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This paper extends the partially saturated method (PSM), used for curved or complex walls, to the lattice
Boltzmann (LB) pseudopotential multicomponent model and adapts the wetting boundary condition to model
the contact angle. The pseudopotential model is widely used for various complex flow simulations due to its
simplicity. To simulate the wetting phenomenon within this model, the mesoscopic interaction force between the
boundary fluid and solid nodes is used to mimic the microscopic adhesive force between the fluid and the solid
wall, and the bounce-back (BB) method is normally adopted to achieve the no-slip boundary condition. In this
paper, the pseudopotential interaction forces are computed with eighth-order isotropy since fourth-order isotropy
leads to the condensation of the dissolved component on curved walls. Due to the staircase approximation
of curved walls in the BB method, the contact angle is sensitive to the shape of corners on curved walls.
Furthermore, the staircase approximation makes the movement of the wetting droplet on curved walls not
smooth. To solve this problem, the curved boundary method may be used, but due to the interpolation or
extrapolation process, most curved boundary conditions suffer from massive mass leakage when applied to
the LB pseudopotential model. Through three test cases, it is found that the improved PSM scheme is mass
conservative, that nearly identical static contact angles are observed on flat and curved walls under the same
wetting condition, and that the movement of a wetting droplet on curved and inclined walls is smoother compared
to the usual BB method. The present method is expected to be a promising tool for modeling flows in porous
media and in microfluidic channels.
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I. INTRODUCTION

After three decades of development, the lattice Boltzmann
(LB) method has become an efficient and powerful tool to
simulate fluid flows [1–4]. The LB method is widely used in
simulating multicomponent (MC) flows [5]. Currently, there
exist four categories of MC models: the free-energy model
[6–8], the color-gradient model [9–12], the phase-field model
[13–15], and the pseudopotential model [16,17]. Among these
models, the pseudopotential model shows a great advantage
due to the simplicity of implementation. In the pseudopoten-
tial model, the mesoscopic interactions of pseudopotentials
(based on component densities) are used to represent the
microscopic intermolecular interactions and the separation of
different components is a result of the mesoscopic repulsions.

One popular topic in the LB method is fluid-structure
boundary conditions. The bounce-back (BB) method [18–20]
is certainly the simplest and oldest boundary condition
method. This method is exactly mass conserving and leads
to second-order accuracy when it is applied to a flat wall.
However, this method suffers from accuracy issues when the
wall geometry is complex since it uses a staircase to approxi-
mate curved walls. To overcome this problem, several curved
boundary condition methods have been proposed. Based on
the BB method, Noble and Torczynski [21] proposed the

*Corresponding author: gang.wang@univ-amu.fr

partially saturated method (PSM). They modified the collision
operators based on the coverage of the fluid and the solid at the
boundary nodes. This method is also exactly mass conserving.
Compared to the BB method, it makes the motion of fluid
with complex boundary shapes smoother [22]. This method is
more efficient when dealing with rest walls. While for moving
walls, it is difficult to update the solid fractions of the bound-
ary nodes at each time step. Bouzidi et al. [23] developed the
interpolated bounce-back (IBB) method to improve the BB
method. Their idea was to use linear or quadratic interpolation
to correct the BB process according to the location of the wall.
Their method can reach second-order accuracy for complex
boundaries, but it may cause problems when the boundary
is too narrow since there are not enough fluid nodes to do
the interpolation. Furthermore, because of the interpolation
process, the total mass in the system is not conserved [24]. An-
other group of curved boundary methods can be categorized
as the ghost method [25–28]. The idea of the ghost method
is to extrapolate the fluid property at boundary fluid nodes to
virtual solid nodes at the boundary. The ghost methods are
good at handling complex rest boundaries if they are properly
applied. For moving boundaries, it is difficult to detect the
position of the boundary at each time step. Besides, due to the
extrapolation process, most of the ghost methods violate mass
conservation.

The study of wetting phenomena is another popular topic
of the LB method. Based on the BB method and the pseu-
dopotential model, several wetting boundary methods were
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proposed to simulate the contact angle. Martys and Chen [29]
first used the interaction force between fluid and adjacent solid
nodes to mimic the adhesive force between the fluid and the
wall. By adjusting the fluid-solid interaction strength, differ-
ent contact angles can be obtained. Benzi et al. [30] developed
the virtual density method. They gave a constant virtual den-
sity to the wall so they could use two free parameters to
adjust contact angles. According to Young’s equation [31],
Huang et al. [32] developed an equation to approximate the
contact angle using only interaction strength and equilibrium
densities. Huang et al. [33] also simplified the virtual density
scheme to have just one free parameter. The solid-fluid inter-
action strength is exactly the same as the fluid-fluid interaction
strength, and one can change the contact angle by adjusting
the virtual wall density. Different from previous methods,
Li et al. [34] proposed a method in which the virtual wall
density is not constant for the whole solid region, but has the
same value as the local fluid density. In their method, since
the virtual wall density is close to the local boundary fluid
density, the fluid-solid and the fluid-fluid interactions are more
consistent.

