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Implications of nonzero photon mass on plasma equilibria
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The Beltrami state in a single-species (electron or ion) ideal plasma in the context of massive electromagnetism
has been explored. The inclusion of photon mass, essentially treating the massive photon field as a mobile
fluid in the ideal plasma vortical dynamics, has resulted in a triple curl Beltrami state of the magnetic vector
potential �A. A variational principle is constructed which shows this state can also be obtained by constrained
minimization of the system’s energy with appropriate helicity invariants. Such a state is endowed with three
different length scales; one of which is the system length, and the other two are species’ skin depth and photon
Compton wavelength, respectively. An analytical solution of this state in the cylindrical geometry is presented,
which is the linear combination of three single Beltrami states. Possible observational signatures of this state in
astrophysical and laboratory settings are also discussed.
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I. INTRODUCTION

The standard theory of electrodynamics is based on the
premise that the photon is massless [1–3]. It follows from
the requirement of gauge invariance of the Lagrangian of
the electromagnetic field. Like the cosmological constant and
neutrino masses, once assumed to be precisely zero till em-
pirical data proved otherwise, it is reasonable to assume that
a photon is likely to have a tiny mass, but nonzero [4,5]. The
continued interest in massive photons can also be attributed
to dark matter research where massive dark photons are pro-
posed to be force carriers that can kinetically mix with the
standard model photon [6,7].

To account for photon mass, the Lagrangian for the elec-
tromagnetic field can be modified, first considered by Proca,
to include a mass term as follows [1]:

Lproca = − 1

16π
FμνFμν + 1

8πλ2
p

AμAμ − 1

c
JμAμ, (1)

which results in the Proca equation of motion

∂νFμν + 1

λ2
p

Aμ = 4π

c
Jμ (2)

while satisfying the same homogeneous equations ∂μFμν = 0
in the Maxwell theory. Here, Fμν (Fμν) is the electromagnetic
field tensor (dual tensor), Aμ is the four potential, Jμ is the four
current, and c is the speed of light. The parameter λp is the
Compton wavelength of a photon (λp = h/mpc) where mp and
h are the photon rest mass and Planck’s constant, respectively.
Some of the immediate consequences of nonzero photon mass
are wavelength dependence of the speed of light, deviations
from the exactness of Coulomb’s and Ampere’s law, longitu-
dinal polarization of electromagnetic waves, and Yukawa-like
dependence of magnetic field created by a magnetic dipole
[2,3,8–10].

Laboratory investigations to measure photon mass have
reached their limits because of the extraordinary precision
required of the experiments [11]. It was realized in the early

1960s that even a tiny photon mass might affect astrophysical
phenomena occurring at length scale L > λp [12,13]. There-
fore, direct astrophysical observations such as measuring the
dispersion of photon velocity from cosmic gamma-ray bursts,
solar wind data, and measurement of Jupiter’s magnetic field
have improved the accuracy of photon mass limit over the
last few decades [14–20]. The currently accepted upper bound
for photon mass mp < 10−49 g for which the Compton wave-
length is λp > 1 au [8,18,19,21,22].

While exploring the astrophysical phenomena occurring
on length scales comparable to the Compton wavelength of
photons in galaxies and galaxy clusters, we generally en-
counter large-scale ordered and random magnetic fields. The
large-scale ordered magnetic field is probably sustained by
the ambient plasma [13,23–25]. Since plasma exhibits the ten-
dency to self-organize resulting in coherent magnetic and flow
configurations, it is important to analyze plasma equilibria to
improve the estimates of photon mass limit and better under-
stand the electromagnetic stress on galactic rotation curves
[26]. One possible equilibria is the single Beltrami state in
Magnetohydrodynamics (MHD) where plasma relaxes into
a minimum energy state while keeping the global magnetic
helicity intact. By assuming the pressure to be negligible, a
single Beltrami state satisfies the relation �∇ × �B = λ �B, where
�B and λ are the magnetic field and proportionality constant,
respectively [27,28]. This type of equilibria is also known
as the force-free equilibrium because the force �J × �B = 0,

where J is the electric current. Because MHD is inherently
scale-free, the simultaneous presence of both small- (l < λp)
and large-scale (L > λp) fields makes it highly unlikely that
the force-free equilibria can exist [18].

