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Almost every quantum circuit is built with two-qubit gates in the current stage, which are crucial to the
quantum computing in any platform. The entangling gates based on Mølmer-Sørensen schemes are widely
exploited in the trapped-ion system, with the utilization of the collective motional modes of ions and two
laser-controlled internal states, which are served as qubits. The key to realize high-fidelity and robust gates
is the minimization of the entanglement between the qubits and the motional modes under various sources of
errors after the gate operation. In this work, we propose an efficient numerical method to search high-quality
solutions for phase-modulated pulses. Instead of directly optimizing a cost function, which contains the fidelity
and the robustness of the gates, we convert the problem to the combination of linear algebra and the solution to
quadratic equations. Once a solution with the gate fidelity of 1 is found, the laser power can be further reduced
while searching on the manifold where the fidelity remains 1. Our method largely overcomes the problem of the
convergence and is shown to be effective up to 60 ions, which suffices the need of the gate design in current
trapped-ion experiments.

DOI: 10.1103/PhysRevE.107.035304

I. INTRODUCTION

Among the platforms promising to achieve a universal
quantum computation, the trapped-ion system has some spe-
cific advantages. The coherence time comes first. In current
experiments, the coherence time of a single qubit has ex-
ceeded 1 hour [1], which is at least seven orders of magnitude
longer than the operation time of quantum gates. The full
connectivity is another outstanding character, which has been
recently realized in the experiment for 11 ions [2]. This
property can improve the implementation efficiency of many
quantum algorithms, such as the quantum Fourier transform
[3], in which much more quantum gates would have to be used
without the full connectivity. Meanwhile, the fidelities of the
quantum operations are quite competitive, which have reached
99.99% and 99.9% for single-qubit gates and two-qubit gates,
respectively [4,5].

Nowadays, scientists are focusing on the scalability of the
trapped-ion system to more and more qubits which can be
coherently operated. The linear chain is the most popular
configuration and the entanglement was established among
more than 20 ions in a chain [6]. The two-qubit gates are also
frequently demonstrated on ion chains [7,8]. In the future,
there are several technical routes to the goal of scalability.
Two-dimensional or three-dimensional arrays of ions are ex-
plored to accommodate more qubits, but they will also suffer
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from more serious micromotion, which is a big challenge for
high-fidelity gates [9–11]. The ion shuttling can be used to
separate and operate several targeted ions each time and other
qubits are stored in other regions, which means that the num-
ber of the total qubits can be improved, while the electronic
control is supposed to be very complicated [12,13]. Another
technique along with a large-scale quantum computation is
the realization of global and parallel entangling gates [8,14].
These efficient gates can significantly cut down the amount
of the gates used in some algorithms. However, ion chains
and two-qubit gates still have huge potentials to be explored.
More than 100 ions have been trapped in a chain, but the
number of ions that can be coherently operated is yet to be
increased [15]. As for two-qubit gates, they play an important
role in many algorithms, even with the participation of the
global and parallel gates. Therefore, the careful design of
two-qubit gates, which are robust to all kinds of experimental
error sources in long chains, is the critical issue in the scalable
quantum computation with the trapped-ion system.

To realize this goal, many schemes based on Mølmer-
Sørensen (MS) gates [16,17] and different pulse designs were
proposed in which two qubits were entangled through the
amplitude [7,18,19], the phase [14,20,21], or the frequency
[22,23] modulated pulses with many time segments or con-
tinuously modulated pulses [24,25]. Some of the gates were
robust to the experimental errors, such as the drifts of the
mode frequencies [23,25].

In this work, we focus on the phase-modulated pulses,
which can be experimentally controlled with a high precision
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[14]. Although the analytic scheme [20] and the numerical
optimization [21,26] are both available, they face the chal-
lenging problem of scalability. To be specific, the analytic
scheme leads to an exponential increase of pulse segments
and the numerical optimization is a highly nonlinear opti-
mization problem, which is difficult to obtain the targeted
solutions for long chains. Here, we propose an efficient nu-
merical framework, which is capable of searching the optimal
solutions of high-fidelity two-qubit gates for long chains of
ions. Our method is based on converting the optimization to
the combination of linear algebra and the solution to quadratic
equations, which is shown to largely improve the convergence
of the optimization. We find that the good performance of
the gates, such as the robustness and the low laser power can
be nicely kept when the number of ions increases. Moreover,
the fidelity and the scalability are greatly improved when the
laser power and the gate time of our scheme are similar to the
previous ones.