In this paper, we aim to extend the PSM to the LB
pseudopotential MC model and adapt the wetting boundary
condition to model the contact angle. The fluid-fluid and
the fluid-solid interactions are computed with eighth-order
isotropy since fourth-order isotropy leads to the condensa-
tion of the dissolved component on curved walls. The LB
pseudopotential model is widely applied to simulate the
flows in porous media and microfluidic channels, where
the flow behavior is dominated by wetting phenomena
[35–37]. Currently, most wetting boundary condition schemes
[29,30,32,34] are based on the BB method due to its mass-
conserving nature and simplicity. However, the staircase
approximation of the BB method is not accurate enough to
simulate the curved or complex walls of porous media and
microfluidic channels [36–38]. One solution to this prob-
lem is to use a curved boundary condition. But most of
the aforementioned curved boundary methods suffer from
massive mass leakage when they are applied to the LB pseu-
dopotential model since the extrapolation or the interpolation
processes violate mass conservation [39]. Hence, in this paper,
we choose the partially saturated method (PSM) which is a
mass-conserving curved boundary method. The rest of this
paper is organized as follows. In Sec. II, we first review the
original LB pseudopotential MC model and then introduce our
improved PSM for the pseudopotential MC model. In Sec. III,
we conduct three test cases to compare the performance of our
improved PSM method and the wetting boundary condition
based on the BB scheme. Finally, the conclusion and perspec-
tive are given in Sec. IV.

II. NUMERICAL MODEL

A. The LB pseudopotential MC model

Among the LB-based MC models, the pseudopotential MC
model proposed by Shan and Chen [16,17] is frequently used
due to its simplicity. In the pseudopotential MC model, a re-
pulsive force is introduced between components to create the
separation of different components. There can be an arbitrary

number (more than 1) of components. In this paper, we only
focus on the study of the two-component model, and the two
components are represented by the red (r) and blue (b) colors.
The distribution function for each component σ is given by
the following discrete Boltzmann equation:

f (σ )
i (x + ci�t, t + �t ) = f (σ )

i (x, t ) + �
(σ )
i �t + S(σ )

i �t,
(1)

where �
(σ )
i is the Bhatnagar-Gross-Krook collision operator

given by

�
(σ )
i = − f (σ )

i (x, t ) − f eq(σ )
i (x, t )

τ (σ )
, (2)

where τ (σ ) is the relaxation time for the fluid σ . Through-
out this paper, τ (σ ) = 1. The kinematic viscosity of the
fluid σ is dependent on τ (σ ) by ν (σ ) = (τ (σ ) − 0.5)/3 = 1/6.
f eq(σ )
i (x, t ) is the equilibrium distribution function defined by

f eq(σ )
i (x, t ) = ρ (σ )ωi

(
1 + ci · u

c2
s

+ (ci · u)2

2c4
s

− u · u
2c2

s

)
, (3)

where discrete weights ωi depend on velocity sets. In this
paper, D2Q9 and D3Q19 are used, respectively, for 2D and
3D simulations [40]. The speed of sound cs = 1/

√
3. The

fluid density for the component σ , the total fluid density and
velocity are defined by

ρ (σ ) =
∑

i

f (σ )
i (x, t ), ρ =

∑
σ

ρ (σ ) (4)

and

u = 1

ρ

∑
σ

(∑
i

f (σ )
i ci + F (σ )

tot �t

2

)
. (5)

The source term S(σ )
i is calculated by Guo forcing scheme

[41]:

S(σ )
i = ωi

(
1 − �t

2τ (σ )

)(
ci − u

c2
s

+ (ci · u)ci

c4
s

)
F (σ )

tot . (6)

The total force on the σ component F (σ )
tot is composed of

three parts. They are, respectively, the gravitational force F (σ )
g ,

the intermolecular interaction force F (σ )
int , and the solid-fluid

interaction force F (σ )
s :

F (σ )
tot = F (σ )

g + F (σ )
int + F (σ )

s , (7)

where the gravitational force is given by

F (σ )
g = ρ (σ )g. (8)

In the pseudopotential model [16,17], the repulsive inter-
action is applied between components at adjacent nodes:

F (σ )
int (x) = −ψ (σ )(x)Gσ σ̃

∑
i

ωiψ
(σ̃ )(x + ci�t )ci�t, (9)

where ψ (σ )(x) is the pseudopotential of the component σ , and
Gσ σ̃ is the interaction strength between two components. In
this paper, ψ (σ )(x) = ρ (σ )(x), and Gσ σ̃ = 4.5.