In this article, we study a wider class of large-scale equilib-
ria in plasmas by incorporating the inertia of plasma species
in the dynamics. These types of equilibria were first explored
in the context of Hall MHD—a two-fluid system with ions
and massless electrons [29,30]. Some of the fundamental at-
tributes of the equilibria (also called Beltrami states) are the
alignment of plasma flow �v with a composite quantity known
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as Generalized vorticity

�� = �B + mc

q
�∇ × �v, (3)

and conservation of Generalized helicity. Here, m and q
stand for the mass and charge of the plasma species. These
minimum energy states are characterized by the number of
independent single Beltrami states required to construct them.
These multi-Beltrami states have been investigated in plasma
confinement, solar prominences, blackhole accretion disk, etc.
[29,31–34].

This paper will explore the characteristics of the ordered
large-scale magnetic field associated with the magnetic vector
potential. This paper aims to investigate the possible existence
of Beltrami states in galactic length scales and how they differ
due to nonzero photon mass. Unlike the Beltrami state for zero
photon mass, these states will primarily be of the magnetic
vector potential �A because it is a dynamical quantity in mas-
sive electromagnetism. Since multi-Beltrami equilibria are
endowed with multiple scale lengths, this study will provide a
possible resolution to some well-known analytical difficulties
in the context of massive electromagnetism, such as photo
mass limit in the presence of both small- and large-scale fields,
galactic rotation curves, etc.

First, we construct the vortical dynamics of plasmas in
massive electromagnetism. Next, we show how Beltrami
states can be derived from the variational principle. Finally,
we provide the analytical solution of the Beltrami state and
discuss the features of the state.

II. PLASMA DYNAMICS IN MASSIVE
ELECTROMAGNETISM

We present the dynamics of an ideal, incompressible
plasma in massive electromagnetism in this section. The mo-
mentum equation obeyed by each species (labeled i) in a
multispecies plasma can be written as [34]

ρi

(
∂

∂t
+ �vi · �∇

)
�vi = ρi�g + qini( �E + �vi × �B) − �∇p, (4)

where ρi, �E , and p represent the plasma density, electric field,
and plasma pressure, respectively.

Now, by using (a) vector identity (�vi · �∇)�vi = �∇(v2
i /2) −

�vi × ( �∇ × �vi ) and (b) �E = − �∇φ − 1/c∂t �A, where �A and φ are
vector and electrostatic potentials, respectively. Then, we can
rewrite Eq. (4) as

∂ �Pi

∂t
− (�vi × ��i ) = − �∇p

ρi
− �∇ψi, (5)

where all the potentials are incorporated into a single potential
ψi = c/qi(miv

2
i /2 + mi
g + qiφ). Here, 
g is the gravita-

tional potential and related to the gravitational field as �g =
− �∇
g.

It should be noted here that nonzero photon mass makes the
magnetic vector potential and electrostatic potential observ-
able quantities having a direct dynamical effect on the plasma
motion and also satisfy the Lorentz condition

�∇ · �A + 1

c

∂φ

∂t
= 0. (6)

For a barotropic fluid, the equation of state yields a relation-
ship between enthalpy Hi and pressure: �∇Hi = ρ−1

i
�∇p. Using

this relationship, the new generalized potential can be written
as ψ̃i = c/qi(miv

2
i /2 + mi
g + qiφ + miHi ).