The rest of the paper is organized as follows. In Sec. II,
the theory of MS gates is briefly reviewed and our numeri-
cal framework of the phase-modulated scheme is introduced.
Then, in Sec. III, some examples of the gates and their per-
formances are presented. In particular, the scalability of our
scheme is also discussed in detail. Finally, in Sec. IV, we draw
a short conclusion and discuss the possible improvement with
the consideration of more realistic experimental conditions.

II. THEORETICAL AND NUMERICAL METHODS

In this section, we will first present the theoretical frame-
work of the basic Mølmer-Sørensen scheme. Then, for the
realization of the phased-modulated MS gates, we will show
how we can convert the optimization problem into the com-
bination of linear algebra and the solution to quadratic
equations. Finally, we will formulate the additional power
optimization scheme.

A. Basic Mølmer-Sørensen scheme

We begin with a brief review of MS gates, which are widely
used to entangle two qubits for trapped ions. In MS gates,
the phase-insensitive configuration is usually used, where the
driving fields on each ion are composed of three laser beams
and two of them have overlapping wave vectors [14,19,27].
Furthermore, one of the lasers is global and the other two
lasers are split to address the two target ions, in which case we
can ensure the fields felt by the two ions are kept proportional
at any time. Hence, we can use only one equivalent Rabi
frequency in the MS model.

Considering the motion of the chain with N ions aligned
along the z axis, we know that there are N axial modes in
the z axis and 2N radial modes in the xy plane. In current
experiments, radial modes are preferred due to their insen-
sitivity to the ion heating [7,28]. Thus, in the present work,
we only discuss radial modes, which means that the wave
vector k of the laser beam is in the xy plane. As it is known,
the symmetry of the trap in the xy plane leads to the mode
degeneracy in the x and the y directions. On the contrary, if
the trap is asymmetric and thus k does not lie in the principle
axes, modes in the x and y direction with different frequen-

cies can be simultaneously stimulated. In this work, we will
consider two cases: for the symmetric case, the laser beams
propagate along the ±x direction and N modes are considered;
for the asymmetric case, the laser beams propagate along the
diagonal line of the x axis and the y axis and 2N modes are
considered.

In the interaction picture, the qubit-motion Hamiltonian
can be expressed as [19]

Ĥ (t ) = h̄�(t ) sin[μt + φ(t )]∑
j= j1, j2

∑
k

ηkbj
k (âke−iωkt + â†

keiωkt )σ̂ j
x ,

(1)

where �(t ) and φ(t ) are, respectively, the Rabi frequency and
the phase of the driving field on the two ions ( j1, j2), and μ

is the detuning from the frequency corresponding to the two
internal energy levels of the ions. In Eq. (1), âk and â†

k are
annihilation and creation operators for the kth motional mode
with the frequency ωk and the normalized mode vector bj

k ,
where k runs over the N or 2N modes as concerned. In our cal-
culations, the Lamb-Dicke parameter ηk = �kν

√
h̄

2Mionωk
� 1,

where Mion is the mass of a single ion and �kν is the ν-axis
component of the difference of two wave vectors with ν being
the direction related to the kth mode. In addition, the ions
are in the quadratic pseudopotential and ωk and bj

k can be
conveniently obtained by solving an eigenvalue problem [29].

Under the Hamiltonian of Eq. (1), the time evolution at the
gate operation time τ is given by

Û (τ ) = exp

{
i

∑
j= j1, j2

∑
k

[
α

j
k (τ )â†

k − α
j∗
k (τ )âk

]
σ̂ j

x

− i�(τ )σ̂ j1
x σ̂ j2

x

}
, (2)

where

α
j
k (τ ) = −ηkbj

k

∫ τ

0
�(tα ) sin[μtα + φ(tα )]eiωktα dtα, (3)

describes the residual entanglement between the ion j and the
mode k after the gate and

�(τ ) = 2
∑

k

η2
k bj1

k bj2
k

∫ τ

0
dtα

∫ tα

0
dtβ�(tα )�(tβ )

× sin[ωk (tα − tβ )] sin[μtα + φ(tα )]

× sin[μtβ + φ(tβ )], (4)

is the coupling strength between the ions j1 and j2. The es-
sential requirement for an ideal gate is to decouple the qubits
and the motional modes, which means that α

j
k (τ ) = 0 and

�(τ ) = ±π/4. When it comes to the robustness of the gate
against errors of motional-mode frequencies (e.g., caused by
the stray field [30]), which is a main cause of the infidelity, we
can add additional derivative conditions for α

j
k (τ ) [25]:

∂ pα
j
k (τ )

∂ω
p
k

= −ipηkbj
k

∫ τ

0
�(tα )t p

α sin[μtα + φ(tα )]eiωktα dtα

= 0, p = 0, 1, . . . , P, (5)

where P is the largest order of robustness.