To simulate the interaction between the solid wall and fluid
components, the no-slip boundary condition and the wetting
condition are required. The no-slip boundary condition can be
realized by the BB scheme [18–20]. For the wetting condition,
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the adhesive force between fluid nodes and their adjacent solid
nodes should be considered. Martys and Chen [29] developed
a simple method to simulate this adhesion:

F (σ )
s (x) = −Gσ sρ

(σ )(x)
∑

i

ωis(x + ci�t )ci�t, (10)

where s(x + ci�t ) is a switch function. Its value is 1 for solid
nodes and 0 for fluid nodes. Gσ s is the adhesive strength
between the fluid and the wall. Different contact angles can
be obtained by tuning Gσ s.

Benzi et al. [30] proposed a virtual density scheme by
adding a virtual solid density to Eq. (10):

F (σ )
s (x) = −Gσ sρ

(σ )(x)
∑

i

ωis(x + ci�t )ρs(σ )ci�t, (11)

where ρs(σ ) is the virtual solid density for the component
σ , which is a constant value. One can change both Gσ s and
ρs(σ ) to adjust contact angles. Huang et al. [33] simplified
the virtual density scheme by setting Gσ s = Gσ σ̃ . The contact
angle is only controlled by ρs(σ ). In the rest of this paper, the
virtual solid density scheme simplified by Huang et al. [33] is
used to apply the wetting conditions.

Originally, discrete weights ωi used in the calculation of
F (σ )

int and F (σ )
s are the same as that in Eq. (3), and it retains

fourth-order isotropy of the interactions. To reduce spurious
currents and increase the stability of the system, the calcula-
tion of the interactions can easily be extended to eighth-order
isotropy by including the interactions with next-nearest fluid
neighbors [42,43]. At the walls, next-nearest virtual solid
neighbors are also required to apply the virtual density scheme
with eighth-order isotropy.

B. An improved PSM scheme for the LB pseudopotential
MC model

The BB method [18–20] is a widely used boundary condi-
tion method because of its locality, efficiency, and simplicity.
However, when it is applied to complex simulation geome-
tries, it has an accuracy problem since it uses a staircase to

approximate curved walls. Thus, Noble and Torczynski [21]
proposed the PSM to solve this problem. In the PSM, a lattice
boundary cell can be considered as pure solid, pure liquid, or
a mixture of the solid and the fluid (partially saturated). The
solid fraction depends on the solid coverage of a cell. The LB
distribution function for the component σ is modified as

f (σ )
i (x + ci�t, t + �t ) = f (σ )

i (x, t ) + (1 − B(σ ) )� f (σ )
i �t

+B(σ )�
s(σ )
i �t

+(1 − B(σ ) )S(σ )
i �t, (12)

where �
f (σ )
i is the standard collision operator for fluid nodes

and has the same form as Eq. (2). The collision operator for
solid nodes is �

s(σ )
i , which can be written in the following

way:

�
s(σ )
i = (

f (σ )
i

(x, t ) − f eq(σ )
i

(ρ (σ ), u)
)

− (
f (σ )
i (x, t ) − f eq(σ )

i (ρ (σ ), us)
)
, (13)

where i is the opposite direction of i. u is the local fluid ve-
locity and is calculated the same way as Eq. (5). At pure solid
nodes, u = us where us is the velocity of the solid boundary.
In this paper, since walls are static, us = 0.

The solid weight B(σ ) is dependent on the solid fraction ε

and the relaxation time τ (σ ),

B(σ )(x) = ε(x)(τ (σ ) − 0.5)

(1 − ε(x)) + (τ (σ ) − 0.5)
, (14)

where the solid fraction ε value varies between 0 and 1.
The calculation of gravitational force does not change. The

pseudopotential interaction force is modified to include the
fluid-fluid interaction at partially saturated nodes:

F (σ )
int (x) = −ρ (σ )(x)

∑
σ̃

Gσ σ̃

∑
i

ωi(1 − ε(x + ci�t ))

×ρ (σ̃ )(x + ci�t )ci�t . (15)