Now, taking the curl of Eq. (4) we obtain the source-free
vorticity evolution equation:

∂ ��i

∂t
= �∇ × (�vi × ��i ), (7)

in terms of the generalized vorticity ��i = �∇ × �Pi = �B +
mic/qi ( �∇ × �vi ). It should be noted that ψ̃ includes all po-
tential terms which do not play a direct role in the evolution
of vorticity. The dynamics of magnetic and flow vorticity are
now governed by Eq. (7), and all species evolving indepen-
dently are connected through Ampere’s law modified by the
photon mass [23]

�∇ × �B + �A
λ2

p

= 4π

c
�J = 4π

c

∑
i

niqi�vi (8)

with the assumption that the displacement current is negligible
in the nonrelativistic dynamics.

A. Constant of motion and Variational principle

We can explore the possible constants of motion of the vor-
tex dynamics presented in the previous section. Using Eqs. (5)
and (7), it is straightforward to show that the vortex dynamics
leads to two constants of motion, i.e., helicity [35]

hi = 1

8π

∫
�Pi · ��i d3x

= 1

8π

∫ (
�A + mic

qi
�vi

)
·
(

�B + mic

qi

�∇ × �vi

)
d3x (9)

and energy

E =
∫ (

1

2
ρiv

2
i + B2

8π
+ A2

8πλ2
p

)
d3x. (10)

It should be noted here that the total volumetric magnetic
energy density in Proca electrodynamics retains a similar fea-
ture to Maxwellian electrodynamics. However, the departure
from the Maxwellian feature is noticeable in total volumetric
magnetic pressure in Proca electrodynamics because the mas-
sive photon contribution to this quantity is negative. This can
considerably alter the plasma dynamics as the negative Proca
pressure will pull plasmas toward a stronger magnetic field.

A variational principle is usually constructed by assuming
that energy is more fragile in the presence of dissipation
than generalized helicity. As a result, we choose to extremize
energy as a target functional subject to the helicity acting as a
constraint, i.e., [36,37]

δQ = δ

(
E −

∑
i

μ−1
i hi

)
= 0, (11)

where μi is the Lagrange multiplier and �A and �v are treated
as the independent variables. Performing the variation in
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Eq. (11), we obtain

δQ = mic

qi

∑
i

( ��i

μi
− 4πniqi

c
�vi

)
· δ�vi

+ 1

4π

(
�∇ × �B + �A

λ2
p

−
∑

i

��i

μi

)
· δ �A = 0. (12)

By equating the variation of δv to zero independently, we
obtain the Beltrami condition

��i = μi
4π

c

∑
i

niqi�vi = μi
4π

c
�J. (13)

By setting the coefficient of δ �A to zero and using Eq. (13), we
obtain a relation equivalent to the time-independent Ampere’s
law.

Furthermore, we notice that Eq. (13) is also a solution of
time-independent vorticity equation �vi × ��i = 0 when all the
gradient forces are constrained to zero, i.e., �∇ψ̃i = 0, or by
integrating

miv
2
i

2
+ mi
g + qiφ + miHi = constant . (14)

Equation (14) relates the enthalpy (pressure) to the flow ve-
locity and other potentials without reference to the magnetic
field or vector potential explicitly, and the only coupling to
the magnetic field and vector potential is through the flow
velocity. This is known as Bernoulli’s condition. Then, the
Beltrami condition, along with Ampere’s law, constitutes the
minimum energy states of the N-species plasma.

Next, to understand the physical meaning of the Lagrange
multiplier μi, we substitute Eq. (13) into Eq. (9) and obtain

hi = μi

2c

∫ (
�A + mic

qi
�vi

)
· niqi�vi d3x. (15)

It is straightforward to show that Eq. (15) yields the fol-
lowing:

∑
i

hi

μi
=

∑
i

∫ (
1

2
ρiv

2
i + B2

8π
+ A2

8πλ2
p

)
d3x = E , (16)

which also satisfies Eq. (11). It should be noticed that the
amount of energy in the multi-Beltrami states is not an in-
dependent invariant but a quantity fixed by the Lagrange
multipliers and helicities of individual species [36]. For single
Beltrami equilibria in MHD, the relationship in Eq. (16) can
be expressed as μ = h/E , the ratio of the helicity to the total
energy.