035304-2



EFFICIENT NUMERICAL APPROACH TO HIGH-FIDELITY … PHYSICAL REVIEW E 107, 035304 (2023)

The fluctuations of motional-mode frequencies are usually
quasistatic and hence the deviation of � from ±π/4 can
usually be compensated for by scaling the Rabi frequency
�(t ) in the experiment [21]. Therefore, in this work, we only
focus on α

j
k . If α

j
k at time τ deviates from 0, the fidelity of

the MS gate will be lower than 1 and the infidelity can be
evaluated by the following equation [19]:

1 − F ≈ 4

5

∑
k

(∣∣α j1
k

∣∣2 + ∣∣α j2
k

∣∣2)
(2n̄k + 1), (6)

where n̄k is the averaged phonon number of the kth mode.

B. Phase-modulated solutions

In the realization of phase-modulated MS gates, the whole
[0, τ ] pulse is equally divided into S segments. The Rabi fre-
quency � is kept the same during the gate operation, while we
can vary the laser phase φs in each segment t ∈ [ts, ts+1) where
ts = sτ/S. As discussed in the last subsection, the phases
(φ1, φ2, . . . , φS ) should satisfy the disentanglement and the
robustness conditions up to the Pth order. In this case, Eqs. (3)
and (5) can be reduced to

S−1∑
s=0

∫ ts+1

ts

t p
α sin(μtα + φs)eiωktα dtα = 0, (7)

where p = 0, 1, . . . , P and k = 1, 2, . . . , Nω with Nω being
the number of modes equal to N or 2N depending on the sym-
metry of the trap. As can be seen, we now have 2(P + 1)Nω

real constraints given by Eq. (7).
Furthermore, some symmetry conditions for the laser pulse

can cut down half of the constraint equations (see Appendix A
for details). Here, we assume the pulse to be odd [φ(t ) =
−φ(τ − t )] and the number of segments to be even (S = 2M
where M is an integer). In addition, we also need μ to satisfy

μ = (2Nμ + 1)π

τ
, Nμ ∈ N. (8)

In this case, Eq. (7) can be further simplified to

M−1∑
s=0

∫ ts+1

ts

t p cos(μt − φM−s) cos(ωkt )dt = 0,

p = 2Np � P, Np ∈ N, k = 1, 2, . . . , Nω;

M−1∑
s=0

∫ ts+1

ts

t p cos(μt − φM−s) sin(ωkt )dt = 0,

p = 2Np + 1 � P, Np ∈ N, k = 1, 2, . . . , Nω, (9)

where the number of real constraints has been cut down to
(P + 1)Nω.

The variables φs seem troublesome in Eq. (9) because the
equations nonlinearly depend on φs. If we put cos φs and
sin φs into column vectors X ,Y [31] and combine them to a
vector �:

X =

⎛
⎜⎜⎝

cos φ1

cos φ2

. . .

cos φM

⎞
⎟⎟⎠, Y =

⎛
⎜⎜⎝

sin φ1

sin φ2

. . .

sin φM

⎞
⎟⎟⎠, � =

(
X
Y

)
, (10)

then Eq. (9) can be written into a matrix form⎛
⎜⎜⎜⎜⎝

M0
X M0

Y

M1
X M1

Y
...

...

MP
X MP

Y

⎞
⎟⎟⎟⎟⎠

(
X
Y

)
= 0, (11)

where Mp
X is the block related to cos φs in the pth-order

robustness conditions and Mp
Y is similar (see Appendix B

for the explicit expressions for matrix elements). The entire
coefficient matrix can be denoted as M.

The phase optimization for the MS gates is reduced to the
efficient solution to Eq. (11). The key points of our numerical
method are as follows. In the first step, X and Y are regarded
as independent variables. We find the null space W of M in
which � take their values. Next, the constraints of the phase-
modulation scheme for each segment are considered, i.e.,

cos2 φs + sin2 φs = 1, s = 1, 2, . . . , M. (12)

We note that, once the basis of W is chosen, � can be
linearly represented with a set of coefficients. Thus, Eq. (12)
leads to M quadratic equations of the coefficients, which can
be effectively solved by the Newton method. We emphasize
that this approach can avoid some convergence problems in
the conventional optimization method [21,26] where the cost
function depending on variables φm may have lots of pits
which impede the search for the minimum. Moreover, Eq. (12)
can be exactly satisfied and thus the resulting fidelity can
be kept as 1 without any loss due to numerical errors in the
calculations.