The solid-fluid interaction force is proposed as

F (σ )
s (x) =

{−ρ (σ )(x)Gσ σ̃

∑
i ωin(σ̃ )ε(x + ci�t )ρ(x + ci�t )ci�t if 0 < ε(x + ci�t ) < 1

−ρ (σ )(x)Gσ σ̃

∑
i ωin(σ̃ )ε(x + ci�t )ρsci�t if ε(x + ci�t ) = 1,

(16)

where both partially and pure solid walls interact with the
fluid. The partially solid density is approximated by the multi-
plication of the local fluid density and the local solid fraction:
ε(x)ρ(x). The pure solid density ρs has a constant value and
depends on the average fluid density at the boundary. The
solid density consists of σ and σ̃ parts. n(σ ) is the proportion
of the solid density for the σ part. n(σ ) is between 0 and 1, and
the summation of two proportions is 1:∑

σ

n(σ ) = 1. (17)

In practice, after giving a value to the pure solid density
ρs, one can tune the proportion parameter n(r) = 1 − n(b)

to generate the desired contact angle. For example, when
n(r) = 1 and n(b) = 0, the wall is completely wetting for the

r component; when n(r) = n(b) = 0.5, the contact angle is
approximately 90◦; when n(r) = 0 and n(b) = 1, the wall is
completely nonwetting for the r component. According to
Young’s equation [31] and inspired by Huang et al. [32], the
obtained contact angle θc can be approximated by

cos(θc) ≈ n(r) − n(b). (18)

III. NUMERICAL RESULTS AND DISCUSSION

In this section, three test cases are conducted to compare
the performance of the BB virtual density and the improved
PSM schemes. For the improved PSM scheme, the solid
fraction at curved boundary nodes is calculated by the cell
decomposition method [44]. The wetting boundary conditions
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TABLE I. Different wetting conditions according to different
values of n(r), n(b), and ρs.

n(r) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
n(b) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
ρs 1.05 0.8 0.7 0.68 0.66 0.65 0.66 0.68 0.7 0.8 1.05

are chosen according to 11 groups of values given in Table I.
For the BB virtual density scheme, we use the same wetting
condition according to this table since the improved PSM
scheme reduces to the BB virtual density scheme developed
by Huang et al. [33] by setting ε(x) = 1 for ε(x) > 0.5 and
ε(x) = 0 for ε(x) � 0.5. In the following test cases, we only
specify the value of n(r) for simplicity, but the value of n(b)

and ρs are also the same as in Table I.

A. 2D case: Static contact angles

Here we test the ability of the BB virtual density and the
improved PSM wetting boundary condition methods to gener-
ate the desired contact angles on flat and curved walls. We first
generate droplets on a flat wall and on the inner wall of a circu-
lar semicylinder, which is a concavely curved wall. Figure 1(a)
shows the initialization of the system. The lattice system is
chosen as Nx × Ny = 300 × 150 (in lattice units). The radius
(Rc) and location of the center of the semicylinder are, re-
spectively, 145�x and (150�x, 149.5�x). Two droplets with
the same radius R = 30�x are placed on the flat and the
concavely curved walls, respectively. The centers of droplets
are, respectively, (150�x, 32.5�x) and (150�x, 119.5�x).
Inside the droplet, the initial fluid densities are ρ (r) = 1 and
ρ (b) = 0.005, and the opposite densities for the outside of the
droplet. We put the droplets in contact with the wall, but out
of equilibrium such that the droplets have to spread to reach
the static contact angle.

Figure 2 shows the contact angles obtained on the flat
and the concavely cylindrical walls at t = 9 × 104�t . The
BB virtual density scheme with fourth-order and eighth-order
isotropy and the improved PSM scheme with eighth-order
isotropy are applied. As the droplet interface in the pseudopo-
tential model is diffuse, the method used to obtain the contact
angle is to measure the radius and center of the droplets
that have a circular shape, and knowing the wall geometry,
compute the intersection and the associated contact angles. A
marching algorithm is used to obtain the points at the droplet
interface. The points too close to the wall are removed as the
wall and the interface thickness may perturb their locations.
An exclusion distance of 2δ is retained, where δ is the typ-
ical interface thickness. Two approaches have been used to
fit the circles: a brute force method where a circle is fitted
using all the interface points or only using two points, taking
into account the symmetry of the problem. This procedure
is accurate enough since when comparing the contact angles
measured by both methods, errors of about 0.1◦ are found
for all cases, except the fourth-order BB case with n(r) = 0.9
[Fig. 2(c)] at the concavely curved wall, where the error is
around 1◦ since the interface is no more circular. But in that
case, the contact angle difference between the flat and the
concavely curved walls is about 8◦. The method of using two

