. SIGN PROBLEM IN MORE THAN ONE DIMENSION

In the d dimension, one replaces xi by d-dimensional
vectors ri = (xi, yi, zi, . . .) and set x = (r1, r2 · · · rN ). In this
case, the antisymmetric two-fermion free propagator is

G0(r′
1, r′

2, r1, r2; ε) = 1

2

1

(2πε)d
e− 1

2ε
[(r′

1−r1 )2+(r′
2−r2 )2]

× (
1 − e− 1

ε
(r′

1−r′
2 )·(r1−r2 )), (14)
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and vanishes whenever [5],

(r′
1 − r′

2) · (r1 − r2) = 0. (15)

In two dimensions, the two-fermion propagator is defined in
the four-dimensional manifold (x1, y1, x2, y2), and vanishes
at the coincident plane [5] given by x1 = x2 and y1 = y2.
This is the direct generalization of the one-dimensional case.
However, in this case, the coincident plane is only two di-
mensional, two dimensions less than the full manifold and,
therefore, does not divide the four-dimensional manifold into
disjoint regions [6]. (This is similar to the case of a line,
which is two dimensions less than, and, therefore, cannot
divide, the three-dimensional Euclidean space.) Therefore, in
the four-dimensional manifold (x1, y1, x2, y2), a closed curve
can either pierce the coincident plane or goes around it. Thus,
a closed-loop product of antisymmetric propagators can be of
either sign, and one has a sign problem. Generalizing this to
N particles in the d dimension, the propagator is defined in a
Nd-dimensional manifold. Any coincident plane is of dimen-
sion (Nd − d) and cannot fully divide the Nd-dimensional
manifold except for d = 1. Therefore, the sign problem is
generally pervasive except in one dimension.

V. AN ALTERNATE PROOF

Although the topological proof for the absence of the sign
problem in one dimension is obvious from Fig. 1, the proof’s
failure at higher dimensions as discussed in the last section
is rather difficult to visualize. Here, we provide an alternate
proof that traces the absence of the sign problem to the ab-
sence of angles in one dimension.

One observes that the sign of the two-fermion propagator
(14) is determined by the sign of

1 − exp

(
−1

ε
r′

12 · r12

)
, (16)

where one has defined r′
12 = r′

1 − r′
2 and r12 = r1 − r2,

which, in turn, is determined by the sign of r′
12 · r12. There-

fore, one has

sgn[G0(r′
1, r′

2, r1, r2; ε)] = sgn(r′
12 · r12). (17)

This generalizes our earlier findings of (12) and (15). Since
the trace of one and two propagators are always positive, we
compare the trace of three propagators below.

In one dimension, one has

sgn[G0(x12, x′
12)G0(x′

12, x′′
12)G0(x′′

12, x12)]

= sgn(x12x′
12x′

12x′′
12x′′

12x12) > 0, (18)

since all displacements pair up to form a perfect square.
This obviously generalizes to any number of two-fermion
propagators.

In two dimensions, one has

sgn[G0(r12, r′
12)G0(r′

12, r′′
12)G0(r′′

12, r12)]

= sgn[(r12 · r′
12)(r′

12 · r′′
12)(r′′

12 · r12)]. (19)

If the angle between two-dimensional vectors r12 and r′
12 is θ ,

and that between r′
12 and r′′

12 is θ ′, then the angle between r′′
12

and r12 must be either θ ′′ = θ + θ ′ or θ ′′ = π − θ − θ ′. The

sign of three propagators is then,

sgn[G0(r12, r′
12)G0(r′

12, r′′
12)G0(r′′

12, r12)]

= |r12|2|r′
12|2|r′′

12|2sgn(cos θ cos θ ′ cos θ ′′), (20)

and can no longer be guaranteed to be positive. Generalizing
this to any d dimension will involve the product of cosine
functions which is not positive definite. Thus, there is no sign
problem in one dimension because there is no angle in one
dimension.