More details of the method are necessary to be explained.
One important issue is the degree of freedom. We have 2M
variables and (P + 1)Nω constraints in Eq. (11), so the di-
mension of W is D1 = 2M − (P + 1)Nω. Equation (12) offers
M additional constraints and the solutions of (φ1, φ2, . . . , φS )
form a manifold Mφ with dimension D2 = D1 − M = M −
(P + 1)Nω � 0. This analysis gives a lower limit of pulse
segments, thus we must have

S = 2M � 2(P + 1)Nω. (13)

Equation (11) can be directly solved by the Gaussian elim-
ination or any other methods and the basis of W can be written
down explicitly

ρ(d ) =
(

ρ
(d )
X

ρ
(d )
Y

)
, ρ

(d )
X =

⎛
⎜⎜⎜⎜⎝

ε
(d )
X,1

ε
(d )
X,2
...

ε
(d )
X,M

⎞
⎟⎟⎟⎟⎠, ρ

(d )
Y =

⎛
⎜⎜⎜⎜⎝

ε
(d )
Y,1

ε
(d )
Y,2
...

ε
(d )
Y,M

⎞
⎟⎟⎟⎟⎠, (14)

where 1 � d � D1. An arbitrary vector in W can be
written as

ρ =
D1∑

d=1

a(d )ρ(d ) = �a, (15)

where � = (ρ(1), ρ(1), . . . , ρ(D1 ) ) is of dimension 2M × D1.
The constraints in Eq. (12) then lead to quadratic equations
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of a(d ):(
D1∑

d=1

ε
(d )
X,ma(d )

)2

+
(

D1∑
d=1

ε
(d )
Y,ma(d )

)2

− 1 = 0, 1 � m � M.

(16)

The Newton method can be applied to efficiently find
the solution of Eq. (16) and our goal is to calculate the set
of coefficients a = (a(1), a(2), . . . , a(D1 ) )T . However, the di-
mension of the Jacobi matrix J is M × D1 (M < D1 in our
calculations) rather than being a square matrix in the original
Newton method. Some trickery is needed to overcome the
inconsistency. We can still solve the linear equations related
to the Jacobi matrix in each iteration and D2 linearly indepen-
dent vectors in W are added to the particular solution. The
amplitudes of the added vectors are randomly chosen in a
range which is comparable with the particular solution. The
randomness introduced here avoids falling into some unfavor-
able directions. Another consequence is that different results
are obtained when we repeatedly carry out the algorithm.
Actually, sometimes the iteration cannot converge in a given
number of times and we need to restart the algorithm until a
solution a is searched.

C. Power optimization

In the last subsection, we found a way to obtain the laser
phases φs for a fixed Rabi frequency. On this basis, we are
also concerned about optimizing the Rabi frequency �, which
is related to the laser power. Therefore, our next step is to
optimize � for a searched a.

Based on Eq. (4), � can be expressed in the matrix form as

� = �2�T D�, (17)

where D is a 2M × 2M real symmetric matrix which is
independent of � and whose elements can be found in Ap-
pendix B. Since we obtained the null space W from which a
is constructed, we can thus project D to W with the transfor-
mation matrix �, i.e.,

D′ = �T D�, (18)

then Eq. (17) becomes

� = �2aT D′a. (19)

Clearly, we can now use Eq. (19) to calculate � for the MS
gate, which aims at |�| = π/4.

Using the above formulation, we can try to find a better
solution with a lower power. For this, we have to change
a, while it is difficult to keep Eq. (16) always satisfied. An
applicable approach is to search on the tangent space TpMφ

of the D2-dimension manifold Mφ , in which we converted the
coordinates (φ1, φ2, . . . , φS ) into a. Actually, TpMφ is the null
space of J and the orthonormal basis can form a D1 × D2

transformation matrix �̃. The vector in TpMφ can be expressed
as

a′ = �̃ã + a, (20)

where a′ is a D1-dimension vector and ã is a small step from
a with the dimension of D2. Actually, Eq. (19) inspires us to

calculate

θ ≡ a′T D′a′

= (�̃ã + a)T D′(�̃ã + a), (21)

and we want to search a larger θ . The gradient of θ in TpMφ is
evaluated to be

∇ãθ = 2�̃D′a, (22)

and we can thus search with a small step in the gradient
direction, after which a′ will deviate from Mφ a little bit. Now,
we can use the above-mentioned Newton method to pull a′
back to Mφ .

We can repeat the above process until a convergent θ is
searched and thus the power optimal solution a is found.

