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Influence of a random phase plate on the growth of the backward stimulated Brillouin scatter
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We derive the analytical dispersion relation of a high-energy laser beam’s backward stimulated Brillouin
scattering (BSBS) in a hot plasma, that accounts both for the random phase plate (RPP) induced spatial shaping
and its associated phase randomness. Indeed, phase plates are mandatory in large laser facilities where a
precise control of the focal spot size is required. While the focal spot size is well controlled, such techniques
produce small scale intensity variations that can trigger laser-plasma instabilities such as BSBS. Quantifying the
resulting instability variability is shown to be crucial for understanding accurately the backscattering temporal
and spatial growth as well as the asymptotic reflectivity. Our model, validated by means of a large number of
three-dimensional paraxial simulations and experimental data, offers three quantitative predictions. The first one
addresses the temporal exponential growth of the reflectivity by deriving and solving the BSBS RPP dispersion
relation. A large statistical variability of the temporal growth rate is shown to be directly related to the phase
plate randomness. Then, we predict the portion of the beam’s section that is absolutely unstable, thus helping
to precisely assess the validity of the vastly used convective analysis. Finally, a simple analytical correction to
the plane wave spatial gain is extracted from our theory giving a practical and effective asymptotic reflectivity
prediction that includes the impact of phase plates smoothing techniques. Hence, our study sheds light on the
long-time studied BSBS, deleterious to many high-energy experimental studies related to the physics of inertial
confinement fusion.
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I. INTRODUCTION

Advances in laser science offer opportunities for creating
unprecedented energy density levels, via high-energy experi-
ments on laser facilities such as the Laser Mégajoule (LMJ)
[1,2], the National Ignition Facility (NIF) [3,4], and the SG-
III [5,6], allowing to bring matter under extreme conditions,
in particular relevant for laboratory astrophysics [7], high-
energy density physics [8], or ignition purpose. The strong
interplay between the laser electromagnetic pulse and the
collective dynamics of the particles and fields of the plasma
triggers a number of wave particle and wave mixing pro-
cesses, which can give rise to new physical effects such as
anomalous plasma heating [9], fast particle generation [10],
significant backscattering [11–13], beam pointing direction
deviation [14,15], and subsequent energy deposition [16,17].
Unfortunately, these processes are not independent from each
other and can occur concurrently and lead to nonlinear ef-
fects, adding to the complexity of physics of laser created
plasmas.

In order to improve the control on the pulse propaga-
tion, most high-energy laser facilities use so-called smoothing
techniques such as random phase plates (RPP), spectral dis-
persion (SSD), or polarization smoothing (PS) which result
in degrading the spatial, temporal, or polarization laser co-
herence, respectively [18,19]. The produced intensity profile

*charles.ruyer@cea.fr

is composed of microns-scale fluctuations resulting from the
spatial multimode pattern interferences, the so-called speckles
(or hot spots) which vanish and change position periodically
if SSD is used [20–22]. Many experimental and theoreti-
cal studies demonstrate that degrading the laser coherence
indeed improves the laser propagation [23–26], albeit with-
out completely stabilizing most wave mixing processes as
notably cross beam energy transfer [27–30] or stimulated Ra-
man backscattering [31–33], which have been characterized
in these conditions. Hence, the groundwork and predictions
associated with these experiments are further complicated due
to the entanglement between the laser plasma instabilities and
the pump wave controlled incoherence.

In this context, it is convenient to use a linear convec-
tive gain analysis [34] using plasma conditions given by a
radiative-hydrodynamic code. This approach is based on a
crude plane wave convective gain which can be embedded in
the ray tracing scheme [35,36] used for modeling the laser
propagation, giving a first estimate of the deleterious laser-
plasma effects. However, these tools still fail to predict a
stimulated Brillouin scattering (BSBS) reflectivity because of
their inherent simplifying assumptions. The bypass of this dif-
ficulty motivated nonpredictive analysis, such as the feeding
of measured experimental reflectivity levels for correcting the
laser pulse used in post-shot simulations, thus modifying the
convective gain analysis [35], but helping to interpret exper-
iments. An improvement of the laser propagation modeling
is to use, in addition to radiative-hydrodynamics numeri-
cal results, large scale paraxial simulations [37] which take
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naturally into account the laser incoherence and particularly
the phase plate induced speckles.

Pinpointing the speckles contribution to the whole beam
backscattering level has essentially been done through the use
of their known intensity distribution. In this case, speckles are
randomly distributed over the focal volume, with an intensity
reaching up to 10 times the mean laser intensity with known
correlation lengths and intensity probability distribution in
vacuum. This intensity distribution may be used to calculate
averaged quantities in the limit where each speckle is spatially
independent of the other and has led to numerous interesting
BSBS models [38–40]. However, this either locates the acous-
tic fluctuations to the speckle vicinity [41–43] or oppositely
assumes that their propagation spans many hot spots [44],
therefore putting a strong constraint on the acoustic damping
rate. Indeed, dealing directly with the phase randomness con-
stitutes a major difficulty, that has been either neglected [45]
or averaged out [46,47].

In this article, we stand out from such assumptions and
propose a formalism, based on accurate analytical modeling,
which accounts for the influence of the randomness of the
phase plate on the spatial and temporal BSBS growth rate.
In doing so, we can quantitatively predict the reflectivity of
a realistic laser beam. A comparison with a large number of
three-dimensional (3D) hydrodynamic paraxial Hera [48,49]
simulations validates our predictions and demonstrates that
accounting for the phase plate randomness is crucial for un-
derstanding the impact of the phase plates on the temporal
and convective BSBS amplification [50].

The layout of the paper is organized as follows: We first
derive the BSBS RPP dispersion relation in Sec. II and extract
a solution which is relevant to the reflectivity temporal growth,
as addressed in Sec. III. The absolute stability condition is
also derived and discussed in light of a comparison with
an independent-speckle model. We then address the BSBS
asymptotic regime described in Sec. IV by a convective am-
plification and apply our analytical model to predict the RPP
spatial BSBS gain. In Sec. V, we derive a correcting multi-
plying factor to the convective plane wave gain which allows
to evaluate the RPP beam asymptotic reflectivity. We finally
confront our model to ICF-relevant backscattering measure-
ments. Note that throughout this paper, the SI unit system will
be used while dropping the Boltzmann constant and noting the
vectors in bold symbols.

II. GENERAL RPP BSBS DISPERSION RELATION

A. Derivation of the dispersion relation

The linearized density fluctuations δne/ne may be related
to the perturbed scattered amplitude δE in the Fourier space
(ωs, ks) and the pump field Ep. We now introduce ε0, nc, cs,
νs = |ks|ν̄cs, ne/i, Ze/i, Te/i, me/i, the permittivity of vacuum,
the laser critical density, the sound speed, the Landau acoustic
damping rate, the electron/ion density, charge number, tem-
perature, and mass, respectively. The usual procedure derived
in an infinite and homogeneous plasma at rest is followed [51],
perturbing the electron density and the velocity, n = ne + δne

and ve = 0 + δve, respectively. We neglect the electron inertia
and assume the electron pressure evolution to be isothermal.

For adiabatic ions of index γi = 3, the conservation of density
and momentum verifies (to leading order in δne and δve)

∂tδne

ne
= −∇δve, (1)

∂tδv + 2νsδv = −c2
s ∇

δne

ne
− Ziε0

2minc
∇EpδE . (2)

The combination of these equations leads to[
c2

s ∇2 − ∂t∂t − 2νs∂t
]δne

ne
= − Ziε0

2minc
∇2EpδE . (3)

Performing a Fourier transform, defined as f̂ =∫
f e−ik·r+iωt dr dt , we obtain [52]

δne

ne
(ωs, ks) = −α f (vφ )

ε0Ep

2ncTe
⊗ δE 
, (4)

α f = κ
c̄s

2

c̄s
2 − v2

φ − 2iν̄vφ c̄s
,

c̄s
2 = ZiTe/g2 + 3Ti

mi
, (5)

while vφ = ωs/|ks|, κ = ZiTe/mic2
s , g =

√
1 + k2

s λ
2
De, with

λD,e/i the electron/ion Debye length and u
 the complex
conjugate of u. We have also introduced the convolution
product in the Fourier space ⊗. Note that along Eq. (5),
cs = √

(ZiTe + 3Ti )/mi corresponds to the low wave vector
limit of the acoustic phase speed. The factor g in Eq. (5) does
not directly derive from the above fluid formalism but from a
Taylor development of the kinetic equations [Eqs. (6) and (7)].
As our predictions will be confronted with a hydrodynamic
code, the fluid plasma response will be considered except
in Sec. V C where a multi-ion species plasma requires the
use of a kinetic formalism. Reference [53] presents a plasma
density response to the beating of a pump and a scattered
electromagnetic wave that derives from the linearization of
the Vlasov equation. A formula similar to Eq. (4) is obtained
while replacing α f by αk , i.e.,

αk = k2
s λ

2
D,e

χe
(
1 + ∑

i χi
)

1 + χe + ∑
i χi

, (6)

χe/i = −1

2k2
s λ

2
D,e/i

Z ′(vφ

√
me/i/2Te/i ), (7)

while Z ′ is the first order derivative of the plasma disper-
sion function [54]. In the kinetic formalism, the sound speed
will be related to the phase speed value that maximizes the
imaginary part of Eq. (6), vmax