III. BELTRAMI STATE

We consider a nonrelativistic system of single-species
plasma, either of dynamic electrons or ions (to be labeled “d”),
in a background stationary (nondynamic) electron-ion bulk
plasma. The dynamic fluid carries all the current in the system
while the presence of bulk plasma ensures charge neutrality
[35]. In this case, the system is fully defined by a single
(i = 1) generalized helicity h and the corresponding Beltrami
condition for the dynamic single fluid.

The equilibrium fields can then be calculated by combining
Eqs. (13) and (8) into the following equation:

�∇ × �∇ × �∇ × �A − k1 �∇ × �∇ × �A + k2 �∇ × �A − k3 �A = 0,

(17)

where we have normalized all the gradients to the system
length scale L and defined the following

k1 = μL

λ2
d

, k2 = L2

λ2
d

(
1 + λ2

d

λ2
p

)
, k3 = μL3

λ2
pλ

2
d

(18)

with dynamic species’ skin depth λd = c/ωpd and plasma
frequency ωpd =

√
4πnd q2

d/md . For the sake of simplicity,
the dynamic plasma density is assumed to be constant here.

Examining Eq. (17), we notice that the system relaxes into
a triple curl Beltrami state and has a general solution

�A =
3∑
i

Ci �Gi, (19)

where �Gi, known as Beltrami fields, are the solutions of
�∇ × �Gi = αi �Gi (20)

with the eigenfunctions, and Ci’s are the constants that can
be determined from the boundary conditions. The eigenvalues
of the curl operator (αi) are solutions of the cubic equa-
tion [38,39]

α3 − k1α
2 + k2α − k3 = 0 (21)

which can be real or complex, and the following relations
between Beltrami parameters and eigenstates are satisfied:

k1 = α1 + α2 + α3, (22)

k2 = α1α2 + α2α3 + α1α3, (23)

k3 = α1α2α3. (24)

The three roots for Eq. (21) are

α1 = s − τ + k1

3
, (25)

α2 = −1

2
(s − τ ) − i

√
3

2
(s + τ ) + k1

3
, (26)

α3 = −1

2
(s − τ ) + i

√
3

2
(s + τ ) + k1

3
, (27)

where

s =
(
−q

2
−

√
D

)1/3
, (28)

τ =
(q

2
+

√
D

)1/3
, (29)

p = k2 − k2
1

3
, (30)

q = k1k2

3
− 2k3

1

27
− k3, (31)

D = q2

4
+ p3

27
. (32)

The discriminant of Eq. (21) is given by

� = k2
1k2

2 + 18k1k2k3 − 4k3
2 − 4k3

1k3 − 27k2
3 . (33)
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When �< 0, all three roots of Eq. (21) are real; when
�> 0, then one of the roots is real while the other two are
complex conjugate pairs. If � = 0, all the roots are real, and
at least two are equal.

Based on the preceding analysis, one can surmise that the
magnetic field should also be a triple curl Beltrami state in
this system. Using the relation �B = �∇ × �A, we obtain the
following expression for the magnetic field:

�B =
3∑
i

Ciαi �Gi. (34)

The inclusion of nonzero photon mass in plasma dynamics has
fundamentally altered the vector potential and magnetic field
structures. The fact that a triple curl Beltrami state emerges in
this system is due to the inclusion of inertia of dynamic plasma
species and photons. The construction of vortical dynamics
treats the massive photon field, flow field, and magnetic field
on an equal footing where the photon can be viewed as a
mobile fluid in the system. It should be emphasized here that
a photon can acquire an effective mass in Maxwellian elec-
trodynamics as it propagates through the plasma [40,41]. The
formalism presented here is strictly based on the assumption
that a photon has a nonzero rest mass and its dynamics follow
from the Proca Lagrangian.