FIG. 1. The initialization of the droplets on the flat, the con-
cavely curved, and the convexly curved walls. The red and blue
colors represent the r and b components, respectively. All units are
in lattice units.

points is used in this paper. It is shown in Fig. 2 that both
schemes can be used to achieve different contact angles by
tuning wetting boundary parameters. However, there is a con-
densation problem with the fourth-order BB virtual density
scheme. As shown in Fig. 2(c), due to the condensation of the
dissolved red fluid, two small droplets appear at the lower left
and lower right parts of the cylinder wall. There is also the
same condensation problem with the fourth-order improved
PSM scheme (the figure is not presented here). Meanwhile, no
condensation problem is observed for the BB virtual density
and the improved PSM schemes with eighth-order isotropy
[Figs. 2(f) and 2(i)].

We also generate droplets on the outer wall of a cylinder,
which is a convexly curved wall, and the initialization of the
system is shown in Fig. 1(b). The lattice system is chosen as
Nx × Ny = 300 × 300 (in lattice units). The periodic bound-
ary condition is applied in all directions. The radius and the
location of the center of the cylinder are respectively 75�x
and (150�x, 100.5�x). The radius of the droplet is 50�x
and the center of the droplet is (150�x, 220.5�x). The fluid
densities are ρ (r) = 1 and ρ (b) = 0.005 inside the droplet and
the opposite densities for the outside of the droplet. Fig-
ure 3 presents the contact angles obtained on the convexly
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FIG. 2. The contact angles on the flat and the concavely curved walls at t = 9 × 104�t . The red and blue colors represent the r and b
components, respectively. In (a)–(c), the BB virtual density scheme with fourth-order isotropy of interactions is implemented with n(r) =
0.2, 0.5, and 0.9, respectively. In (d)–(f), the BB virtual density scheme with eighth-order isotropy is implemented with n(r) = 0.2, 0.5, and
0.9, respectively. In (g)–(i), the improved PSM scheme with eighth-order isotropy is applied with n(r) = 0.2, 0.5, and 0.9, respectively.

cylindrical wall with the fourth-order BB virtual density and
the eighth-order improved PSM schemes at t = 9 × 104�t .
As the eighth-order BB scheme gives pictures very close to
the eighth-order improved PSM method, it has not been pre-
sented. Figure 3(c) shows the condensation of a small droplet
on the bottom of the cylinder wall when fourth-order isotropy
is used to compute the interactions. On the contrary, there is
no condensation problem with the eighth-order isotropy case.
The contact angles achieved by the fourth-order BB virtual
density scheme on the convexly curved wall are not consistent
with the contact angles on the flat and the concavely curved
walls (Fig. 2) under the same wetting condition. While for
the eighth-order improved PSM scheme, contact angles are
consistent for all three kinds of walls.

To compare the consistency of the contact angles on the
flat and the curved walls by using the BB virtual density
with both fourth-order and eighth-order and the improved
PSM schemes with eighth-order isotropy, all 11 groups of
wetting boundary condition parameters in Table I are applied
to generate contact angles on the flat, the concavely curved,
and the convexly curved walls. All contact angles are mea-
sured after running the simulations for 9 × 104�t time steps
when the eighth-order schemes give the static contact angles.
For the fourth-order BB virtual density scheme, the unphys-
ical condensation droplets continue to grow after 9 × 104�t
time steps, and there is no static regime for the system. The
numerical results and the predicted contact angles accord-

ing to Eq. (18) are plotted in Fig. 4. Compared with the
fourth-order BB virtual density scheme, the contact angles
obtained with the eighth-order BB virtual density and the
eighth-order improved PSM schemes have a better agreement
with the predicted contact angles from Eq. (18). There is a
relatively large inconsistency of the contact angles on the flat
and the curved walls under the same wetting condition when
the fourth-order BB virtual scheme is applied [Fig. 4(a)], and
small inconsistency for the eighth-order BB virtual scheme
[Fig. 4(b)]. In contrast, with the eighth-order improved PSM
scheme, the contact angles on the three different walls almost
overlap [Fig. 4(c)]. To better show the improvement of the
improved PSM scheme over the BB virtual density scheme
in terms of consistency of contact angles on different walls,
we plot the maximum difference of contact angles on the flat,
the concavely curved, and the convexly curved walls with
respect to the wetting parameter n(r) [Fig. 4(d)]. With the
eighth-order improved PSM scheme, the maximum contact
angle difference is smaller than 1◦ under all the wetting con-
ditions. However, for most of the partially wetting cases, the
maximum contact angle difference is between 2◦ and 4◦ with
the eighth-order BB virtual density scheme, and between 10◦
and 14◦ with the fourth-order BB virtual density scheme. On
average, the eighth-order improved PSM provides a maximum
contact angle difference that is around 20 times smaller than
the fourth-order BB virtual density scheme and around five
times smaller than the eighth-order BB virtual density scheme
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FIG. 3. The contact angles on the convexly curved wall at t = 9 × 104�t . The red and blue colors represent the r and b components,
respectively. In (a)–(c), the fourth-order BB virtual density scheme is applied and the wetting parameter n(r) is respectively 0.2, 0.5, and 0.9.
In (d)–(f), the eighth-order improved PSM scheme is applied and the wetting parameter n(r) is, respectively, 0.2, 0.5, and 0.9.