φ = c̄s � cs/g. For a linear polar-
ization, the associated scalar electric field has been modeled,
in a three-dimensional (3D) system in Refs. [55–57], and is
valid only at the focal plane. We will instead use the fields as
introduced in Ref. [58] [Eq. (46)] which are valid slightly off
focus such that

Ep(x, r⊥, t ) = E0

N
eik0x−iω0t

∑
k

ei�e−i k2

2k0
(x−x f )

, (8)

� = k⊥(n) · r + φk, (9)

k = kyŷ + kzẑ = n2km/N, (10)

n = nyŷ + nzẑ, (11)
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where ny/z are unsigned integer and N = ∑
k(n) H[k2

m −
k(n)2] is the number of phase plate elements. H (x) designates
the Heaviside function. The dependence on n of k will be
dropped for simplicity. The unity vectors in the directions x,
y, and z are noted x̂, ŷ, and ẑ, respectively. Hence, the sum
in Eq. (8) runs over ky and kz, i.e., in a realistic geometry
|k| = (k2

y + k2
z )1/2 � km where km = k0/2 f� with k0 = 2π/λ0

the main laser wave vector and f� the optic f number. The last
exponential of Eq. (8) accounts for diffraction to second order
in |k|/k0 and includes x f , the x position of the focal plane.
Without this term, the speckles are infinite in the x direction,
otherwise, they have the expected length of ∼π f 2

� λ0. The
phases φk are independent random variables taking the values
0 or π with equal probability. Under these conditions, and for
〈w〉 being the statistical average of the random variable w, we
note that [59]

〈eiφk1 −iφk2 〉 = δk1,k2 . (12)

Here δk1,k2 designates the Kronecker symbol. It is extremely
tempting to simplify the wave mixing equations by using for-
mula (12) which has led to interesting results [45,46]. Instead,
we will carefully carry the calculations while keeping the
phase plate randomness. This is indeed of crucial importance
to quantitatively understand the BSBS of a smoothed beam,
as shown subsequently.

As shown in Refs. [21,59], the pump field above consis-
tently captures the expected speckle properties such as their
intensity distribution or coherence length.

We now introduce

k0,1 = (
k0 − k2

1/2k0
)
x̂ + k1, (13)

k0,2 = (
k0 − k2

2/2k0
)
x̂ + k2, (14)

D−(k0,1) = (ωs − ω0)2 − ω2
pe − (ks − k0,1)2c2, (15)

where ωpe is the electron plasma frequency, ωs is the fre-
quency of the acoustic wave. Note that Eqs. (13) and (14)
verify |k1| = |k2| = k0 to second order in |k1|/k0 and |k2|/k0.
The derivation of the RPP dispersion relation detailed in
Appendix A remains similar to Ref. [47] with the addition of
a diffraction term and starts with the fields of Eq. (8), written
in the Fourier space (ωp, kp) and enveloped in space and time
around (ω0, k0x̂). When seeking for the backscattering growth
in the vicinity of the focal spot, we shall apply x f = 0 in
the rest of the paper. We may also search for monochromatic
growth of the acoustic fluctuations due to the linear approxi-
mation, so that

δne(ω, k) ∝ δ(ω − ωs)δ(k − ks), (16)

where δ(x) is the Dirac function. Such an approximation
might seem too restrictive to treat the scattered growth driven
by a nonhomogeneous pump wave. However, the direct
relationship between the resulting growth rate probability dis-
tribution and spatial distribution, as done in Sec. II B, will
justify the formalism used here. Hence, combining Eqs. (16)
with (A5) and after integration over frequency and wave vec-
tors, we obtain

1 = − ne

nc

(
vos

vthe

)2
ω2

0

4N

∑
k1

∑
k2

eiφk1 −iφk2

D−(k0,2)

× αk/ f

(
ωs

|ks + k0,1 − k0,2|
)

, (17)

where (vos/vthe )2 = ε0E2
0 /ncTeN . Note that Eq. (16a) of

Ref. [53] is recovered for N = 1. For a particular RPP (i.e., a
given set of φk), the paraxial and experimental BSBS growth
is expected to be strongly nonhomogeneous due to the pres-
ence of the speckles. Hence, because of the monochromatic
assumption made earlier, the physical relevance of Eq. (17)
regarding a particular RPP is questionable, so that we cannot
claim to predict the BSBS associated with a distinct RPP.
However, as shown subsequently, the resolution of Eq. (17)
for all possible RPP, i.e., for all possible spatial speckle con-
figurations, gives access to the spatial information required to
quantitatively understand the spatial distribution of the RPP
BSBS growth. The proper mathematical demonstration of that
ansatz is beyond the scope of this study. However, it will
enable to understand the temporal and spatial dynamics of the
BSBS of RPP beam obtained in our simulations (Secs. III and
IV) and an experiment (Sec. V C).

At this stage, obtaining a numerical solution of the above
equation might be challenging due to the discrete sums that
run over N2 elements. However, analytical progress may be
reached by simplifying the imaginary part of the plasma re-
sponse function α f (vφ ) whose resonance peak is centered
in vφ = cs and of width 2ν̄cs. For f� � 6.5, and for ν̄ �
5 × 10−3, the argument of α f is always close enough to cs,
i.e.,

αk/ f

(
ωs

|ks + k0,1 − k0,2|
)

� αk/ f

(
ωs

|ks|
)

. (18)

We thus have

1 = −αk/ f (vφ )
ne

nc

(
vos

vthe

)2
ω2

0

4N

∑
k1

S(k1)

D−(k0,1)
, (19)

S(k1) =
∑

k2

eiφk1 −iφk2 . (20)

The phase plate randomness has been gathered in the variable
S. Its variance verifies 〈(S − 1)2〉 = N and its mean value
satisfies 〈S〉 = 1 [using Eq. (12)]. Equations (19) and (20)
naturally include the interplay between the RPP beam and the
plasma. In particular, the possible correlation effects between
the randomly distributed hot spots and the acoustic waves are
accounted for, whether the plasma is heavily Landau damped
or not. We may now apply the central limit theorem and
approximate S to the random normal law N (1, N ) centered
in unity and of variance N . Note that when replacing S by
a normal law, we do keep the dispersion relation variability,
unlike the direct combination of Eq. (19) with (12). The sim-
plification of D− may now be carried using ω2

0 = ω2
pe + k2

0c2

with ω2
s � k2

s c2. We will also restrict, unlike Sec. IV, the
following analysis to the x-axis backscattering, i.e., imposing
ks = ksx̂ and assuming that the BSBS of the RPP beam is
correctly reproduced by the on-axis response

D− � D0 − ks

k0
k2

1c2 + O
(|k1|4/k4

0

)
,

D0 = −k2
s c2 − 2(ωsω0 − ksk0c2). (21)
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We therefore obtain

1 = −1

4

ne

nc

(
vos

vthe

)2

ω2
0αk/ f

(
ωs

|ks|
)N (1, N )

N

∑
k1

1

D0 − ks
k0

k2
1c2

.

(22)

The above discrete sum runs over the many phase plate
elements, and can be more easily calculated in the continu-
ous limit. Assuming a cylindrical beam, the discrete sum in
Eq. (22) may be replaced by a quadrature over |k1| < km so
that N−1 ∑

k1
� PV · ∫ km

0 dk12πk1/(πk2
m) (where PV desig-

nates the principal value). Provided that the real part of D0

fulfills Re(D0) = 0,

D = 1 + 1

4

ne

nc

(
vos

vthe

)2

N (1, N )αk/ f (vφ )
ω2

0k0

ksk2
mc2

× ln

(
1 − k2

mc2ks

k0D0

)
,

D = 0, (23)

where ln is the principal value of the logarithm. The above
dispersion relation accounts for the phase plate randomness
and spatial incoherence and models how the temporal growth
of the backscatter is affected.

In the plane wave limit, i.e., for infinite f�, the variance
in the dispersion relation (N ∝ 1/ f 2

� ) vanishes and a Taylor
development of the logarithm [or equivalently removing the
sum in Eq. (22)] leads to the well known plane wave limit
[53], from which an analytical solution exists.

