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Phase transition of three-dimensional finite-sized charged dust clusters in a plasma environment
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The dynamics of a harmonically trapped three-dimensional Yukawa ball of charged dust particles immersed in
plasma is investigated as function of external magnetic field and Coulomb coupling parameter using molecular
dynamics simulation. It is shown that the harmonically trapped dust particles organize themselves into nested
spherical shells. The particles start rotating in a coherent order as the magnetic field reaches a critical value
corresponding to the coupling parameter of the system of dust particles. The magnetically controlled charged
dust cluster of finite size undergoes a first-order phase transition from disordered to ordered phase. At sufficiently
high coupling and strong magnetic field, the vibrational mode of this finite-sized charged dust cluster freezes,
and the system retains only rotational motion.
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I. INTRODUCTION

It is well known that the dynamics of systems driven
far from equilibrium depend on external stimuli. Interesting
dynamics may arise in a heterogeneous spatially extended sys-
tem due to the emergence of collective modes that depend on
the nature of instability [1–6]. Dusty plasma is an ideal plat-
form to study the physics of both extensive and nonextensive
systems (particles interacting via noncollective long-range
forces), such as the formation of structures, transitions from
ordered to disordered states, stability, etc. The physics of dust
clusters may be relevant for the development of microstruc-
tures, nano-materials, ions in traps, atomic clusters, etc. [7].
Both temporal and spatial scale lengths are stretched in the
dusty plasma, which can be attributed to the comparatively
large size and mass of the dust particles, and observation
of the phenomena becomes much easier in the laboratory in
such a system. Although phase transition is usually studied in
the bulk system, it can still be of interest in a finite system,
exhibiting novel features and revealing underlying physics.
The dust particles immersed in plasma get charged by the flow
of plasma ions and electrons or due to radiation in astrophys-
ical systems. The presence of such grains may significantly
affect the overall collective behavior of plasma. On the other
hand, the plasma particles, specifically the ions, mediate the
interaction among dust grains and this may often lead to the
formation of structures like crystals, clusters, vortices, etc.
Whether the system behaves like a collective or noncollective
system depends upon the number of particles present and the
geometry of the system. A one-dimensional (1D) string of
dust or a two-dimensional dust cluster often behaves as a
nonextensive system where dust-dust interaction reflects the
properties of ion traps, quantum dots, etc.
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The charged dust particles confined in a plasma environ-
ment under gravitational and electrostatic forces interact with
each other, usually via screened Coulomb (Debye-Hückel)
potential. Their behaviors are controlled by the Coulomb cou-
pling parameter (�) and the screening constant (κ). A small
number of such interacting dust particles under harmonic
confinement provided by surrounding plasma may manifest
in the formation of a dust cluster. The formation of dust
clusters varying from one dimension to three dimensions in a
plasma environment and their structures, and their properties
in capacitively coupled RF discharge, are discussed by Melzer
et al. [8]. By suitably controlling the strength of vertical and
horizontal confinements, they were successful in producing
a 1D dust cluster. A zig-zag transition was also observed
when the pressure was controlled externally. Sheridan and
Wells [9] determined the critical exponents of such a zig-
zag transition. Interestingly, Melzer et al. also produced 2D
finite dust clusters where the particles organize themselves
into circular shells [10]. They also observed 3D spherical
dust clusters, the so-called Yuakawa ball by suitably con-
trolling the confining forces with fewer (N = 22) particles.
Depending on the dominant interaction both spherical (in the
presence of isotropic interaction) and chainlike structures (in
the presence of an attractive wake field) may be possible.
Note that the structure of dust clusters embedded in a plasma
environment may be significantly influenced by the screen-
ing parameter κ (and this introduces a difference of such
a Yukawa cluster from the Coulomb cluster). Baumgartner
et al. [11] have studied the shell configuration of spherical
Yukawa clusters in their ground states for different values
of particle number and screening constant. Different prop-
erties of the Yukawa cluster such as cluster compression,
change of average density profile, a transition from inner
to outer shells, etc. were found to be influenced by screen-
ing for a given value of particle number. Thus, screening
provides a different dimension to the Yukawa dust cluster
compared to the Coulomb cluster. The micron-sized dust
particles confined in plasma exhibit phase transition similar
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to solid-to-liquid transition in bulk matter. Nonequilibrium
melting of 2D finite dust cluster caused by instability was
investigated by Ivanov et al. [12]. They observed a two-step
transition from solid to hot crystalline state [13] with a re-
duction in discharge pressure resulting in unstable oscillations
which then transit to fluid state on further reduction of gas
pressure. Their results are in good agreement with the nonlin-
ear simulations performed by Schweigert et al. [14]. Melting
transition in finite 3D clusters, so-called Yukawa balls, was
experimentally studied by Schella et al. [15]. The angular
correlation was found to decay before the vanishing of ra-
dial correlation. The critical value of the Coulomb coupling
parameter was determined for a cluster containing 35 dust
particles.