III. RESULTS AND DISCUSSIONS

In this section, we will present our main results. Taking
a chain of ions as an example, we will first demonstrate the
performance of our numerical schemes for a two-qubit phase-
modulated MS gate. Then, we will investigate the robustsness
of the gate. Finally, we will discuss the connectivity and the
scalability of our method. Without any specific declaration,
the solutions are all power-optimized hereafter.

A. Two-qubit gates

First, we apply our method to a two-qubit gate in a chain of
20 ions. As shown in Fig. 1(a), we assume the MS gate entan-
gles the seventh and the ninth ion (counted from the left) in a
chain of 20 171Yb+ ions along the z axis. First of all, we need
to choose the value of D2, i.e., the dimension of Mφ , which
also represents the redundant freedom of the pulse. Actually, a
small number of D2 can significantly simplify the pulse when
compared with the conventional optimization method where
the redundancy is usually about 50% [21]. Therefore, in our
calculations, we take D2 = 4 for a good convergence.

To evaluate the infidelity of the gate given by Eq. (6), an
approximation of n̄k is necessary. In the current experiments,
it is not difficult to cool the motional modes to n̄k < 0.5
[32,33] and thus we conservatively assume n̄k = 0.5 in our
calculations.

Under the above conditions, laser beams with wavelength
λ = 355 nm are used to manipulate internal states of ions
which are encoded in two hyperfine sublevels [2,14]. In our
example, the symmetric trap is adopted and the center-of-mass
trapping frequencies are taken to be (ωx, ωz ) = (1.5, 0.1) ×
2π MHz. The detuning is chosen as μ = 2π × 1.305 MHz,
which allows � to take a low value, as will be shown be-
low. We consider a phase-modulated pulse with duration τ =
300 μs with the number of pulse segements S = 88. In addi-
tion, the order of robustness P is taken to be 1.

The phase sequence of the power-optimized solution is
shown in Fig. 1(b), from which we can see that the sequence
automatically has quite good continuity rather than randomly
disperses in [−π, π ). In Fig. 1(c), the iteration of the laser
power optimization shows the expected decrease of the Rabi
frequency � of the pulse.

In Fig. 1(d), we compare the infidelity with and without
the power optimization as a function of the drift δ of the
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FIG. 1. A phase-modulated MS gate in a chain of 20 ions. (a) Il-
lustration for the trap and laser beams, where the seventh and the
ninth ion are entangled (counted from the left). (b) The optimized
phase sequence for τ = 300μs with S = 88. (c) Convergence of
the Rabi frequency during the power optimization. � falls from
2π × 70 kHz to 2π × 46 kHz in 16 iterations. (d) Infidelity as a
function of the drift δ of the motional-mode frequency ωk with and
without the power optimization.

motional-mode frequency ωk . According to Eqs. (3) and (6),
we have 1 − F ∝ �2 and thus we can conclude that the power
optimization can increase the robustness of the gate, though
the small gain of the robustness is a spin-off of the power
optimization. As can be seen from Figs. 1(c) and 1(d), the
required � is as low as 2π × 46 kHz and the permitted drift
δ of the motional-mode frequency is as large as 1.3 kHz to
guarantee 1 − F � ε = 10−4.

B. Optimization and robustness

In the example shown in the previous subsection, the
laser detuning μ was carefully selected to be μ = 2π ×
1.305 MHz, which allows a low Rabi frequency. To see this,
in Fig. 2, we show the variation of the Rabi frequency by
scanning every μ which satisfies Eq. (8) in a range whose
width is twice of the radial frequency. Obviously, � acquires
a desirable value which is lower than 2π × 50 kHz when μ is
near 2π × 1.3 MHz. In general, our numerical results indicate
that the detuning of the best � usually appears in the range of
the radial frequencies under different parameters.

As for the gate time τ , there are also several points for
consideration. Shorter pulses are certainly desirable, but there
is a limitation which is decided by the radial frequencies.
Specifically, ωk restricts the rotation of α

j
k (t ) in the complex

plane, which is also referred to as the phase trajectory. For
the cases considered here, the shortest pulse we can achieve

FIG. 2. Rabi frequencies of the pulse sequences calculated at
different μ. The calculation is repeated ten times for each μ and the
purple dots represent the best � for each μ. The gray squares and the
error bars are the mean values and the standard deviations of � from
ten solutions for each μ. The 20 radial frequencies are represented by
the orange triangles, scattered in the range of [1.24, 1.5] × 2π MHz.

is τmin = 196μs, as indicated in Fig. 3. Furthermore, we can
trade some time for a lower �. As can be seen from Fig. 3, �

quickly decreases with the increase of τ before τ0 = 300μs.
However, the downtrend of � slows down after τ0, which is
the reason why we chose τ = τ0 for the results presented in
Fig. 1.