As an example, the growth rate, obtained from the numer-
ical resolution of 〈D〉 = 0 [see Appendix B for the numerical
solving of Eq. (23)] is illustrated as a dotted line in Fig. 1(a)
and reaches the plane wave asymptotic limit when f� � 25.
Noticeably, it vanishes around f� � 9 and drops to the free
acoustic wave limit � = −νs = −0.0148 ωs, below [or � =
−0.1ωs for Fig. 1(b) when f� � 21]. Using the real scalar
random variable X ≡ N (1, N ), we may derive the threshold f
number fc, for which D(ωs, ks) = 0. This leads to a purely real
acoustic frequency (i.e., a vanishing growth rate). Noticing
that at resonance, α f (vφ = cs/g) is a purely imaginary scalar,
D may be purely real only if the logarithm in Eq. (23) has a
purely imaginary value. Hence, setting the logarithm to −iπ ,
we obtain

fc = η/
√

πX (ne/nc)(vos/vthe )2(κ/4ν̄), (24)

where η is the optical index. For X = 1 and using the pa-
rameters of Figs. 1(a) and 1(b), we obtain fc � 9 and 21,
respectively. This is in good agreement with the numerical
values (see the value of f� where the dotted line crosses � =
0). Likewise, the differentiation of Eq. (23) around f� = fc

leads to the exact value of d�/df� at f� = fc,

d�

df�

∣∣∣
f�= fc

= Im

[
2α f ks

fcα
′
f

(
2i

π
− 1

)]
, (25)

where α′
f (vφ ) is the derivative of α f (vφ ) versus vφ . We

propose to bridge the gap between f� = fc (where � =
0) and f� → ∞ (where the plane wave value is reached,
� = �PW) by using a fitted hyperbolic tangent function

(a) ν̄ = 0.0148

(b) ν̄ = 0.1

FIG. 1. (a), (b) The color map represents the probability dis-
tribution (normalized to 1/2k0cs) of the temporal growth rate,
reconstructed with Eq. (27) and verifying

∫
��−ν

pd� = 1. The
growth rate is given by Eq. (26). The numerical resolution of 〈D〉 = 0
from Eq. (23) and the analytical approximate of Eq. (26) are super-
imposed as dotted and dashed lines, respectively. The solid black
and solid red lines illustrate the dependence of 〈�〉 and Var(�)1/2

on f� (see legend). The growth rate extracted from the exponential
growth of the reflectivity curve as predicted by three-dimensional
Hera simulations is illustrated as black circles (see text) and 1D Hera
results ( f� → ∞) are shown in black triangles placed at f� = 30.
We consider a He2+ 10% critical plasma with a normalized acous-
tic Landau damping rate of ν̄ = 0.0148 (a) and ν̄ = 0.1 (b). Use
has been made of Te = 2 keV, Ti = 1 keV, I0 = 2 × 1014 W/cm2,
λ0 = 0.35 µm, and N = L2

y /( f�λ0)2, Ly = 200μm being the beam
transverse size. The plasma response is here fluid [Eq. (5)].

such that

if f� > fc,

Im(ωs) = �

= �PW(XI0) tanh

[(
f� − fc

�PW(XI0)

d�

df�

∣∣∣
f�= fc

)1/a]a

,

otherwise,

� = −ν̄kscs = −νs, (26)

with ks = 2k0[1 − ω0/(k0c)(cs/c)] and a = (1/2) +
(50/3)(ν̄ − 0.01) and where �PW(XI0) is the plane wave
temporal growth rate [53] computed with a pump wave
intensity of I = XI0. The particular case X = 1 of the above
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FIG. 2. (a) Sketch showing the relation between a probability distribution and a spatial distribution for a homogeneous and large
enough RPP beam. Since the RPP elements are independent from each other, the growth rate probability distribution (right) may
be sampled once over the whole beam (black box and cross) or similarly over large-enough subbeams (colored boxes and crosses).
(b), (c) Intensity in logarithm scale of the pump and scattered wave as predicted by 3D Hera simulations [simulation detail in Sec. III A
at x = 0 (the pump wave entry location)] . The plasma is composed of helium with ν̄ = 0.1, Te = 2 keV, Ti = 1 keV, I0 = 2 × 1014 W/cm2,
λ0 = 0.35 µm, and f� = 10.

solution is illustrated as a dashed line in Figs. 1(a) and
1(b) and demonstrates a good agreement with the numerical
resolution (as dotted lines). The above fits local relative error
fulfills <10% in the domain 0.01 � ν̄ � 0.1.

B. Probability and temporal growth rate spatial distribution

Since X is a random variable, the dependence on X of
Eq. (26) implies that � is also a random variable. The BSBS
temporal growth rate is therefore associated with a proba-
bility distribution that we propose now to reconstruct. As
X ≡ N (1, N ), the unstable solutions of Eq. (23) may be asso-
ciated with the probability exp[−(X − 1)2/2N]/

√
2πN , thus

leading to �(X ). Creating spatial growth rates bins such that
�n = −νs + n d� (where d� is the bin step), we may sum the
probability contribution of the events �n < �(X ) < �n+1 to
reconstruct numerically the discrete probability distribution

p(�n) = dP

d�
(�n) =

∑
�n<�(X )<�n+1

e−(X−1)2/2N

√
2πN

dX

d�
. (27)

Although p(�) can be estimated analytically using the deriva-
tive of Eq. (26), we will settle subsequently with a numerical
estimation. The convergence of p(�n), illustrated as a color
map in Figs. 1(a) and 1(b) and 3(a) for a He2+ 10% critical
plasma, is reached for a fine-enough discretization of the real
variable X . In the following, the interval [−3N1/2, 3N1/2]
is split in 3000 regularly spaced bins. A first peak of the
probability distribution is evidenced for � = −νs, which cor-
responds to all the stable events as predicted by Eq. (26) [i.e.,

verifying fc(XI0) > f�]. All these stable contributions are
gathered at the same value � = −νs, leading to a Dirac-type
shape. Hence, our numerical evaluation of p leads to the black
feature (the color map is saturated there) in Figs. 1(a) and
1(b) located at � = −νs. A second local maximum, around
�/2k0cs ∼ 0.2–0.3, corresponds to the most probable strictly
positive growth rate and results from a tradeoff between the
growth rate which is an increasing function of the random
variable X and the associated probability that rapidly de-
creases.

Hence, Eqs. (22) and (23) give access to the growth rate
probability distribution. As illustrated in Fig. 2(a), we may
associate the various possible growth rates to different RPP
realizations, thus identifying one statistical realization (black
cross) to the whole beam (black box). However, the most
interesting way to understand how the phase plate randomness
affects the backscatter growth is to split the beam spatially.
Since the phase plate elements are independent from each
other, the large enough subparts of the beam [in colored boxes
in Fig. 2(a)] correspond to independent samplings of the �

random law (in colored crosses). Hence, the probability dis-
tribution as predicted by our dispersion relation is related to
the portion of the beam which can be described by a given
scalar growth rate. In other words, the growth rate probability
distribution may be seen as a spatial distribution. As en exam-
ple, the probability of having a strictly positive growth rate

Punstable =
∫

�>0
p d� (28)
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(a) (b) (c)

FIG. 3. (a) Growth rate normalized probability distribution, as a function of ν̄ = νs/Re(ωs ). (b) Probability as predicted by Eqs. (28)
(black dashed line) and (30) (black plain line). Pabs based on an independent speckle model [60,61] is superimposed as a black dotted line
(see text). (c) Hera spatial gain, extracted from 3D RPP (circle) and 1D (crosses) Hera simulations by averaging dx log(〈Id〉y ) over the first
200 µm of the simulations domain. The convective plane wave theory corresponds to the average of Eq. (38) (plain line). We consider a He2+

10% critical plasma with Te = 3 keV, Ti = 1 keV, I0 = 4 × 1014 W/cm2, λ0 = 0.35 µm, and N = Ly/( f�λ0) with f� = 8, Ly = 400 μm. The
plasma response is here fluid, Eq. (5).

corresponds to the portion of the beam which is really
unstable and is here ∼50%. As expected, the scattered in-
tensity of Fig. 2(d) [at x = 0, for the plasma parameters
of Fig. 1(b), simulation details in Sec. III A] presents a
significantly smaller section than the pump [in Fig. 2(c)].
Quantitatively, the section of Fig. 2(c) that is above noise level
(here ∼4 × 10−2 W/cm2) is indeed half the surface of the
pump beam that fulfills Ip � 1014 W/cm2, as predicted by our
theory.

The statistical averaged growth rate 〈�〉 = ∫
��−νs

�p d�

[as black plain lines in Figs. 1(a) and 1(b)] is as shown
subsequently, the most relevant growth rate when compared
to numerical results. Moreover, it is located significantly be-
low the local maximum of the probability distribution due
to the fact that roughly only half the beam is really un-
stable. The plane wave case [53] corresponds to the limit
f� → ∞ and is reached asymptotically by the solution of
〈D〉 = 0 (as dashed black lines) and confirmed by 1D Hera
simulations as a large triangle (placed at f� = 30). The aver-
aged RPP growth rate overcomes the plane wave limit by a
factor ∼2–3. This is consistent with the averaged speckle in-
tensity 〈I〉speckle = ∫

fspeckle(I )I dI � 3I0, where 〈U 〉speckle =∫
fspeckle(I )U dI and fspeckle is the speckle normalized distri-

bution [60]. Additionally, the plain red lines illustrates 〈�〉 +
Var(�)1/2 [where Var(�) = ∫

��−νs
(� − 〈�〉)2P(�)d� is the

variance of �] and shows that Var(�) ∼ 1.2〈�〉, consistently
with [〈I2〉speckle − 〈I〉2

speckle]1/2 � 1.2I0.
For a fixed f number of f� = 8 relevant for the NIF or the

LMJ facilities, we explore the dependence of our predictions
on the normalized Landau damping rate ν̄ and show that our
model differs significantly from the usual plane wave predic-
tions [see dashed dark line of Fig. 3(a)]. The averaged growth
rate peaks around ν̄ � 0.06 while the plane wave growth rate
is a constantly decreasing function. Additionally, the standard
deviation remains of the order of the average growth rate most
of the time, except in the high damping regime ν̄ � 0.08,
where 〈�〉 vanishes and becomes negative.