The rotation of dust clouds is observed in several exper-
iments of dusty plasma subjected to an external magnetic
field. The rotation of a particle cloud observed by Sato
et al. is attributed to the ion drag force on the fine particles
[16,17]. Konopka et al. reported that an external magnetic
field results in a rotation of dust clouds suspended in the
sheath of a radio-frequency discharge [18]. They suggested
an analytical model that explains qualitatively the mechanism
of particle rotation, which depends on electrostatic force,
ion drag, neutral drag, and effective interparticle interaction
forces. Interestingly, intershell rotation of dust particles in
two dimensions was also reported by Maity et al. [19] in
the absence of a magnetic field which they attributed to
the unbalanced electric force between the inner and outer
shells.

The study of the behavior of dusty plasma in presence
of an external magnetic field may be of profound interest
from the point of view of laboratory, fusion plasma, for var-
ious industrial applications as well as interstellar and solar
plasma environments. Single dust particle rotation in dc glow
discharge plasma in the presence of a magnetic field was
observed by Karasev et al. which they attributed to the impulse
exerted in tangential direction by the plasma flux on a particle
[20]. Recent experiments on dusty plasma under the influence
of an external magnetic field have revealed various interest-
ing properties of such a system. Ordered structures imposed
on dusty plasma systems have been observed at high mag-
netic field strength in a magnetized dusty plasma experiment
(MDPX) [21]. Dust waves and plasma filamentation have
also been observed in the MDPX facility [22]. While a low-
to moderate-strength magnetic field may influence the dust
charging and structure formation via the plasma particle dy-
namics, a large magnetic field of sufficient strength may have
a direct influence on grains which leads to modification in
the transport properties of dust through plasma as well as the
formation of structures. Dust is an important constituent of the
interstellar medium. The coupling of dust with the magnetic
field may play a very important role in stellar dynamics [23].
It is known that dust grains grow by accretion and coagulation
in dense environments. The study of dust clusters may be
of immense importance in such environments. Hirashita [24]
has investigated the impact of dust growth on the extinction
curve. The purpose of the present study is to investigate the
effect of magnetic field and temperature on the dynamical
behavior of finite-sized charged dust particles in confined
geometry.

II. THE MODEL

A three-dimensional dusty plasma containing N dust par-
ticles in the background of quasineutral plasma confined in
a box is considered. The dust grains are assumed to interact
among themselves via the repulsive Debye-Hückel potential,

V (r) = qd

4πε0r
exp(−r/λd ), (1)

where qd is dust charge, λd is dust Debye length and r is
the interparticle distance between two dust grains. The dust
Debye length is obtained from the ion and electron Debye
lengths as λd = λeλi√

λ2
e+λ2

i

, where λe and λi are electron and ion

Debye lengths respectively and are defined as λe =
√

ε0kBTe
nee2

and λi =
√

ε0kBTi
nie2 . Here, kB is the Boltzmann constant, and

Te, ne and Ti, ni are the temperature and number density of
electron and ion respectively. As a model for confinement,
the isotropic harmonic potential is considered [25,26]. The
confining harmonic potential is assumed to represent the su-
perposition of gravitational, thermophoretic, electric field, and
ion drag force acting on the dust particles. In addition, the
system is subjected to an external magnetic field along the z
direction. Thus, the system can be considered as some charged
particles in an electromagnetic field. Then, the Hamiltonian of
this system is [27]