when the wall is partially wetting. Since the computation of
the interactions with the fourth-order isotropy leads to the
condensation problem on the curved walls and the large in-
consistency of the contact angles on different walls, we only
use the eighth-order isotropy to compute the interactions for
the following tests.

B. 2D case: A droplet sliding inside a rotating circular cylinder

This test is performed to study the influence of the curved
wall on the movement of the wetting droplet when the BB
virtual density and the improved PSM schemes with eighth-
order isotropy are applied. To make the droplet rotate along
the cylinder wall, a rotating gravity is applied to the droplet
component instead of rotating the cylinder wall. The simula-
tion box is Nx × Ny = 300 × 300 (in lattice units). The radius
and the location of the center of the cylinder are 145�x and
(150�x, 150�x), respectively. Initially, a red droplet with the
radius 30�x and the center (150�x, 33.5�x) is surrounded by
the blue fluid. Inside the droplet, the fluid densities are ρ (r) =
1 and ρ (b) = 0.005, and the opposite densities for the outside
of the droplet. The magnitude of the rotating gravity g is fixed

to be 1 × 10−4 (in lattice units) throughout the simulation. The
direction of g is fixed at (0, −1) before t = 1 × 104�t to let
the droplet relax, and then, from t = 1 × 104�t to t = 5.2 ×
105�t , gravity rotates in clockwise direction with the angular
velocity ωg = 2π/T , where T = 1.6 × 105�t is the rotation
period. After gravity rotates by a certain angle, the droplet
starts to follow gravity and rotate on the wall. Figure 5 shows
a partially wetting droplet (n(r) = 0.5) on the inner cylinder
wall under rotational gravity with the improved PSM scheme.
To quantify the smoothness of droplet movement inside the
cylinder, a droplet front point P is detected at each time
step. P is defined as the intersection of the droplet interface
with a circle (concentric with the cylinder) of radius 140�x
and it is computed by bicubic interpolation. In Fig. 5(a),
gravity starts to rotate and the droplet is in the static state.
Figure 5(b) shows the system after gravity has rotated for 90◦
and the droplet follows gravity with its rotation angle smaller
than 90◦.

Figure 6 shows the angular velocity ωd (rad/�t) of the
droplet front point P at the stationary regime for a quarter
rotation period under the BB virtual density and the improved
PSM schemes with eighth-order isotropy. The capillary num-
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(a) (b)

(c) (d)

FIG. 4. (a)–(c) Contact angles with respect to n(r) on the flat, the concavely curved, and the convexly curved surfaces with different
schemes. (d) The maximum difference of contact angles on the flat, the concavely curved, and the convexly curved walls under the same
wetting condition with respect to the wetting parameter n(r).

FIG. 5. The rotation of the droplet (n(r) = 0.5) inside the circular
cylinder under the effect of rotational gravity with the improved PSM
scheme. The red and blue colors represent the r and b components,
respectively.

ber of the system (Ca = μU/γ ) is around 5.6 × 10−3, and
the Laplace number (La = γ ρD/μ2) is around 330. To reach
the stationary regime, we first let the droplet rotate for two
perimeters, and then set t to 0 and start the measurement. As
shown in Fig. 6(a), when the wall is nonwetting (n(r) = 0) for
the red fluid, the angular velocities of both the BB virtual
density and the improved PSM schemes are smooth. Fig-
ures 6(b) and 6(c) show that the PSM angular velocities are
smoother than the BB angular velocities under the partially
wetting conditions, and the highest BB velocity variation is
obtained for the n(r) = 0.5 case. The mean relative error of the
angular velocity ωd (in the n(r) = 0.5 case) is 21.1% for the
eighth-order BB scheme and 5.4% for the eighth-order PSM
scheme. The PSM scheme gives approximately four times
smaller error than the BB scheme. When Ca is decreased to
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FIG. 6. The angular velocity ωd (rad/�t) of the droplet front
point P at the stationary regime for a quarter rotation period under
the eighth-order BB virtual density method (red line) and the eighth-
order improved PSM method (black line). The capillary number of
the system is around 5.6 × 10−3 and the Laplace number is around
330.