III. TEMPORAL BSBS GROWTH

A. Comparison with paraxial hydrodynamical simulations

In order to confirm our predictions, we performed 3D Hera
[48,49] simulations of a RPP beam propagating through a ho-
mogeneous He2+ plasma in the positive x direction with λ0 =
0.35 µm, I0 = 2 × 1014 W/cm2, and a hyper-Gaussian trans-
verse profile I (y, z) ∝ exp[−(y2 + z2)5/2/2u5] at best focus
with u = 120 µm and resulting in a focal spot with a flat av-
eraged intensity within a circle of diameter Ly � 200 µm. The
electron and ion temperatures are Te = 2 keV and Ti = 1 keV,
respectively, with ne = 0.1 nc. The simulation domain is �x ×
�y × �z = 1 × 0.42 mm3, with a mesh size of dx = 1 μm
and dy = dz = 0.3906 μm and laser best focus localized at
the center of the box, at x = x f = 500 µm. The reflectivity,
R, will be subsequently defined as the pump-to-backscattered
instantaneous power ratio calculated at the laser injection po-
sition. Figure 4(a) shows the reflectivity exponential growth
as predicted by Hera during which the value of Im(ω) can be
extracted [see the temporal derivative, Fig. 4(b)]; the obtained
values are reported in Figs. 1(a) and 1(b) and 3(a) as black
circles. Consistently with Ref. [50], significant fluctuations of
the reflectivity growth are evidenced during the exponential
growth of one simulation [see the red plain line in Fig. 4(b)]
or when using two different RPP realizations [i.e., for two
different sets of φk, Eq. (8), as plain and dashed lines in
Fig. 4(b)]. We therefore reported, for each simulations, the
averaged, minimum, and maximum values of dt log(R) [where
dt f designates the temporal derivative of f (t )] during the ex-
ponential growth as a circle, top and bottom of the error bars,
respectively. Hence, the simulation points in Figs. 1(a) and
1(b) and 3(a) lie as expected around the maximum of the prob-
ability distribution (see the color map). More precisely, they
lie between 〈�〉 (as a black plain line) and 〈�〉 + Var(�)1/2 (as
a plain red line). Our numerical results thus confirm the large
variability 〈�〉 ∼ Var(�)1/2 of the BSBS growth for a low
Landau damping rate [ν̄ = 0.0148, Fig. 1(a)]. The increase
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FIG. 4. (a), (b) Reflectivity and its normalized derivative ex-
tracted from 3D Hera simulations for the plasma parameters of
Fig. 1(a) with f� = 7 (black lines) and f� = 12 (red lines). The plain
and dashed lines correspond to two different RPP realizations, i.e., to
different sets of RPP variables [φk, Eqs. (8) and (9)].

of ν̄ to 0.1, keeping the other plasma parameters unchanged
[Fig. 1(b)], also confirms our predictions. In both Figs. 1(a)
and 1(b), roughly 50% of the beam is described by a stable
growth rate of � � −νs, hence, the resulting standard devia-
tion is somewhat larger when νs/ωs = 0.1 [Fig. 1(b)] than for
νs/ωs = 0.0148 [Fig. 1(a)]. Likewise, the circles in Fig. 3(a)
are consistent with our predictions and evidence a relatively
weak dependence of the temporal RPP growth rate on the
acoustic Landau damping rate.

B. Validity of the convective BSBS model

The gain analysis, critical in ICF experiments design and
interpretation [3,34,35,62], is based on the convective spatial
growth rate derived in the plane wave limit. This regime
is reached asymptotically at t � 25 ps [see Fig. 4(a)], sup-
posedly faster than the hydrodynamics timescale, after the
BSBS has grown temporally. We now assess the impact of
the speckle pattern on the spatial growth. The validity of
the spatial growth equations [63] is based upon the abso-

lute stability of the system. Such a condition may remain
blurry in a realistic situation where the laser is composed
of numerous hot spots associated with a broad intensity
distribution.

According to Ref. [64], we may estimate the frame velocity
in which the instability grows preferentially through

V � −∂ks D/∂ωs D, (29)

where D is given by Eq. (23). In the plane wave limit, this
velocity is maximized around V � −0.5 c below the absolute
instability threshold and shows that acoustic wave packets
preferentially grow upstream of the pump wave (against the
laser injection boundary in a finite domain). When applied
to our RPP dispersion relation, this velocity is completely
deterministic and can be easily estimated. Hence, the use of
Eq. (29) allows us to derive an objective criterion on the
absolute stability of a given plasma, based on the fact that,
when this velocity is vanishing, the acoustic fluctuations are
amplified temporally and locally, the system is thus absolutely
unstable which inherently leads to a violent nonlinear satura-
tion. We may define the probability of absolute instability Pabs,
which can be seen as the portion of the beam that is above
absolute threshold, as the probability of having V below tens
of its plane wave value,

Pabs =
∫

|V |<c/20
p d�. (30)

For both Figs. 1(a) and 1(b), V ∼ −c/2 which implies Pabs =
0, thus confirming the absolute stability of these systems. For
a fixed f number of f� = 8, Fig. 3(b) suggests that when the
plasma is weakly Landau damped (νs/ωs � 0.025) and the
laser “intense enough,” a portion of the laser (here between
0.1% and 6%) is absolutely unstable. These predictions are
compared with an independent speckle model, as inspired
by Refs. [60,61], which estimates Pabs � ∫

I>Iabs
fspeckle(I )dI

(where Iabs is the absolutely unstable threshold and fspeckle the
normalized speckle distribution). Illustrated as a black dotted
line in Fig. 3(b), the independent-speckle model reproduces
correctly the threshold ν̄ ∼ 0.02 below which Pabs > 0. How-
ever, the portion of the beam as predicted by the dotted line
rapidly reaches the absurd value of 100% because fspeckle is
known to be ill defined in the low intensity part of the RPP
beam, for I � 2I0. Hence, Eq. (30) can enable to pinpoint the
limit of the convective gain models and therefore the validity
of the formalism of Refs. [35,36,63] more accurately than
the existing independent-speckle estimates. We stress that
the interplay between the convective and absolutely unstable
speckles on the BSBS growth is out of the scope of this study.

IV. CONVECTIVE SPATIAL RPP BSBS AMPLIFICATION

The transport equation of the backscattered wave intensity
Id has been obtained in the plane wave limit in Refs. [36,63].
A similar equation is obtained for nonmonochromatic pump
and scattered waves by performing a Fourier transform trans-
versely to the main laser x direction and giving

−∂t Id − vg∂xId = J, (31)

035208-7



C. RUYER et al. PHYSICAL REVIEW E 107, 035208 (2023)

where vg = c
√

1 − ne/nc is the group velocity and the source
term J reads as, with our notations,

J = −ωdε0

4
Im

(
E 


p ⊗ δE ⊗ δne

nc

)
. (32)

The evaluation of the source term involves the use of Eqs. (A1)
and (A3), written without the x-Fourier transform. We may
first write

−
(

E 

p ⊗ δne

nc

)
ω,k

= ne

nc

ε0E2
0

N22ncTe

∑
k1

∑
k2

×
[

e+i�k1 −i�k2 δE (ω, k − k0,1 + k0,2)αk/ f

(
ω − ω0

|k − k0,1|
)

+ e−i�k1 +i�k2 δE (ωs, k + k0,1 − k0,2)αk/ f

(
ω + ω0

|k + k0,1|
)]

, (33)

where we have dropped the terms depending on 2ω0 ± ω and have used k0,1 = k0x̂ + k1, k0,2 = k0x̂ + k2, and �k1 = φk1 +
k2

1(x − x f )/2k0. Keeping the Stokes component only (i.e., the first term in the square brackets) leads to

−
(

E 

p ⊗ δne

nc

)
ω,k

= 1

2

ne

nc

(
vos

vthe

)2 1

N

∑
k1

∑
k2

e+i�k1 −i�k2 δE (ω, k − k0,1 + k0,2)αk/ f

(
ω − ω0

|k − k0,1|
)

. (34)

Proof can be made that for most high-energy laser facilities
( f� ∼ 6–10) and provided that ν̄ > 10−3, the width ν̄cs of
the plasma resonance function Im[αk/ f (vφ )] is always larger
than the variations (ω − ω0)/|k − k0,1| due to k1. Hence,
we may neglect the dependence on k1 of α f in the above
equation. In addition, we will approximate Im[αk/ f (vφ )] as
in Eq. (18). The scattered wave intensity in the Fourier space
Id (k) = ε0δE (k) ⊗ δE (k)
/2 comes out of the combination
of Eqs. (32) and (34), so that

J =ne

nc

(
vos

vthe

)2
ωd

4
Im[α f (cs)]

× 1

N

∑
k1

∑
k2

e+i�k1 −i�k2 Id (kd − k0,1 + k0,2). (35)

Assuming that the scattered wave has the same f -cone angle
as the pump wave Id ∝ H(2km − |k⊥|) yields

J = ne

nc

(
vos

vthe

)2
ωd

4
Im[α f (cs)]Id S̄,

S̄ = 1

N

∑
k1

∑
k2

e+iφk1 −iφk2 +i
k2

1−k2
2

2k0
(x−x f )

. (36)

The random variable S̄ may be approximated to a normal law
using the central limit theorem. Although the calculations are
feasible off focus, we set subsequently x = x f , thus restrain-
ing the following analysis to the vicinity of the pump wave
focal plane. Hence, we use S̄ � N

∑
k1,k2

exp(iφk1 − iφk2 ) so
that Eq. (31) may be recast as

−∂t Id − vg∂xId = vgKIdN (1, 2), (37)

K = ne

nc

(
vos

vthe

)2
ωd

4vg
Im[α f (cs)], (38)

where K is the spatial convective growth rate which coin-
cides with the well known plane wave result and N (1, 2) is
the random normal law centered in unity, of variance two,
and independent of time and position (t, x) (since ∂tφk1/2 =

∂xφk1/2 = 0). Unlike the temporal growth (see Sec. III) where
a large variance appears in the RPP dispersion relation (=N),
the variability in the convective case is much smaller. Indeed,
when considering the spatial BSBS amplification [thus remov-
ing the temporal derivative in Eq. (31)], we assume that the
scattered wave propagation covers many speckles, thus reduc-
ing the speckle randomness of the resulting gain. However,
when increasing the number of phase plate elements, the gain
variance remains strictly positive, showing that even for very
large beams propagating in a homogeneous plasma, a finite
randomness of the spatial growth is to be expected.