H = 1

2m

N∑
i=1

(pi − qd Ai )
2 + qdφ, (2)

where

qdφ = q2
d

4πε0

N−1∑
i=1

N∑
j=i+1

exp(−ri j/λd )

ri j
+ 1

2
mω2

N∑
i=1

r2
i . (3)

Here, ri is the distance of the ith particle from the center of the
box and ri j = |ri − rj|. m and qd are mass and charge of a dust
particle respectively and λd is the Debye length of the dust
grains. ω denotes the strength of the confinement potential.
The equation of motion of the ith particle is

mr̈i = qd (vi × B) − qd∇
N∑
j �=i

V (ri j ) − mω2ri, (4)

where qd (vi × B) is the Lorentz force experienced by the
charged dust particle due to the magnetic field and V (ri j ) is
the Debye-Hückel potential operative among the dust grains,
and the last term represents the confining harmonic force.

We further recast Eq. (4) into dimensionless form using the

scaled variables r′ = r/λd , τ =
√

kBTd

mλ2
d
t , B′ = qd λd√

mkBTd
B, and


2 = mλ2
d

kBTd
ω2. Then, the dimensionless equation of motion in

terms of scaled variables reads

r̈′
i = (v′

i × B′) + �κ

N∑
j �=i

[1 + r′
i j]

r′
i j

3 exp(−r′
i j )r

′
ij − 
2r′

i. (5)

The overdot now refers to the redefined time derivative. Td

denotes the dust kinetic temperature and � and κ are known as
the Coulomb coupling and screening parameters respectively,
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which are defined as

� = q2
d

4πε0ravkBTd
(6)

and

κ = rav

λd
. (7)

Here, rav is the average interparticle distance of the charged
dust particles, defined as rav = ( 3

4πnd
)1/3 and nd is the number

density of the dust particles. � > 1 indicates that the average
interparticle interaction energy dominates over average ther-
mal energy and the system is said to be in a strongly coupled
state, whereas � < 1 refers to a weakly coupled state[28].
Note that the effect of temperature on the dynamics of the dust
particle is studied through the Coulomb coupling parameter.

III. SIMULATION SCHEME

Molecular dynamics simulation was performed on 32
charged dust particles placed inside a cubical simulation box,
interacting via Debye-Hückel potential [see Eq. (1)]. The size
of the simulation box is chosen as Lx = Ly = Lz = 6.83 ×
10−4 m. A modified version of the velocity-verlet algorithm
was used to integrate the equations of motion [29]. In the
simulation, the values of ion, electron, and dust number den-
sities respectively are ni = 1015 m−3, ne = 8.89 × 1014 m−3,
and nd = 1011 m−3 and the electron and ion temperatures
respectively are Te = 2320 K and Ti = 2050 K. The mass of
the dust particles is taken to be m = 6.99 × 10−13 kg. The
value of the screening parameter is calculated and is kept fixed
at κ = 1.8 for all the runs. The frequency of the harmonic
potential is fixed at ω = 50 Hz.

A simulation run starts from a random initial configuration
of the particles. For each run, the number of particles, vol-
ume, and temperature are kept fixed. To simulate at a fixed
temperature, a Berendsen thermostat [30,31] is used. For the
initial 1.4 × 106 steps the system is coupled to the Berendsen
thermostat to bring the system to equilibrium at the desired
temperature and data is collected for the next 1.0 × 105 steps.