2.8 × 10−3 (T = 3.2 × 105�t), this error increases to 41.3%
for the BB scheme and 11.0% for the PSM scheme. Both
schemes perform worse, but the PSM error is still around
four times smaller than the BB error. When the capillary
number is increased to 1.1 × 10−2 (T = 8.0 × 104�t), this
error decreases to 5.2% for the BB scheme and 2.2% for the
PSM scheme. Both schemes perform better. The PSM error is

around 2.4 times smaller than the BB error, bringing it closer
to the latter.

The droplet interface evolution at the stationary regime is
shown in Fig. 7. The BB virtual density and the improved
PSM schemes are applied. The droplet interface moves from
the red line to the magenta line, and the time step differ-
ence between adjacent interfaces is 1000�t . As shown in
Figs. 7(d)–7(f), the droplet moves smoothly on the cylinder
wall with the improved PSM scheme at all the wetting condi-
tions. In contrast, for the BB virtual density scheme, droplet
interfaces are only equally spaced in the completely nonwet-
ting case [Fig. 7(a)]. As shown in Figs. 7(b) and 7(c), droplet
interfaces are not equally spaced when the wall is partially
wetting, especially in the n(r) = 0.5 case. This is because in
the BB partially wetting cases, the movement of the droplet
is affected by the local corners on the staircase approximated
wall, while in the BB nonwetting case, since the staircase wall
is completely wet by the blue fluid, the corners of the wall are
covered by the wetting fluid. Thus, it is equivalent that the
droplet slides on the blue fluid instead of moving on the wall
explaining why droplet interfaces are equally spaced.

C. 3D case: Migrating of a droplet inside a square channel
under gravity

In this test, we study the motion of a droplet inside a
square channel under gravity. To investigate the influence of
the inclination of the wall on the velocity of the droplet, the
channel is placed with the wall, respectively, inclined (31◦,
45◦, and 53◦) and aligned (0◦) with the axis of the lattice.
The aligned case is chosen as the reference since the PSM
channel is equivalent to the BB channel when all channel
walls are aligned with the axis of the lattice. If the inclined
wall is smooth enough, the velocity of the droplet must not
be affected by the inclination angle of the wall. The height
and width of the channel are both 40�x, and the length of the
channel is dependent on the inclination of the channel wall,

FIG. 7. The droplet interface evolution at the stationary regime (see Supplemental Material videos 1–3 [45]). The droplet interface moves
from the red line to the magenta line, and the time step difference between adjacent interfaces is 1000�t .
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FIG. 8. A snapshot of the droplet (n(r) = 0.5) inside a 31◦ in-
clined square channel at t = 1.5 × 104�t . The red color represents
the r component.

but all the lengths approximate 233�x. Initially, a rectangular
red droplet with a length of approximately 48�x is introduced
in the channel and is surrounded by the blue fluid. Inside
the droplet, the fluid densities are ρ (r) = 1 and ρ (b) = 0.005,
and the opposite densities for the outside of the droplet. The
gravitational force g parallel to the channel walls and directed
from left to right acts on the two fluids. The magnitude of

gravity is 5.8 × 10−5 (in lattice units). The contact angle of
the droplet is obtained according to the values of parameters in
Table I. Figure 8 presents a snapshot of the droplet (n(r) = 0.5)
inside a 31◦ inclined square channel at t = 1.5 × 104�t . The
periodic boundary condition is applied between the left and
right boundaries, and also the top and bottom boundaries. The
BB channel has a staircase approximation of the inclined wall
[Fig. 8(a)], which appears to be less smooth than the PSM
inclined wall [Fig. 8(b)].