We now introduce 〈Id〉y, the y-averaged (over −100 µm<

y < 100 µm) scattered intensity in the plane z = 0. The late
time convective growth rate has been extracted from our Hera
simulation by averaging −dx log(〈Id〉y) over the first 200 µm
of the simulation domain of Fig. 3(a) and gathered in Fig. 3(c)
as circles. A good agreement is obtained above ν̄ ∼ 0.05
when confronted with the averaged theoretical predictions of
Eq. (38) (as a plain line) or with 1D Hera simulation re-
sults (crosses). In addition, Ref. [46] relates the BSBS spatial
growth to two contributions. The first one, named the “collec-
tive” growth, is found to be stable for our plasma and laser
parameters. The second “RPA-like” contribution yields sim-
ilar predictions than our statistically averaged spatial growth
rate, Eq. (38). We therefore confirm the weak impact of a RPP
on the averaged convective BSBS growth, at least for ICF-
like parameters (i.e., Te ∼ [1–5] keV, I ∼ 1013–1016 W/cm2,
ν̄ � 0.007).

When the acoustic wave damping rate is small, a strong
BSBS growth is obtained leading to the pump depletion and
resulting in a smaller effective spatial gain than predicted by
our linear dispersion relations. The convective gain saturation,
as extracted from our simulations, occurs in both 3D and
1D simulations at K × 1 mm � 20 and 30, respectively. This
is consistent with the fact that the RPP BSBS is effectively
driven locally in speckles of intensities larger than the aver-
aged beam intensity, thus suggesting that the local hot spot
spatial amplification is larger than the gain averaged over the
whole beam.
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V. PREDICTING THE REFLECTIVITY OF A RPP BEAM

A. Reflectivity in the plane wave framework

The so-called Tang model gives an implicit formula that
relates the noise level (R0), the spatial gain (G), and the
asymptotic reflectivity level (R) [65]:

R(1 − R) = R0 exp [(1 − R)G] − R0R. (39)

Although this model is based on the strong assumption that the
saturation mechanism is solely driven by the pump depletion,
it helps to estimate the expected reflectivity level. The seed
level, in all the simulations presented here, is imposed to
Id0 = R0I0 with R0 = 10−16. Note that the seed reflectivity
used in our simulations is smaller than the one expected
physically, given by Eq. (46) subsequently. Hence, the reflec-
tivity resulting from the spatial growth rates as illustrated in
Fig. 3(b) should be trustworthy, at least in the domain where
nonlinear effects are negligible, say below R < 0.1. Indeed, a
good agreement is evidenced in Fig. 5(a) when comparing the
1D Hera asymptotic reflectivity (as red crosses) with Tang’s
model applied on the plane wave convective gain (see the a
plain red line). Unfortunately, a mismatch of more than an
order of magnitude is obtained when comparing these the-
oretical predictions with the RPP numerical result [see red
circles in Fig. 5(a)]. Similar discrepancies with experimental
measurements have been characterized and ascribed to the hot
spot dynamics lacking from the plane wave theory [see, for
example, Fig. 7 of Ref. [63] and Ref. [66]]. Reference [38]
presents an interesting theory [see red dotted line in Fig. 5(a)],
based on the independent-speckle assumption, which also
largely disagrees with the RPP Hera reflectivity.

B. Reflectivity of a RPP beam and paraxial fluid simulations

In order to understand the discrepancies between the plane
wave predictions [65] and the reflectivity as given by our
paraxial simulations, we address the impact of the normal
random law in Eq. (37) (that results from the random speckle
distribution) onto the backscattering level. Note that the ran-
dom factor N (1, 2) implies that 〈R〉 ∝ exp(〈G〉) no longer
holds, even without any nonlinear effects. Applying the same
procedure as Eq. (27), we may reconstruct the reflectivity
probability distribution by binning the reflectivity such that
Rn = R0 + n dR � 1, where n is a positive integer and dR the
bin width. Solving Tang’s implicit equation with the seed R0I0,
the pump initial intensity I0 and the effective gain G = KLxX
where X is a real associated with the Gaussian probability
[N (1, 2)], we obtain the reflectivity R(X ) from which derives
the reflectivity probability distribution [similarly to Eq. (27)]

p̄(Rn) = dP

dR
(Rn) =

∑
Rn<R(X )<Rn+1

e−(X−1)2/4

√
4π

dX

dR
. (40)

The resulting probability distribution is well converged by
discretizing the interval X ∈ [−3 × 21/2, 3 × 21/2] in 6000
regularly spaced elements. Illustrated as a color map in
Fig. 5(a), p̄ exhibits a local maximum which is in excellent
agreement with the simulation results. As for the growth rate
probability distribution, the probability absolute maximum
lies around R = R0 = 10−16 (not shown) and corresponds to
all the values of the random variable X too weak to explain the

(a)

(b)

FIG. 5. (a) Asymptotic reflectivity as predicted by 1D (crosses)
and 3D RPP (circle) Hera simulations. The error bars correspond to
the standard deviation measured over 50 ps. The model of Ref. [65]
[Eq. (39)] with a plane wave gain, Eq. (44), corresponds to the plain
line. The thick dashed line is obtained by using the RPP gain given by
Eq. (45), G ≡ GRPP = 〈X 〉R>RminK × 1 mm with Rmin = 10−2. The
reflectivity, as predicted by Eq. (9) of Ref. [38], is superimposed
as a dotted line. The color map is the probability distribution of
the asymptotic reflectivity, as predicted by Eq. (40) which is, by
construction, normalized to unity, i.e.,

∫ 1
0 p̄ dR = 1. (b) Value of

〈X 〉R(X )>Rmin as predicted by Eqs. (42) and (43). The plasma and laser
parameters are identical to Fig. 3. The plasma response is here fluid
[see Eq. (5)].

∼14 to 15 orders of magnitude of amplification factor required
to reach R ∼ 0.01–0.1 (G = KLxX � 30), as observed in our
simulations. Due to the presence of the speckles, X may be
larger than unity which leads to a measurable reflectivity
in agreement with Hera. Introducing a minimum reflectivity
value below which the BSBS is considered negligible, Rmin,
we estimate the averaged value of X over the region R > Rmin:

〈X 〉R(X )>Rmin =
∫

R(X )>Rmin
Xe−(X−1)2/4dX∫

R(X )>Rmin
e−(X−1)2/4dX

. (41)
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The denominator and the numerator can be directly related to
Xmin, the random variable value above which R > Rmin. For
Rmin � 10−2, we have, Rmin � R0eKLXmin and we obtain

〈X 〉R(X )>Rmin =
1 + erf

( 1−Xmin
2

) + 2e−(Xmin−1)2/4√
π

1 + erf
( 1−Xmin

2

) , (42)

Xmin � 1

KLx
log

(
Rmin

R0

)
, (43)

where erf is the error function. Figure 5(b) illustrates as a thick
black line the dependence of 〈X 〉R(X )>Rmin on ν̄ when Rmin =
10−2 and demonstrates that it ranges from ∼1.9 to ∼10 as ν̄

increases from 10−2 to 0.2. The plane wave reflectivity with
depletion is obtained by extracting numerically R from Tang’s
implicit equation [Eq. (39)] where

G ≡ GPW = KLx (44)

is the plane wave gain of our system. For a RPP beam, we
propose to use a similar procedure with

G ≡ GRPP = 〈X 〉R(X )>RminKLx. (45)

Hence, when solving Tang’s equation with the above gain,
we multiply the pump averaged intensity by 〈X 〉R(X )>Rmin . The
best fit to our paraxial simulations corresponds to Rmin = 10−2

and is in very good agreement with the numerical data [see
the thick dashed red line in Fig. 5(a)]. Hence, the quantity
I0〈X 〉R(X )>Rmin corresponds to the intensity of the speckle pop-
ulation that is the more likely to drive the reflectivity and it can
easily be estimated in any convective gain analysis. In other
words, a BSBS reflectivity of a RPP beam is estimated here
by replacing the averaged intensity I0 by I0〈X 〉R(X )>Rmin inside
equations obtained in the plane wave limit.

However, the corresponding reflectivity is by construction
always above Rmin which means that our analytical model
is wrong as soon as it predicts R � Rmin. This represents a
simple and efficient improvement of the plane wave predicting
capabilities that accounts for RPP and constitutes a promising
route for accurately modeling the amount of backscattering in
ICF or more generally in high-energy density experiments.