IV. RESULTS AND DISCUSSION

The central objective of the present investigation is to study
the dynamics and phase transition of the Yukawa dust cluster
under the influence of an external magnetic field. The sim-
ulation is performed with N = 32 point-sized charged dust
particles. The physically relevant parameters in our model are
coupling parameter �, the applied magnetic field B, screening
constant κ = rav/λd , and the frequency of the harmonic po-
tential, ω. To reduce the number of free parameters, we fixed
the screening constant κ = 1.8 and frequency ω = 50 Hz.
While temperature or the Coulomb coupling constant � con-
trols the kinetic energy of the charged dust particles, the
effective dynamics are controlled by the applied magnetic
field B. To understand the dynamics of the system of dust
particles with the coupling strength and the applied magnetic
field, the representative parameters � and B are varied for a
wide range of values. For the current investigation, the mag-
netic field B is varied in the range 0.001–0.7 T. On the other
hand, coupling parameter � is varied by changing the dust
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FIG. 1. Organization of the charged dust particle cluster contain-
ing N = 32 particles at � = 514.38 and B = 0 T. (a) A snapshot of
the shell configuration of the dust cluster. The filled circles represent
particles on the inner shell, and the open circles represent the outer
shell particles. (b) The trajectories of the particles for 1.0 × 105 time
steps. (c) The radial position of the particles measured from the
center of the simulation box at the final time step of the simulation.

temperature in the range 293–40 000 K. Anomalously high
dust kinetic temperature is reported in several dusty plasma
experiments [32–34]. The interplay between repulsive Debye-
Hückel potential and the confining harmonic potential results
in a shell-like arrangement of the cluster of dust particles.
For the parameters used here, charged dust particles organize
themselves into two nested shells with a configuration (5, 27).
This configuration remains invariant under any change in the
magnetic field. Figure 1(a) shows a snapshot of the dust par-
ticle cluster and Fig. 1(b) depicts the time evolution of the
particle trajectories for � = 514.38 at zero magnetic fields.
The organization of the particles into two shells can be seen
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in Fig. 1(c) which shows the radial position of the particles
measured from the center of the simulation box.

A. Dynamics of the charged particles as a function of magnetic
field and Coulomb coupling parameter

To understand the equilibrium properties of the charged
dust particles as a function of the magnetic field, the Coulomb
coupling constant is fixed and the dynamics of the particles as
a function of the applied magnetic field B were studied. The
particle trajectories for different values of magnetic field B are
shown in Fig. 2. The charged dust particles exhibit interesting
dynamics as a function of the magnetic field, with the particles
being organized into two distinct shells as shown in Fig. 1(a).
Since the dust particles are charged particles and the mag-
netic field is applied along the z direction, the dust particles
will experience a Lorentz force and start rotating about the
z axis. However, in contrast, at a low applied magnetic field
B = 0.001 T, the mean trajectories of the charged dust parti-
cles show rotation about a random orientation. Considerable
fluctuation about the mean trajectory is evident in Fig. 2(a).
The trajectory plot suggests that the charged dust particles
attain vibrational motion along with rotational motion. The
rotational motion is due to the external magnetic field, and
the vibrational motion about the mean can be attributed to the
thermal energy. As the magnetic field increases, at B = 0.4 T,
the system of particles tries to attain a definite axis of rotation.
However, the fluctuation in the mean trajectory of a particle
attributed to vibrational mode due to thermal energy remains.
With further increase of the magnetic field to B = 0.6 T, a
drastic change in the dynamics of the system of particles is ob-
served. At this magnetic field strength, the vibrational motion
of the trajectories around the mean trajectories of the system
of particles completely ceases, leaving only the rotational mo-
tion. Thus, the charged dust particles show a phase transition
from disordered rotation to ordered rotational motion. The
system of dust particles has collectively developed a phase
where all the particles rotate about a distinct axis.

The fact that the collective dynamics of the dust particles at
a given coupling parameter changes drastically as a function
of the applied magnetic field induced us to explore the pos-
sibility of the effect of coupling strength. Thus, the coupling
parameter was varied, keeping the magnetic field fixed. The
representative trajectory for two different values of coupling
parameter keeping the magnetic field fixed at B = 0.6 T is
shown in Figs. 3(a) and 3(b). It is observed that, at low
coupling strength for a fixed magnetic field, the dust particles
have both rotational as well as vibrational modes. The dust
particles acquire vibrational motion about the mean trajectory
along with the rotational motion. However, the vibrational
symmetry is broken at high values of coupling strength, and
the charged dust particles homogeneously rotate about a fixed
axis; i.e., the system has made a transition from high sym-
metry to a low symmetry phase, indicating a phase transition.
The change in dynamics of the dust particle is rationalized
by competing length and time scales in the system. At a
high value of Coulomb coupling parameter and high magnetic
fields, in equilibrium, the force due to repulsive Debye-Hückel
potential balances with the attractive harmonic force by mini-
mizing the average interparticle distance between the charged