It will be instructive to see the success chance of finding
an optimal Rabi frequency for a given pulse duration τ , which
is also shown in Fig. 3. Here we define the success rate as
the ratio of the number of searched solutions and the total
starts of the algorithm. As can be seen, our algorithm ensures a
continuous growth of the success rate when τ ∈ [τmin, τ0]. Al-
though the fast growth terminates when τ > τ0, the algorithm

FIG. 3. Success rate of the algorithm and Rabi frequencies for
different gate time τ . The calculation is repeated for ten times with
each τ , and each time one permits a maximum number of 50 for
the restarts before a success. Gray diamonds are the success rate and
green dots show the best Rabi frequencies of the obtained solutions
for each τ . Two vertical dashed lines, respectively, represent the
shortest gate time τmin = 196μs in our calculations and the suitable
gate time τ0 = 300μs.
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FIG. 4. Robustness of the gates for N = 10. (a) Infidelity against
the frequency drift for P = 0, 1, 2, 3. (b) Phase trajectories of COM
for P = 0, 2. The purple dot represents the common start, e.g.,
αCOM(0) = 0. The red cross and the blue cross are the ends of the
trajectories for P = 0, 2, respectively. We suppose that the internal
states of the two qubits j1, j2 are both |+〉 and the excitation of COM
is αCOM = α

j1
COM + α

j2
COM where j1 = 2 and j2 = 4. The detuning

is changed to μ = 2π × 1.468 MHz due to the change of the ion
number.

maintains a high success rate and thus the required computing
resource is not demanding.

Having discussed the optimal parameters μ and τ for the
experimental feasibility, we now turn to the robustness of the
phase-modulated MS gates. According to Eqs. (7), (9), and
(11), we can readily increase the robustness of the gate by
using a larger P in our algorithm.

For this purpose, we investigate the infidelity as a function
of δ with P = (0, 1, 2, 3) for the gate which entangles the
second and the fourth ion in a chain of N = 10 in a symmetric
trap. It should be mentioned that we reduced N to show the
phase trajectories clearly. The resultant robustness against the
frequency drift is visualized in Fig. 4(a). Obviously, the cor-
responding width of δ for the infidelity smaller than ε = 10−4

increases from 0.1 kHz to more than 3 kHz when P changes
from 0 to 3.

Of course, we should note that τ has to be longer for
a larger P because a too-short pulse cannot support the
phase trajectory to be complicated enough to satisfy the
high robustness constraints. Meanwhile, Eq. (13) tells us
that the segments of the pulse will also increase with P.

In our calculations shown in Fig. 4(a), τ is taken to be
(200, 300, 450, 800)μs for P = (0, 1, 2, 3), respectively, and
the corresponding � is (49, 44, 52, 22) × 2π kHz for each
case. Note that the enhancement of the robustness does not
necessarily increase � and sometimes � even declines due to
a longer τ . In addition, τ is chosen as the minimal multiple of
50μs where the successful rate is obviously larger than 0 for
each P.

To intuitively show the evidence of the effectiveness of the
robust scheme, in Fig. 4(b), we plot the phase trajectories of
the center-of-mass mode (COM) for P = 0, 2 with δ = 2 kHz.
We can notice that the trajectory for P = 0 deviates from the
start after the gate operation, while the one for P = 2 returns
to the start without visible difference, which demonstrates the
robustness of the gate.

C. Connectivity and scalability

Connectivity is an important issue in a quantum gate. To
explore the connectivity of our scheme, we search the solu-
tions for every pair of ions ( j1, j2) in a chain of 20 ions.
In Figs. 5(a) and 5(b), we show the infidelity and the Rabi
frequency, respectively. Obviously, the outermost squares are
brighter, which means that the gates related to the first or the
20th ion have the worse robustness and also need a higher
laser power. This is why the ions in the edge of the ion chain
are usually regarded as buffer ions, which do not participate
in the computing [2]. In the middle of Figs. 5(a) and 5(b), the
color is relatively even, indicating the convenience to operate
any pair in the middle of the chain.