C. Comparison with experimental measurements

Brillouin backscattering measurements have been per-
formed in a fairly homogeneous plasma [68] probed and
controlled by Thomson scattering [67]. Such data have been
used to test numerical prediction capabilities [69]. Figure 6
confronts our RPP BSBS reflectivity model as a black plain
line with the experimental measurements as black squares
(RPP). According to the experiment and probably due to the
large acoustic Landau damping of the plasma, the use of
SSD does not seem to affect the measured reflectivity. How-
ever, for sake of consistency, we will ignore the RPP + SSD
data subsequently. In the experiment, the cavity is filled with
30% of CH4 and 70% of C3H8 at one atmosphere and is
irradiated by heater beams, leading after 700 ps to a 1.5-mm-
long homogeneous electron density along the interaction
beam path of ne � 0.06 nc and an electron temperature of
Te � 2.7 keV.

The reflectivity seed level (R0) is related to the spontaneous
emission of the ion acoustic waves in a single speckle εB,

(a)

(b)

FIG. 6. (a) Reflectivity as measured experimentally [67–69]. The
theoretical calculations have been performed with laser and plasma
parameters detailed in Sec. VII of Ref. [63] and a noise level given
by Eq. (46). The plane wave and RPP reflectivities in black lines
correspond to Tang’s formula (39) solved numerically for a plane
wave [Eq. (44)] and a RPP [Eq. (45)] gain, respectively. The plasma
length is Lx = 1.5 mm and the seed is given by Eq. (46). The plasma
response is treated here kinetically [see Eq. (6)]. (b) Value of Eq. (41)
for Rmin = 10−2 and Rmin = 10−4.

through R0 = εB/I0π ( f�λ0)2. The value of εB can be obtained
from Eq. (6) of Ref. [70], which can be estimated here using
the averaged ion charge and mass number (here, 〈Z〉 � 2.3,
〈A〉 � 3.9) and leading to

R0 = 1

π

ω0Te

1 − ne/nc

1 + 〈Z〉Q
1 + 〈Z〉QTe/Ti

1

I0π ( f�λ0)2
,

Q =
√

Temi

Time
e− 〈Z〉Te

Ti
− 3

2 . (46)

For the experimental parameters addressed here, it scales as
R0 ∼ 10−9. Choice has been made to set Ti = Te/2. As the
plasma is composed of carbon and hydrogen ions, the plasma
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response will be treated kinetically [Eq. (6)]. The sound speed
will be associated hereafter as the phase speed value that
maximizes Im[αk (vφ )].

Hence, the reflectivity obtained by feeding the plain wave
gain K × 1.5 mm to Tang’s formula [Eq. (39), solution
illustrated as a dashed black line in Fig. 6(a)] greatly underes-
timates the experimental values by a few orders of magnitude
and for beam energies below 4 PW/cm2. When using the
gain of Eq. (45) [see Fig. 6(b)] before calculating the re-
flectivity (see the black plain line for Rmin = 10−2), a much
better agreement is found. The dependence of our model on
Rmin is illustrated by the black dotted-dashed lines for which
Rmin = 10−4, and in good agreement with the experimental
data, especially below 1.5 PW/cm2. Indeed, the dependence
of Eq. (41) on Rmin is directly related to the finite statistical
variability of R, as discussed and illustrated in Sec. V B. In
particular, the convective amplification of slightly unstable
systems (i.e., R � 0.05) relies on the hottest and rarest speck-
les [〈X 〉R>Rmin > 5 for intensities �1 PW/cm2, see Fig. 6(b)].
Hence, small reflectivities are associated with a significant
statistical variability and causing significant dependence of
〈X 〉R>Rmin on Rmin. Above ∼2.5 PW/cm2, the dependence of
our results on Rmin vanishes as 〈X 〉R>Rmin decreases to ∼2. In
addition, the nonlinear effects not included in Tang’s model
should explain the saturation of the experimental reflectivity
to ∼20%–40% while our predictions continue to grow up to
∼60% at 5 PW/cm2. Note that Eq. (30) predicts Pabs = 0 so
that an absolute instability cannot be the main cause of the
discrepancy at large laser beam energy between the theory and
the experiment [see Fig. 6(a)].

VI. CONCLUSION

Unlike previous studies where the well known speckle
distribution in vacuum is used to extend the plane wave
calculations to a RPP beam, our derivation of the wave
mixing equations starts from the proper RPP fields. This
allows to avoid any assumption on the acoustic wave damp-
ing rate and reveal the importance of the phase plate
variability.

We have first developed a BSBS dispersion relation that
accounts for the RPP cone angle opening and random-
ness. Comparison with 3D paraxial results confirms that the
presence of the speckles significantly changes the temporal
reflectivity growth and demonstrates that modeling the phase
plate variability is critical to quantitatively understand the
temporal BSBS growth.

Notably, the absolute-instability criterion is deterministic
for a plane wave whereas it is speckle dependent for a RPP
beam. Our model also gives access to a quantitative observ-
able [Eq. (30)] that allows to estimate the portion of the beam
which is absolutely unstable. thus helping to assess the limit
of the convective gain analysis on which many BSBS studies
are based.

We have also demonstrated that, although the averaged
convective BSBS gain (of the transversely averaged beam)
remains similar for a RPP beam or a plane wave, the amount
of backscattering is affected by the use of spatial smooth-
ing. Indeed, when applying a statistical average of Eq. (37),
the covariance between the scattered intensity and the spa-

tial growth rate random variable appears in the right-hand
side and explains the difference between a RPP and a plane
wave BSBS spatial amplification. The resulting reflectivity,
modeled in this study according to Ref. [65], is significantly
increased by the use of a RPP, especially when the plane
wave analysis points to a nearly stable system. In this case,
the observed RPP Hera reflectivity corresponds very well
with the maximum of the reflectivity probability distribu-
tion obtained with an accurate modeling of the BSBS spatial
amplification of a spatially smoothed beam. We have then de-
duced a simple analytical formula which estimates the speckle
intensity that is more likely to drive a significant reflectiv-
ity. When using this prediction as a correction to the plane
wave convective gain and to the Tang’s reflectivity model, a
very good agreement with our RPP numerical reflectivity is
obtained.

Including an idealized polarization smoothing in the
present analysis could simply correspond to dividing the av-
eraged laser intensity I0 by a factor 2 and multiply the initial
seed by a factor 2. Temporal smoothing, however, is much
more challenging to include in the present model and is
known to affect the BSBS, at least in weakly Landau damped
plasmas [44]. In addition, the effect of nonhomogeneity has
been neglected and should be accounted for when address-
ing a realistic situation or gas jet experiments [70,71]. The
use of the central limit theorem (see Sec. III or in Sec. IV)
assumes a large number of phase plate elements (�30), i.e.,
a wide enough laser focal spot, which also adds a constraint
on the hydrodynamic scale length (Lh � neTe/|∇neTe|). In a
nonhomogeneous plasma, the correction to the plane wave
spatial amplification [Eqs. (37), (42), and (43)] remains valid
locally if at least 30 phase plate elements may be found in
a region of space where density gradients are negligible, i.e.,
if Lh � 30 f�λ0. Except from the depletion of the pump, the
present analysis does not include any of the nonlinear effects
[72,73] that are likely essential for accurately predicting the
high convective gain systems or when a significant part of the
beam is absolutely unstable.

Importantly, the interplay between BSBS and other laser-
plasma interaction effects such as beam bending, cross beam
energy transfer has been neglected so far. The so-called
plasma smoothing effects [74,75] are known to decrease the
effective f� value, which should alleviate sensibly the BSBS
temporal growth [see Figs. 1(a) and 1(b)]. However, the
asymptotic reflectivity of interest for ICF experiments is pref-
erentially driven by the spatial amplification which remains,
independent of f�, at least in the vicinity of the focal plane (see
Sec. IV). This seems to contrast with the results of Ref. [76]
where proof is made that plasma smoothing does reduce the
amount of BSBS. This suggests that restricting the convective
analysis in the vicinity of the focal spot [i.e., setting x = x f

in Eq. (36)] might not be appropriate when addressing the in-
teraction between backward and forward stimulated Brillouin
scatter.

Finally, the analytical correction to the plane wave spatial
amplification model introduced in Sec. V paves the way for
realistic laser-plasma instability models, thus improving the
predicting capabilities of hydrodynamic codes for the design
and interpretation of ICF and high-energy density physics
experiments.
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APPENDIX A: DERIVATION OF EQ. (17)

We start with the fields of Eq. (8), written in the Fourier
space (ωp, kp) and enveloped in space and time around
(ω0, k0x̂). We then obtain

Ep(ωp, kp) = E0

N

∑
k1

[ei�k1 δ(ωp − ω0, kp − k0,1)

+e−i�k1 δ(ωp + ω0, kp + k0,1)], (A1)

�k1 = φk1 + k2
1x f

2k0
. (A2)

Hence, injecting it into Eq. (4), and in Maxwell equations lin-
earized around the scattered field amplitude, i.e., δE (ωd , kd ),
we obtain

δne

ne
(ωs, ks) = − α f /k (vφ )

ε0E0

N2ncTe

×
∑

k1

[ei�k1 δE (ωs − ω0, ks − k0,1)

+ e−i�k1 δE (ωs + ω0, ks + k0,1)] (A3)

and (
ω2

d − ω2
pe − k2

d c2
)
δE (ωd , kd )

= ω2
0

2N
E0

∑
k2

[
ei�k2

δne

nc
(ωd − ω0, kd − k0,2)

+ e−i�k2
δne

nc
(ωd + ω0, kd + k0,2)

]
, (A4)

respectively.
Combining the two above equations and dropping the

terms δne(ωs ± 2ω0) as ω0 � ωs, we also retain the usual
stoke light branch only:
δne

ne
(ωs, ks) = − αk/ f (vφ )

ne

nc

ε0E2
0

2ncTe

ω2
0

2N2

×
∑

k1

∑
k2

ei�k1 −i�k2

D−(k0,1)

δne

ne
(ωs, ks − k0,1 + k0,2).