FIG. 2. Trajectories of the dust particles for three different values
of the applied magnetic field strengths (a) B = 0.001 T, (b) B =
0.4 T, and (c) B = 0.6 T, for � = 21.11.

dust particles. The total kinetic energy is then converted to
rotational energy by the magnetic field. Thus, the system of
particles attains a fixed axis of rotation. At smaller values of
the Coulomb coupling parameter, the equilibrium repulsive
potential intersects the harmonic potential at two points, and
the trajectories of the particles are confined between these
two equilibrium energy shells. The low magnetic field is in-
sufficient to convert the entire kinetic energy into rotational
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FIG. 3. Trajectories of the dust particles at two different coupling
strengths (a) � = 15.43, (b) � = 12.86 keeping magnetic field fixed
at B = 0.6 T.

energy. Thus, the system of particles keeps switching itself
between these two equilibrium energy shells that give rise to
the vibrational mode of the particles. The above analysis of
the trajectories of the particles suggests the possibility of a
phase transition as a function of the control parameters, i.e.,
coupling parameter � and magnetic field B.

B. Phase transition

Phase transitions represent singularities in the free energy
functional as the control parameter of the system is varied.
In a macroscopic system, the Lindemann parameter, defined
as particle position fluctuation normalized by interparticle
distance, or relative interparticle distance fluctuation (IDF),
shows a sudden jump during melting. The IDF is defined
mathematically as [15]

urel = 2

N (N − 1)

N−1∑
i=1

N∑
j=i+1

√〈
r2

i j

〉 − 〈ri j〉2

〈ri j〉2
. (8)

However, the discontinuous change in the IDF that character-
izes a phase transition is hard to observe in a finite system.
Since the number of particles in our system is limited to

FIG. 4. Variation of the variance of block averaged inter-particle
distance fluctuation (σ ) to the strength of the magnetic field B for
fixed � = 21.107 216.

(N = 32) small numbers, we adopt the strategy suggested
by Boning et al. [35] to identify order-disorder transitions
in finite-size systems. The variance of block-averaged inter-
particle distance fluctuation (VIDF) is considered to be a
promising diagnostic tool for identifying transition points.
The VIDF serves as an alternate representation of the order
parameter of macroscopic systems in finite-size systems. It is
calculated by first dividing the simulation duration in equilib-
rium into a certain number of blocks (M) of equal duration
and calculating the IDF urel for each block. Then the VIDF is
defined as

σ = 〈
u2

rel

〉 − 〈urel〉2, (9)

where

〈
u2

rel

〉 = 1

M

M∑
α=1

u2
rel(α),

〈urel〉 = 1

M

M∑
α=1

urel(α).

Boning et al. demonstrated that the VIDF exhibits a distinct
peak during the melting transition in a finite-size system.
Thus, the identification of transition points is very efficient.
To identify the critical values of the magnetic field and the
coupling constant, one parameter is kept fixed and the other
one is varied. At first, the Coulomb coupling parameter �

is fixed, and the VIDF is calculated over a wide range of
magnetic fields. Figure 4 shows the variation of the VIDF with
change in the magnetic field strength for � = 21.107216. The
inset shows closer scanning of the magnetic field. It is seen
that at around B ∼ 0.5 T there is an abrupt discontinuity in the
VIDF, indicating a singularity. Investigating the trajectories of
the charged dust particles, it is found that the system of par-
ticles undergoes a phase transition from a disordered rotating
phase to an ordered rotating phase, by breaking the vibrational
symmetry of low magnetic field strength. The value of the
critical magnetic field for this transition is Bc = 0.501 011 4 T
at � = 21.107 216 as VIDF abruptly drops to a lower value
on a slight increase of field strength beyond this value. To
see if the transition of the dynamics of the system of the
finite number of dust particles is true, the effect of coupling
strength around this critical magnetic field is also investi-
gated. By keeping the magnitude of the magnetic field fixed at
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FIG. 5. Plot of trajectories of the dust particles at the criti-
cal magnetic field strength Bc = 0.501 011 4 T, for three different
coupling strengths: (a) � = 21.107 211, (b) �c = 21.107 216, and
(c) � = 21.107 219