For more than two fermions, one must determine the sign
of the corresponding propagator individually, which is less
powerful than the topological argument given in the last two
sections.

VI. CONCLUDING REMARKS

The observation that a Nd-dimensional manifold remains
connected, despite the existence of (Nd − d)-dimensional co-
incident hyperplanes, was Girardeau’s [6] insight that the
conventional proof for Fermi-Dirac or Bose-Einstein statistics
only applies to d > 1. (The loop hole for anyon statistics in
d = 2 was a later development [7,8].) For d = 1 since each
coincident plane completely divides the manifold, statistics
based any permutation symmetry is permissible [6]. Here, it
provided a simple proof that there is no sign problem in PIMC
simulations of fermions in one dimension. In its simplest
form, this proof reflects the fact that there is no angle in one
dimension.

Finally, as suggested by one of the reviewers, it is of
interest to consider also the sign problem for fermions in a
circle. The generalization of the topological proof to this case
is given in the Appendix below.

APPENDIX: FERMIONS IN A CIRCLE

For fermions in a circle, periodic in [0,1], the single particle
propagator is given by

gp(x′, x; τ ) = 〈x′|e−τH0 |x〉,

=
∞∑

k=−∞
eik2π (x−x′ )e−τ2π2k2

, (A1)

= 1√
2πτ

∞∑
n=−∞

e−(x−x′−n)2/2τ , (A2)

where 〈k|x〉 = exp(ikx2π ) with energy Ek = (k2π )2/2 =
2π2k2 and where the Poisson summation has been used to
convert the sum from k to n. Propagators (A1) and (A2) are
duals of each other; the first converges rapidly at large τ

whereas the second converges rapidly at small τ .
At fixed values of x′

1 = 0.6 and x′
2 = 0.3, the two-fermion

propagator,

Gp(x′
1, x′

2; x1, x2; τ ) = det

(
gp(x′

1, x1, τ ) gp(x′
1, x2, τ )

gp(x′
2, x1, τ ) gp(x′

2, x2, τ )

)
,

(A3)

is evaluated numerically for 201 × 201 grid points of x1 and x2

inside the periodic box [0,1] × [0,1], using either propagator
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FIG. 2. Intensity plot of G0(x′
1, x′

2; x1, x2; τ ) as a function of x1 and x2 for x′
1 = 0.6, x′

2 = 0.3. Left: τ = 0.05. Right: τ = 0.2. The nodal
lines no longer change at τ � 0.2.

(A1) or (A2), summed over the lowest 11 terms including
zero. The resulting intensity plots for τ = 0.05 and τ = 0.2
are as shown in Fig. 2. The positive (red) and negative (blue)
regions are now separated by two nodal lines (white), prevent-
ing any propagator loop from returning to its initial position
by crossing the nodal line x2 = x1 only once.

The two straight nodal lines at τ � 0.2 for the ground
state of two free fermions have been previously derived by
Ceperley [5]. Since the ground and two degenerate first ex-
cited states are 1, ei2πx and e−i2πx, the resulting two degenerate
antisymmetric wave functions can only be

det

(
1 ei2πx1

1 ei2πx2

)
= ei2πx2 − ei2πx1

and det

(
1 e−i2πx1

1 e−i2πx2

)
= e−i2πx2 − e−i2πx1 . (A4)

The most general two-fermion wave function is then,

ψ (x1, x2) ∝ A(ei2πx2 − ei2πx1 ) + B(e−i2πx2 − e−i2πx1 )

∝ e−i2πθ (ei2πx2 − ei2πx1 ) + ei2πθ (e−i2πx2 − e−i2πx1 )

∝ cos[2π (x2 − θ )] − cos[2π (x1 − θ )]

= −2 sin[π (x2 + x1 − 2θ )] sin[π (x2 − x1)], (A5)

where θ is an arbitrary phase. There are, thus, two nodal lines,

x2 = x1 and x2 = 2θ − x1, (A6)

with 2θ as the “y intercept” at x1 = 0. Ceperley’s diagram [5]
illustrating (A6), exactly matches the nodal lines on the τ =
0.2 plot of Fig. 2. However, in his derivation, there is no way
of knowing the intercept 2θ .