(A5)
Seeking for monochromatic growth of the acoustic fluc-
tuations, so that δne(ω, k) ∝ δ(ω − ωs, k − ks), and after
integration, we obtain Eq. (17).

APPENDIX B: EXACT NUMERICAL RESOLUTION
OF THE RPP DISPERSION RELATION

The numerical resolution of the dispersion relation,
Eqs. (22) or (23), used to validate the approximation of
Eq. (26), is inspired from the graphical solver detailed in
Ref. [77]. We first evaluate Im(D), where D is given by
Eq. (23), on a carefully chosen grid lying in the [ksx, Im(ωs)]
plane and setting Re(ωs) = ksxcs/g. The solutions of D = 0
are then extracted by detecting the change of sign of Re(D)
while following the locus Im(D) = 0. The precision of this
scheme is given by the chosen grid on which D is evaluated
and can be improved by feeding the obtained solutions as a
guess of a nonlinear solver.

[1] C. Courtois, C. Robert, D. Bretheau, J. Fariaut, M. Ferri, I.
Geoffray, G. Legay, F. Philippe, R. Rosch, G. Soullie et al.,
Phys. Plasmas 28, 073301 (2021).

[2] M. Primout, L. Jacquet, L. Lecherbourg, L. Videau, P.-E.
Masson-Laborde, B. Villette, G. Legay, and L. Le-Deroff, Phys.
Plasmas 29, 073302 (2022).

[3] J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H.
Glenzer, S. W. Haan, R. L. Kauffman, O. L. Landen, and L. J.
Suter, Phys. Plasmas 11, 339 (2004).

[4] A. Zylstra, O. Hurricane, and D. Callahan, Nature (London)
601, 542 (2022).

[5] W. Zheng, X. Wei, Q. Zhu, F. Jing, D. Hu, X. Yuan, W. Dai,
W. Zhou, F. Wang, D. Xu et al., Matter Radiat. Extremes 2, 243
(2017).

[6] K. Lan, Y. Dong, J. Wu, Z. Li, Y. Chen, H. Cao, L. Hao, S. Li,
G. Ren, W. Jiang et al., Phys. Rev. Lett. 127, 245001 (2021).

[7] A. Casner, T. Caillaud, S. Darbon, A. Duval, I. Thfouin, J.
Jadaud, J. LeBreton, C. Reverdin, B. Rosse, R. Rosch et al.,
High Energy Density Phys. 17, 2 (2015).

[8] R. P. Drake, Introduction to High-Energy-Density Physics
(Springer, Berlin, 2006), pp. 1–17.

[9] G. Schurtz, S. Gary, S. Hulin, C. Chenais-Popovics, J.-C.
Gauthier, F. Thais, J. Breil, F. Durut, J.-L. Feugeas, P.-H. Maire
et al., Phys. Rev. Lett. 98, 095002 (2007).

[10] C. Rousseaux, M. Rabec le Gloahec, S. D. Baton, F. Amiranoff,
J. Fuchs, L. Gremillet, J. C. Adam, A. Héron, and P. Mora, Phys.
Plasmas 9, 4261 (2002).

[11] B. J. MacGowan, B. B. Afeyan, C. A. Back, R. L. Berger,
G. Bonnaud, M. Casanova, B. I. Cohen, D. E. Desenne, D. F.
DuBois, A. G. Dulieu et al., Phys. Plasmas 3, 2029 (1996).

[12] D. S. Montgomery, B. B. Afeyan, J. A. Cobble, J. C.
FernÃ¡ndez, M. D. Wilke, S. H. Glenzer, R. K. Kirkwood, B. J.
MacGowan, J. D. Moody, E. L. Lindman et al., Phys. Plasmas
5, 1973 (1998).

[13] S. Hüller, G. Raj, W. Rozmus, and D. Pesme, Phys. Plasmas 27,
022703 (2020).

[14] J. D. Moody, B. J. MacGowan, D. E. Hinkel, W. L. Kruer,
E. A. Williams, K. Estabrook, R. L. Berger, R. K. Kirkwood,

035208-12

https://doi.org/10.1063/5.0054288
https://doi.org/10.1063/5.0088603
https://doi.org/10.1063/1.1578638
https://doi.org/10.1038/s41586-021-04281-w
https://doi.org/10.1016/j.mre.2017.07.004
https://doi.org/10.1103/PhysRevLett.127.245001
https://doi.org/10.1016/j.hedp.2014.11.009
https://doi.org/10.1103/PhysRevLett.98.095002
https://doi.org/10.1063/1.1504715
https://doi.org/10.1063/1.872000
https://doi.org/10.1063/1.872868
https://doi.org/10.1063/1.5125759


INFLUENCE OF A RANDOM PHASE PLATE ON THE … PHYSICAL REVIEW E 107, 035208 (2023)

D. S. Montgomery, and T. D. Shepard, Phys. Rev. Lett. 77, 1294
(1996).

[15] D. E. Hinkel, E. A. Williams, and C. H. Still, Phys. Rev. Lett.
77, 1298 (1996).

[16] A. J. Schmitt and B. B. Afeyan, Phys. Plasmas 5, 503 (1998).
[17] M. Grech, V. T. Tikhonchuk, G. Riazuelo, and S. Weber, Phys.

Plasmas 13, 093104 (2006).
[18] Y. Kato, K. Mima, N. Miyanaga, S. Arinaga, Y. Kitagawa,

M. Nakatsuka, and C. Yamanaka, Phys. Rev. Lett. 53, 1057
(1984).

[19] S. Skupsky, R. W. Short, T. Kessler, R. S. Craxton, S. Letzring,
and J. M. Soures, J. Appl. Phys. 66, 3456 (1989).

[20] J. Garnier, Phys. Plasmas 6, 1601 (1999).
[21] J. Garnier and L. Videau, Phys. Plasmas 8, 4914 (2001).
[22] M. Duluc, D. Penninckx, P. Loiseau, G. Riazuelo, A.

Bourgeade, A. Chatagnier, and E. D’Humières, Phys. Plasmas
26, 042707 (2019).

[23] D. E. Hinkel, E. A. Williams, R. L. Berger, L. V. Powers, A. B.
Langdon, and C. H. Still, Phys. Plasmas 5, 1887 (1998).

[24] J. Myatt, D. Pesme, S. Hüller, A. Maximov, W. Rozmus, and
C. E. Capjack, Phys. Rev. Lett. 87, 255003 (2001).

[25] S. H. Glenzer, D. H. Froula, L. Divol, M. Dorr, R. L. Berger, S.
Dixit, B. A. Hammel, C. Haynam, J. A. Hittinger, J. P. Holder
et al., Nat. Phys. 3, 716 (2007).

[26] C. Labaune, Nat. Phys. 3, 680 (2007).
[27] P. Michel, L. Divol, E. A. Williams, S. Weber, C. A. Thomas,

D. A. Callahan, S. W. Haan, J. D. Salmonson, S. Dixit, D. E.
Hinkel et al., Phys. Rev. Lett. 102, 025004 (2009).

[28] C. Neuville, C. Baccou, A. Debayle, P.-E. Masson-Laborde,
S. Hüller, M. Casanova, D. Marion, P. Loiseau, K. Glize, C.
Labaune et al., Phys. Rev. Lett. 117, 145001 (2016).

[29] S. Hüller, G. Raj, M. Luo, W. Rozmus, and D. Pesme, Philos.
Trans. R. Soc. London A 378, 20200038 (2020).

[30] A. Oudin, A. Debayle, C. Ruyer, and D. Bénisti, Phys. Rev.
Lett. 127, 265001 (2021).

[31] H. A. Rose and P. Mounaix, Phys. Plasmas 18, 042109 (2011).
[32] C. Rousseaux, K. Glize, S. D. Baton, L. Lancia, D. Bénisti, and

L. Gremillet, Phys. Rev. Lett. 117, 015002 (2016).
[33] V. T. Tikhonchuk, T. Gong, N. Jourdain, O. Renner, F. P.

Condamine, K. Q. Pan, W. Nazarov, L. Hudec, J. Limpouch,
R. Liska et al., Matter Radiat. Extremes 6, 025902 (2021).

[34] S. Laffite and P. Loiseau, Phys. Plasmas 17, 102704 (2010).
[35] D. J. Strozzi, D. S. Bailey, P. Michel, L. Divol, S. M. Sepke,

G. D. Kerbel, C. A. Thomas, J. E. Ralph, J. D. Moody, and
M. B. Schneider, Phys. Rev. Lett. 118, 025002 (2017).

[36] A. Debayle, C. Ruyer, O. Morice, P.-E. Masson-Laborde, P.
Loiseau, and D. Benisti, Phys. Plasmas 26, 092705 (2019).

[37] R. L. Berger, C. A. Thomas, K. L. Baker, D. T. Casey, C. S.
Goyon, J. Park, N. Lemos, S. F. Khan, M. Hohenberger, J. L.
Milovich et al., Phys. Plasmas 26, 012709 (2019).