Bc = 0.501 011 4 T, the coupling strength of the dust particles
is varied. The dynamics of the system of particles changes
abruptly as the coupling strength slightly deviates from the
critical value �c = 21.107 216 (Fig. 5). Further increase in
the coupling strength of the dust particles does not induce
any change in the dynamics. This study demonstrates that the
system of dust particles shows distinct collective dynamics at
the critical point (Bc, �c). The response of the system beyond

FIG. 6. Variation of the VIDF with coupling parameter at the
critical magnetic field 0.501 011 4 T.

the critical point is drastically different, suggesting the emer-
gence of two different phases around the critical points. This
exercise suggests that the system undergoes a first-order phase
transition at the critical point (Bc, �c). To see if the transition
is captured by the VIDF (σ ), the VIDF as a function of the
coupling strength � is plotted at the critical magnetic field
Bc = 0.501 011 4 T, as shown in Fig. 6. The discrete drop at
the critical value of the coupling strength, �c = 21.107 216,
clearly indicates that the system undergoes a first-order phase
transition at this critical point. Further increase in the coupling
parameter does not induce any change in the VIDF, suggesting
that the system behaves collectively above the critical point.
Using the VIDF as the signature of this first-order phase tran-
sition from the ordered to the disordered rotational phase, the
phase diagram in the B-T plane (since � ∝ 1/Td ) separating
the two phases is shown in Fig. 7. The critical magnetic
field (Bc) corresponding to a dust temperature (Tc) or coupling
strength (�c) shows a power-law dependency Bc = AT α

c at
the fixed dust density nd with exponent α = 0.5 and A =
5.8 × 10−3 T K−1/2. Thus, the phase boundary separating the
two phases at a fixed dust density and finite dust temperature
follows the equation of state

Bc√
Tc

= const. (10)

FIG. 7. The B-T phase diagram separating ordered-to-disordered
rotational phase of the finite-sized system of dust particles. The
circles indicate numerically obtained data points and the straight line
is the critical line satisfying the equation of state Bc = A

√
Tc with

A = 5.8 × 10−3 T K−1/2.
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The emergence of the square root dependence of the critical
magnetic field on the dust temperature is easy to understand
from the following physical picture. The order-to-disorder
transition is characterized by the onset of coherent rotation
about an axis when the magnetic field is applied. The overlap-
ping of the trajectories of the particles in the disordered state
disappears and the particles rotate in distinct well-defined
trajectories. The kinetic energy due to the available thermal
energy of the dust particles is then completely converted into
rotational energy by the magnetic field. For coherent rota-
tion in thermal equilibrium, each charged dust particle rotates
about the fixed axis of rotation with an angular velocity θ̇ .
Then, the available thermal kinetic energy ∼kBTc equals the
rotational energy I θ̇2/2 of the dust particle, which may be
the superposition of rotational energy of cyclotron motion
with angular velocity qd Bc

m and a rotational drift suggesting
Bc ∝ √

Tc. Below the critical magnetic field Bc, for a fixed
dust temperature Td , the available thermal energy decom-
poses into rotational and linear kinetic energy. The excess
linear kinetic energy then gives rise to the vibrational mo-
tion around the mean, giving rise to the disordered rotational
phase.

C. Structure dynamics of dust particles

To study the structural properties of the dust clusters, a
radial distribution function was used. The radial distribution
function (RDF) is proportional to the probability of finding
a pair of particles separated by a distance in the range r to
r + dr from a reference particle, and is defined as [36]

g(r) = 1

N

〈
N∑
i

N∑
j �=i

δ(r − ri j )

〉
. (11)

It gives an idea of how the particles arrange themselves around
one another.