As mentioned previously, the major advantage of our nu-
merical method is the scalability for a long chain. We explored
the scalability for both the symmetric and the asymmetric
traps, while the latter are more time consuming for a same
N due to more modes to be disentangled. The solutions for
the gates up to N = 20 were obtained in previous studies
for the asymmetric trap [21,26], while it is increased to 35
with our method. For the symmetric trap, N can be further
improved to 60 in this work. In Fig. 6(a), we present the
averaged time consumption for the initial solution t1 and
for the power optimization t2 with different N . The center-
of-mass trapping frequencies are still chosen as (ωx, ωz ) =
(1.5, 0.1) × 2π MHz for N � 26 in the symmetric trap, but
ωx is adjusted to set the highest radial mode equal to the
highest axial mode for N > 26 to avoid the transition from
a chain to a zigzag configuration [34], which keeps the lowest
radial mode away from 0. For the asymmetric trap, we can
safely choose ωy = 1.1ωx. For both cases, the gate time τ is
chosen as 400μs and the detuning μ is selected according to
the optimal proportion in the radial frequencies in Fig. 2. We
also choose the ion with number j1 near the middle one (or
two) in the chain and j2 = j1 − 2 to be entangled just as the
cases shown in Figs. 1 and 4.

As can be seen, for a large-enough N the time consumption
t1 will dominate over t2 for both the symmetric and asymmet-
ric trap. It is worth pointing out that our algorithm can obtain
the laser-optimized solution within 1 hour for N < 43 (28) for
the symmetric (asymmetric) case, in which the calculations
are carried out on one core of a server with 2.10-GHz Intel
Xeon Silver 4110 CPUs.
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FIG. 5. Connectivity of the gates. (a) Infidelity when δ = 2 kHz and (b) Rabi frequency for each pair of ions ( j1, j2) in a chain of 20 ions.
The pairs which contain the edge ions, e.g., numbered as 1 and 20, have a poor performance of either the robustness or the Rabi frequency, so
they are usually not used in experiments. Other parameters, including μ, τ, ωx,z, are identical to those of the calculations in Fig. 1.

It is important to see how the infidelity and the Rabi fre-
quency change against the increase of N . In Figs. 6(b) and
6(c), we, respectively, present the infidelity with the motional-
mode frequency drift δ = 2 kHz and the Rabi frequency for
N ranging from 8 to 60 (35) in the symmetric (asymmetric)
trap. In practice, we repeated our calculations for ten times
(not each one is successful especially for large N) and then
we choose the minima to be shown. It is inspiring to see that
the infidelity does not increase with N and disperses in the
range of 10−2–10−3. Although the Rabi frequency � slightly
increases with N and it keeps less than 2π × 200 kHz in the
chosen range of N , which is realizable in current experiments.

FIG. 6. Scalability of the current numerical method. (a) Scaling
of the computation time for a single solution of both the symmetric
and the asymmetric trap. The algorithm has a good convergence up to
N = 60 (35) for the symmetric (the asymmetric) trap. (b) Infidelity
of the gates when motional-mode frequencies have a uniform drift
δ = 2 kHz. (c) Rabi frequency for different N . Each calculation is
performed on one core of a server with 2.10-GHz Intel Xeon Silver
4110 CPUs.

IV. CONCLUSION

We demonstrated a scalable numerical framework for the
phase-modulated MS gates. We showed that the reduction
to linear algebra and the root finding of quadratic equa-
tions largely improves both the convergence of the algorithm
and the performance of the gates. By using the present
scheme, we successfully searched the solutions with the fi-
delity equal to 1 very efficiently for up to 60 ions, while
the robustness against the motional-mode frequency drift and
the laser power can be maintained in desirable conditions for
experiments. We explored the most appropriate parameters for
experiments, such as the gate time and the Rabi frequency.

The current algorithm can be potentially extended to the
motional heating, which is a critical error source [35]. Other
experimental errors, such as laser fluctuations and high-order
effects of Lamb-Dicke parameters [31], can also be included.
With the increasing number of ions which can be coherently
operated for the quantum computing in future experiments,
we believe that our framework can be applied to find optimal
schemes available for the phase-modulated MS gates.
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APPENDIX A: PULSE SYMMETRY

With the odd parity of φ(t ) and the constraint of μ in
Eq. (8), the number of real constraints in Eq. (7) can be
reduced by half. We recover the integration from 0 to τ of
Eq. (7) for clarity and reformulate the expression

0 =
∫ τ

0
t p sin[μt + φ(t )]eiωkt dt

= eiωk
τ
2

p∑
p′=0

Cp
p′ (−1)p′(τ

2

)p−p′

×
∫ τ

0

(τ

2
− t

)p′

sin[μt + φ(t )]eiωk (t− τ
2 )dt . (A1)
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Here we can use the idea of mathematical induction. If the
robustness conditions of less than the pth order are satisfied,
the pth order will only add the following new equations:∫ τ