At large τ , propagator (A1) is well approximated by keep-
ing only the k = −1, 0, 1 terms, giving,

gp(x′, x, τ ) = 1 + a cos[2π (x′ − x)], (A7)

where a = 2e−π22τ is a very small number even for τ ≈ 1.
Keeping only the first order term in a gives

Gp(x′
1, x′

2; x1, x2; τ )

∝ cos[2π (x′
1 − x1)] + cos[2π (x′

2 − x2)]

− cos[2π (x′
1 − x2)] − cos[2π (x′

2 − x1)]

= −2 sin[π (2x′
1 − x1 − x2)] sin[π (x2 − x1)]

− 2 sin[π (2x′
2 − x1 − x2)] sin[π (x1 − x2)]

= 2 sin[π (x2 − x1)](sin[π (2x′
2 − x1 − x2)]

− sin[π (2x′
1 − x1 − x2)])

= 2 sin[π (x2 − x1)]2 cos[π (x′
1 + x′

2 − x1 − x2)]

× sin[π (x′
2 − x′

1)]. (A8)

At fixed x′
1 and x′

2, the nodal lines are exactly Ceperley’s (A6)
but now with the phase determined as

2θ = x′
1 + x′

2 ± 1
2 , (A9)

so that for x′
1 = 0.6, x′

2 = 0.3, the intercept 2θ equals 0.4 as
shown in Fig. 2.

Since the periodic box is a torus, one can always shift the
view so that the intercept is at 1. This is shown in Fig. 3
with x′

1 = 0.1 and x′
2 = 0.4. The two nodal lines are the two

Villarceau circles on the torus, dividing its surface into two
equal halves. Starting at x′

1 = 0.1 and x′
2 = 0.4 in the positive

red region on the left if one were to return to the same starting
point, one must either go through no nodal lines, two nodal
lines, four nodal lines or through the nodal crossing point.
Since there is no sign change when crossing through the
nodal crossing point, it is equivalent to no crossing. Thus, any
closed loop of the two-fermion propagator must cross an even
number of nodal lines and remains positive.

For the N-fermion propagator, the positions are defined
on the manifold T N , where T is a circle. This manifold
is completely divided into two halves by each N (N − 1)/2
pairs of perpendicular Villarceau hyperplanes xi − x j = 0 and
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FIG. 3. Intensity plot of G0(x′
1, x′

2; x1, x2; 0.2) as a function of x1

and x2 for x′
1 = 0.1, x′

2 = 0.4.

xi + x j = 0. Any closed curve on this manifold must pierce
each hyperplane an even number of times thereby ensuring
that a closed loop of N-fermion propagators remains posi-
tive. Hence, there is also no sign problem for fermions in a
circle.

Postscript: Ceperley’s motivation for deriving (A5) was
to claim that nodal lines are somewhat arbitrary because the
phase 2θ is arbitrary. However, it was never explained how
such an arbitrary phase can be acquired by a physical wave
function. Here, we have shown an instance where this phase
only appears in an intermediate state. Whereas the square
of Ceperley’s wave function (A5) retains both nodal lines
(A6), the square of the wave function by setting x′

1 = x1 and
x′

2 = x2 in (A8) only yields sin2[π (x2 − x1)]. That is, if one
were to extract the ground state wave function of two free
fermions using PIMC, one can never obtain Ceperley’s wave
function (A5). The reason for this is clear. Ceperley’s phase
is the relative phase between ei2πx and e−i2πx, such a phase is
excluded from the fundamental definition of the propagator in
(A1).
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