[38] H. A. Rose and D. F. DuBois, Phys. Rev. Lett. 72, 2883 (1994).
[39] L. Divol and P. Mounaix, Phys. Plasmas 6, 4037 (1999).
[40] L. Divol and P. Mounaix, Phys. Plasmas 6, 4049 (1999).
[41] V. T. Tikhonchuk, P. Mounaix, and D. Pesme, Phys. Plasmas 4,

2658 (1997).
[42] V. T. Tikhonchuk, S. Hüller, and P. Mounaix, Phys. Plasmas 4,

4369 (1997).
[43] S. Hüller, A. Porzio, and J. Robiche, New J. Phys. 15, 025003

(2013).
[44] L. Divol, Phys. Rev. Lett. 99, 155003 (2007).

[45] B. Brandão, J. E. Santos, R. M. G. M. Trines, R. Bingham,
and L. O. Silva, Plasma Phys. Controlled Fusion 63, 094003
(2021).

[46] A. O. Korotkevich, P. M. Lushnikov, and H. A. Rose, Phys.
Plasmas 22, 012107 (2015).

[47] C. Ruyer, A. Debayle, P. Loiseau, P. E. Masson-Laborde, J.
Fuchs, M. Casanova, J. R. Marquès, L. Romagnani, P. Antici,
N. Bourgeois et al., Phys. Plasmas 28, 052701 (2021).

[48] H. Jourdren, Hera: A hydrodynamic amr platform for multi-
physics simulations, in Adaptive Mesh Refinement - Theory
and Applications, edited by T. Plewa, T. Linde, and V. Gregory
Weirs (Springer, Berlin, 2005), pp. 283–294.

[49] P. Loiseau, O. Morice, D. Teychenné, M. Casanova, S. Hüller,
and D. Pesme, Phys. Rev. Lett. 97, 205001 (2006).

[50] P. Mounaix and L. Divol, Phys. Rev. Lett. 89, 165005 (2002).
[51] W. L. Kruer, The Physics Of Laser Plasma Interactions

(Addison-Wesley, Boston, 1988).
[52] C. Ruyer, A. Debayle, P. Loiseau, M. Casanova, and P. E.

Masson-Laborde, Phys. Plasmas 27, 102105 (2020).
[53] J. F. Drake, P. K. Kaw, Y. C. Lee, G. Schmid, C. S. Liu, and

M. N. Rosenbluth, Phys. Fluids 17, 778 (1974).
[54] B. D. Fried, M. Gell-Mann, J. D. Jackson, and H. W. Wyld,

J. Nucl. Energy, Part C: Plasma Phys. 1, 190 (1960).
[55] H. A. Rose and S. Ghosal, Phys. Plasmas 5, 1461 (1998).
[56] J. E. Rothenberg, J. Opt. Soc. Am. B 14, 1664 (1997).
[57] L. Videau, C. Rouyer, J. Garnier, and A. Migus, J. Opt. Soc.

Am. A 16, 1672 (1999).
[58] H. A. Rose, Phys. Plasmas 3, 1709 (1996).
[59] H. A. Rose and D. F. DuBois, Phys. Fluids B 5, 590 (1993).
[60] L. Divol, Une Modélisation analytique de la réflectivité d’un

faisceau laser lissé temporellement : instabilités paramétriques
de rétrodiffusion et modèles de points chauds indépendants,
PhD. thesis, Centre de Physique Théorique, Ecole Polytech-
nique, 91128 Palaiseau Cedex, France, 1999.

[61] G. Cristoforetti, S. Hüller, P. Koester, L. Antonelli, S. Atzeni,
F. Baffigi, D. Batani, C. Baird, N. Booth, and M. Galimberti
et al., High Power Laser Sci. Eng. 9, e60 (2021).

[62] P. E. Masson-Laborde, M. C. Monteil, V. Tassin, F. Philippe, P.
Gauthier, A. Casner, S. Depierreux, C. Neuville, B. Villette, S.
Laffite et al., Phys. Plasmas 23, 022703 (2016).

[63] D. J. Strozzi, E. A. Williams, D. E. Hinkel, D. H. Froula, R. A.
London, and D. A. Callahan, Phys. Plasmas 15, 102703 (2008).

[64] S. Jorna, Phys. Fluids 17, 765 (1974).
[65] C. L. Tang, J. Appl. Phys. 37, 2945 (1966).
[66] V. Tikhonchuk, Y. J. Gu, O. Klimo, J. Limpouch, and S. Weber,

Matter Radiat. Extremes 4, 045402 (2019).
[67] D. H. Froula, J. S. Ross, L. Divol, N. Meezan, A. J. MacKinnon,

R. Wallace, and S. H. Glenzer, Phys. Plasmas 13, 052704
(2006).

[68] N. B. Meezan, R. L. Berger, L. Divol, D. H. Froula, D. E.
Hinkel, O. S. Jones, R. A. London, J. D. Moody, M. M.
Marinak, C. Niemann et al., Phys. Plasmas 14, 056304 (2007).

[69] L. Divol, R. L. Berger, N. B. Meezan, D. H. Froula, S. Dixit, P.
Michel, R. London, D. Strozzi, J. Ross, E. A. Williams et al.,
Phys. Plasmas 15, 056313 (2008).

[70] V. T. Tikhonchuk, J. Fuchs, C. Labaune, S. Depierreux, S.
Hüller, J. Myatt, and H. A. Baldis, Phys. Plasmas 8, 1636
(2001).

[71] J. Fuchs, C. Labaune, S. Depierreux, V. T. Tikhonchuk, and
H. A. Baldis, Phys. Plasmas 7, 4659 (2000).

035208-13

https://doi.org/10.1103/PhysRevLett.77.1294
https://doi.org/10.1103/PhysRevLett.77.1298
https://doi.org/10.1063/1.872733
https://doi.org/10.1063/1.2337791
https://doi.org/10.1103/PhysRevLett.53.1057
https://doi.org/10.1063/1.344101
https://doi.org/10.1063/1.873413
https://doi.org/10.1063/1.1405127
https://doi.org/10.1063/1.5089113
https://doi.org/10.1063/1.872859
https://doi.org/10.1103/PhysRevLett.87.255003
https://doi.org/10.1038/nphys709
https://doi.org/10.1038/nphys742
https://doi.org/10.1103/PhysRevLett.102.025004
https://doi.org/10.1103/PhysRevLett.117.145001
https://doi.org/10.1098/rsta.2020.0038
https://doi.org/10.1103/PhysRevLett.127.265001
https://doi.org/10.1063/1.3581083
https://doi.org/10.1103/PhysRevLett.117.015002
https://doi.org/10.1063/5.0023006
https://doi.org/10.1063/1.3489309
https://doi.org/10.1103/PhysRevLett.118.025002
https://doi.org/10.1063/1.5110247
https://doi.org/10.1063/1.5079234
https://doi.org/10.1103/PhysRevLett.72.2883
https://doi.org/10.1063/1.873666
https://doi.org/10.1063/1.873667
https://doi.org/10.1063/1.872351
https://doi.org/10.1063/1.872599
https://doi.org/10.1088/1367-2630/15/2/025003
https://doi.org/10.1103/PhysRevLett.99.155003
https://doi.org/10.1088/1361-6587/ac11b5
https://doi.org/10.1063/1.4906057
https://doi.org/10.1063/5.0043931
https://doi.org/10.1103/PhysRevLett.97.205001
https://doi.org/10.1103/PhysRevLett.89.165005
https://doi.org/10.1063/5.0016214
https://doi.org/10.1063/1.1694789
https://doi.org/10.1088/0368-3281/1/4/302
https://doi.org/10.1063/1.872804
https://doi.org/10.1364/JOSAB.14.001664
https://doi.org/10.1364/JOSAA.16.001672
https://doi.org/10.1063/1.871690
https://doi.org/10.1063/1.860545
https://doi.org/10.1017/hpl.2021.48
https://doi.org/10.1063/1.4941706
https://doi.org/10.1063/1.2992522
https://doi.org/10.1063/1.1694788
https://doi.org/10.1063/1.1703144
https://doi.org/10.1063/1.5090965
https://doi.org/10.1063/1.2203232
https://doi.org/10.1063/1.2710782
https://doi.org/10.1063/1.2844361
https://doi.org/10.1063/1.1357218
https://doi.org/10.1063/1.1312183


C. RUYER et al. PHYSICAL REVIEW E 107, 035208 (2023)

[72] M. Casanova, G. Laval, R. Pellat, and D. Pesme, Phys. Rev.
Lett. 54, 2230 (1985).

[73] R. L. Berger, S. Brunner, T. Chapman, L. Divol, C. H. Still, and
E. J. Valeo, Phys. Plasmas 20, 032107 (2013).

[74] P. M. Lushnikov and H. A. Rose, Plasma Phys. Controlled
Fusion 48, 1501 (2006).

[75] M. Grech, G. Riazuelo, D. Pesme, S. Weber, and V. T.
Tikhonchuk, Phys. Rev. Lett. 102, 155001 (2009).

[76] A. V. Maximov, I. G. Ourdev, D. Pesme, W. Rozmus, V. T.
Tikhonchuk, and C. E. Capjack, Phys. Plasmas 8, 1319
(2001).

[77] B. D. Fried and W. Gould, Phys. Fluids 4, 139 (1961).

035208-14

https://doi.org/10.1103/PhysRevLett.54.2230
https://doi.org/10.1063/1.4794346
https://doi.org/10.1088/0741-3335/48/10/004
https://doi.org/10.1103/PhysRevLett.102.155001
https://doi.org/10.1063/1.1352056
https://doi.org/10.1063/1.1706174