0

(τ

2
− t

)p
sin[μt + φ(t )]eiωk (t− τ

2 )dt = 0. (A2)

The above-mentioned symmetric constraints of the pulse
leads to the parity of the integrand in Eq. (A2): if p is even,
the real part of the integrand is even about the midpoint τ

2 ,
while the imaginary part is odd, and vise versa if p is odd.
The result of the integral is always 0 for the odd integrands,
so we need only the other half of the equations for any p:∫ τ

2

0
t p cos

[
μt − φ

(τ

2
− t

)]
cos(ωkt )dt = 0,

p = 2Np � P, k = 1, 2, . . . , Nω;∫ τ
2

0
t p cos

[
μt − φ

(τ

2
− t

)]
sin(ωkt )dt = 0,

p = 2Np + 1 � P, k = 1, 2, . . . , Nω, (A3)

which can be rewritten as Eq. (9) if the phase is segmented.
The default condition Np ∈ N is omitted here and below.

APPENDIX B: MATRIX OF CONSTRAINTS

Based on Eq. (9), we can easily write down the matrix
elements for the coefficient matrix M:

(
Mp

X

)
k,M−s =

{∫ ts+1

ts
t p cos(μt ) cos(ωkt )dt, p = 2Np,∫ ts+1

ts
t p cos(μt ) sin(ωkt )dt, p = 2Np + 1;

(
Mp

Y

)
k,M−s =

{∫ ts+1

ts
t p sin(μt ) cos(ωkt )dt, p = 2Np,∫ ts+1

ts
t p sin(μt ) sin(ωkt )dt, p = 2Np + 1,

(B1)

where 0 � s � M − 1.
Similarly, from Eqs. (4) and (19), we can obtain the ele-

ments for D. It is convenient to decompose D to (D0 + DT
0 )/2,

where D0 is concatenated with four M × M lower triangular
matrices

D0 =
(

DXX DXY

DY X DYY

)
. (B2)

The explicit expressions of these matrices are

(DXX )ss =
(

2
∫ ts

ts−1

∫ tα

ts−1

+1
∫ tS−s+1

tS−s

∫ ts

ts−1

)
dtαdtβ

∑
k

ξk sin[ωk (tα − tβ )] sin(μtα ) sin(μtβ ),

(DXX )ss′ =
(∫ ts

ts−1

∫ ts′

ts′−1

+
∫ tS−s+1

tS−s

∫ ts′

ts′−1

)
dtαdtβ

∑
k

2ξk sin[ωk (tα − tβ )] sin(μtα ) sin(μtβ ),

(DXY )ss =
(

2
∫ ts

ts−1

∫ tα

ts−1

+1
∫ tS−s+1

tS−s

∫ ts

ts−1

)
dtαdtβ

∑
k

ξk sin[ωk (tα − tβ )] sin(μtα ) cos(μtβ ),

(DXY )ss′ =
(∫ ts

ts−1

∫ ts′

ts′−1

+
∫ tS−s+1

tS−s

∫ ts′

ts′−1

)
dtαdtβ

∑
k

2ξk sin[ωk (tα − tβ )] sin(μtα ) cos(μtβ ),

(DY X )ss =
(

2
∫ ts

ts−1

∫ tα

ts−1

−1
∫ tS−s+1

tS−s

∫ ts

ts−1

)
dtαdtβ

∑
k

ξk sin[ωk (tα − tβ )] cos(μtα ) sin(μtβ ),

(DY X )ss′ =
(∫ ts

ts−1

∫ ts′

ts′−1

−
∫ tS−s+1

tS−s

∫ ts′

ts′−1

)
dtαdtβ

∑
k

2ξk sin[ωk (tα − tβ )] cos(μtα ) sin(μtβ ),

(DYY )ss =
(

2
∫ ts

ts−1

∫ tα

ts−1

−1
∫ tS−s+1

tS−s

∫ ts

ts−1

)
dtαdtβ

∑
k

ξk sin[ωk (tα − tβ )] cos(μtα ) cos(μtβ ),

(DYY )ss′ =
(∫ ts

ts−1

∫ ts′

ts′−1

−
∫ tS−s+1

tS−s

∫ ts′

ts′−1

)
dtαdtβ

∑
k

2ξk sin[ωk (tα − tβ )] cos(μtα ) cos(μtβ ), (B3)

where s′ < s and ξk = 2η2
k bj1

k bj2
k . The integrals in Eqs. (B1) and (B3) can be analytically calculated, so this step is not time

consuming.
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