To get an insight into the structure of the dust cluster with
coupling strength �, RDF was calculated for a range of the
Coulomb coupling parameter �, initially for a magnetic field
B = 0 T. An analysis similar to the previous section suggests
that at �c = 314.67 a transition from a disordered state to an
ordered state takes place. This can also be seen from the plot
of g(r). The plot of the RDF for different values of � at a mag-
netic field B = 0 T is shown in Fig. 8(a). For � = 77.15, the
RDF suggests a liquidlike structure. However, the height of
the first peak of g(r) is seen to increase with increasing value
of coupling parameter � from 77.15 to 1543.14, and there is
partial development of secondary peaks beyond �c = 314.67
suggesting correlation, as in a partially crystallized state. On
the other hand, at B = 0.5 T of Fig. 8(b), the height of the
first peak initially increases gradually from 3.86 to 15.44 and
then exhibits a sudden change corresponding to � = 21.20.
The sharp peaks of g(r) beyond � = 21.20 suggest a strong
correlation among the particles at large distance reminiscent
of the fixed position of particles, as in a solid. Furthermore, for
the values of � = 51.46 and � = 140.35, the RDFs are almost
superimposed, which suggests the structure of the dust parti-
cles remains invariant with the change. The sudden change in
the peak height and development of subsequent peaks of g(r)

FIG. 8. The radial distribution function g(r) with � at (a) B =
0 T, (b) B = 0.5 T.

is a signature of the transition from a disordered to an ordered
state.

V. SUMMARY AND CONCLUSIONS

In summary, the dynamics of a finite-sized charged dust
cluster under a confining harmonic and repulsive Debye-
Hückel potential subjected to an external magnetic field was
studied. In the absence of the applied magnetic field at a
finite value of coupling strength, the charged dust particles
organize themselves into two nested spherical shells without
any long-range order, similar to a fluidlike state. At very
low coupling strength, the dust particles organize randomly,
similarly to particles in their gaseous states. As soon as the
magnetic field is turned on, at a weak magnetic field and small
coupling parameter (or high temperature), the dust particles
rotate around the surface of the two nested spheres in ran-
dom order without any definite axis of rotation. The particles
in this state exhibit both rotational and vibrational motions.
The radial distribution function in this state reveals that the
particles are organized randomly on the sphere. At a high
magnetic field for a fixed coupling strength, a collective mode
emerges and the dust particles rotate in order about a definite
axis of rotation. This collective mode emerges by breaking the
vibrational symmetry of a low magnetic field. Interestingly,
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the collective mode also can be achieved by tuning the
coupling parameter or the temperature of the dust particles
for a fixed magnetic field. This gives us a phase boundary
between the orientationally ordered rotating fluid and the dis-
ordered rotating fluid phase that satisfies an equation of state
Bc/

√
Tc = const at a constant dust density and finite tempera-

ture. The square root dependence of the critical magnetic field
on the dust temperature is attributed to the available thermal
energy converted to rotational energy by the applied magnetic
field.

Our analysis shows that the system of dust particles in-
herently organizes itself in spherical shells irrespective of
the strength of the magnetic field, which can be attributed
to the dynamical equilibrium between the attractive and re-
pulsive potentials. This study may be useful in determining
the magnetic field dynamics of stars in their early formation.
However, the microscopic mechanism behind the rotation of
dust clusters in the presence of a magnetic field is still an open
question. In most of the experiments, the observed rotation is
explained based on the ion drag model [16,18,37]. In contrast,
Cheung et al. pointed out that the estimated value of ion drag
force required for the observed rotation in their experiment
of dust clusters in an inductively coupled rf plasma in the

presence of an external magnetic field was much lower, and
suggested that it cannot be fully responsible for the rotational
motion [38]. In the present work, we focus mainly on the dust
dynamics in the presence of repulsive interparticle Yukawa
interaction, confining potential, and Lorentz force due to an
external magnetic field (ignoring the effect of dust-neutral
collision and ion dynamics). It is interesting to see that, even
in the absence of ion dynamics and related E × B drift, the
dust cluster exhibits coherent rotation once the magnetic field
exceeds a critical value. This rotational motion may have its
origin in the coupling of Lorentz force and residue of Yukawa
and harmonic forces. A more in-depth study will be required
for a complete understanding of this process and is presently
under study.

A preliminary investigation into the microscopic origin of
the ordered-to-disordered phase transition points to chaotic
dynamics of particles. This work is currently in progress.
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