A series of tests are performed to compare the average
velocity (in lattice units) of the droplet in channels with dif-
ferent wall inclination angles. The average velocity of the
droplet at the stationary regime is measured (Fig. 9). As the
droplet velocity changes under different wetting conditions,
the capillary number of the system ranges from 3.6 × 10−3 to
4.7 × 10−3. The Laplace number is around 220. The droplet
velocities of the improved PSM scheme with eighth-order
isotropy are almost unaffected by the wall inclination under
the same wetting condition. The variation in the velocities
is very small (smaller than 2%). However, for the BB vir-
tual density scheme, the droplet velocities at different wall
inclination angles are not consistent when the wall is partially
wetting, especially when the wetting parameter n(r) is close to
0.5 where the contact angle is around 90◦. The variation of the
velocities reaches a maximum value of about 7% at n(r) = 0.5.
When n(r) increases from 0.5 to 0.9 or decreases from 0.5 to
0, the variation of the velocities becomes smaller but remains
significant.

The evolution of the droplet interface in the yz midplane
at the stationary regime with n(r) = 0.5 is plotted in Fig. 10
(see also Supplemental Material video 4 [45]). The droplet
interface moves from the red line to the magenta line, and
the time step difference between adjacent interfaces is 500�t .

FIG. 9. The average velocity (in lattice units) of the droplet with respect to n(r) at different inclinations of the wall. As the droplet velocity
changes under different wetting conditions, the capillary number of the system ranges from 3.6 × 10−3 to 4.7 × 10−3. The Laplace number is
around 220.
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FIG. 10. The evolution of the droplet interface in the yz midplane at the stationary regime with n(r) = 0.5 (see supplementary Video 4
[45]). The droplet interface moves from the red line to the magenta line, and the time step difference between adjacent interfaces is 500�t .

According to Figs. 10(e)–10(h), the droplet interfaces are
equally spaced at all inclination angles when the improved
PSM scheme with eighth-order isotropy is used. For the BB
virtual density method, the droplet moves smoothly on the
0◦ [Fig. 10(a)] and 45◦ [Fig. 10(c)] inclined walls. How-
ever, when the wall inclination is 31◦ [Fig. 10(b)] or 53◦
[Fig. 10(d)], the droplet interfaces are not equally spaced and
asymmetrical with respect to the axis of the channel. This
problem is mainly caused by the imbalance of the interaction
force at the local corners of the inclined wall. In contrast,
when the wall is 45◦ inclined, all the corners are the same, and
when the wall is aligned, there is no corner on the wall. Similar
to the previous test case, we find that when n(r) is closer
to 0 or 1, the movement of the droplet becomes smoother
with the BB virtual density scheme. This is because when
the wall is closer to completely non-wetting or completely
wetting, the corners of the inclined wall are more covered
by the wetting fluid. Thus, the non-wetting fluid tends to
slide on a layer of the wetting fluid instead of moving on the
wall.

IV. CONCLUSION AND PERSPECTIVE

In this paper, we proposed an improved PSM scheme to
simulate pseudopotential MC flows. This proposed scheme
is fully mass conserving so the droplet size does not change
while flowing. The pseudopotential interactions are computed
with eighth-order isotropy since fourth-order isotropy leads to
a condensation problem on the curved walls and a large incon-
sistency of the contact angles on the flat and the curved walls.
It should be emphasized that eighth-order isotropic terms are
only used to compute the pseudopotential interaction forces,
so the increase in computation time is acceptable. It has been

found that our method is capable of producing nearly identical
contact angles on flat, concavely curved, and convexly curved
walls when the same wetting condition is applied, and the
contact angles obtained in the simulations are in good agree-
ment with Eq. (18), given according to Young’s equation [31],
whereas for the BB virtual density scheme, there is around a
five times higher inconsistency of the contact angles on the
different walls when the partially wetting boundary condition
is applied. Furthermore, It is shown that with the improved
PSM scheme, the droplet moves smoothly on the curved and
inclined walls and the velocity of the droplet is almost not
affected by the wall inclination angle with respect to the lattice
under all wetting conditions. However, for the BB virtual
density scheme, when the wall is partially wetting, the local
corners on the curved and inclined walls affect the movement
of the droplet. When the wetting condition of the wall is closer
to completely nonwetting or completely wetting, the move-
ment of the droplet becomes smoother and the wall inclination
angle has less influence on the droplet velocity since the cor-
ners on the staircase approximation are covered with a layer of
the wetting fluid, which increases the smoothness of the walls.
This paper shows the feasibility of using the PSM method for
the pseudopotential MC model, but plenty of things need to
be further studied such as the grid dependence of the moving
contact line [46–49], and also our method should be tested
with high viscosity or density ratio [50–52].

Overall, our improved PSM scheme is superior to
the BB virtual density scheme in simulating pseudopo-
tential MC flows with curved or complex wall geome-
tries over a wide range of wetting boundary conditions.
The present method appears to be a powerful tool for
simulating MC flows in porous media and microfluidic
channels.
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