Also, we notice that the scale parameters (α) characterize
the size of the system’s structure because they are dimension-
ally equal to the inverse of length. One of the three structures
corresponds to system size L, and the other two will be related
to the Compton length and species skin depth, respectively.
In the limit, λp → ∞ (mp = 0), Eq. (17) results in the double
curl Beltrami equation associated with dynamic single-species
fluid.

IV. ANALYTICAL SOLUTION

In a cylindrical geometry, the solution is given by [39]

Aθ = C1J1(α1r) + C2J1(α2r) + C3J1(α3r), (35)

Az = C1J0(α1r) + C2J0(α2r) + C3J0(α3r), (36)

where J0 and J1 are the Bessel functions of the zeroth and first
order. If we take |Az|r=0 = a1, Bz = |( �∇ × �A)z|r=0 = a2, and
Bθ = |( �∇ × �A)θ |r=L = a3, where L is the length of the system,
we obtain

a1 = C1 + C2 + C3, (37)

a2 = α1C1 + α2C2 + α3C3, (38)

a3 = α1C1J1(α1L) + α2C2J1(α2L) + α3C3J1(α3L). (39)

Solving the equations, we obtain

C1 = β1

Q
, C2 = β2

Q
, C3 = β3

Q
, (40)

where

β1 = a3(α3 − α2) + α2J1(α2L)(a2 − α3a1),

+ α3J1(α3L)(α2a1 − a2) (41)

β2 = a3(α1 − α3) + α3J1(α3L)(a2 − α1a1),

+ α1J1(α1L)(α3a1 − a2) (42)

β3 = a3(α2 − α1) + α1J1(α1L)(a2 − α2a1),

+ α2J1(α2L)(α1a1 − a2) (43)

Q = α1J1(α1L)(α3 − α2) + α2J1(α2L)(α1 − α3)

+ α3J1(α3L)(α2 − α1). (44)

Then, the corresponding magnetic fields are

Bθ = C1α1J1(α1r) + C2α2J1(α2r) + C3α3J1(α3r), (45)

Bz = C1α1J0(α1r) + C2α2J0(α2r) + C3α3J0(α3r). (46)

V. CONCLUSION

In light of the preceding discussion and analysis, we make
the following observations about the electrodynamical signa-
tures of plasmas with nonzero photon mass

(i) Inclusion of both nonzero photon and species inertia
in a single fluid plasma in Maxwell-Proca electrodynamics
yields a multiscale equilibrium state where generalized helic-
ity emerges as the fundamental determinant of magnetic and
flow configurations in plasmas [35,36].

(ii) Similar to massless electrodynamics, the termination
of this equilibria can result in eruptive events leading to the
transfer of magnetic energy (now modified due to nonzero
photon mass) into flow energy or vice versa [42,43].

(iii) When μ = 0, one obtains the plasma “superconduct-
ing” solution � = 0 where the magnetic flux is expelled from
the interior of the plasma [35,44]. This state is electrodynam-
ically equivalent to the Meissner effect displayed by classical
superconductors. Compared to the traditional electrodynam-
ics, we notice in Eq. (17) that the London skin depth is
modified by the Compton wavelength of the photon. Since
zero helicity is the major determinant of this state, one can
prepare a system with vanishingly small helicity to mea-
sure any changes to the traditional London skin depth in a
laboratory.

(iv) The inclusion of inertia of plasma species has played a
significant role in plasma self-organization and created field
structures of different length scales. One can compute the
electromagnetic stress on the plasma element and the corre-
sponding change in flow profiles due to magnetic fields in
these different length scales. For large enough photon mass
(or small enough λP), the deviations from the pure MHD flow
structures could help set in setting a refined upper bound on
the photon mass [19].

(v) The ordered magnetic field generated at small scales
in this system can lead to large-scale flow through the re-
verse dynamo mechanism [45]. Any observational signatures
related to this can also serve as an essential basis for refining
the photon mass upper bound estimates.
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