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Parametric amplification of electromagnetic plasma waves in resonance
with a dispersive background gravitational wave
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It is shown that a subluminal electromagnetic plasma wave, propagating in phase with a background sublu-
minal gravitational wave in a dispersive medium, can undergo parametric amplification. For these phenomena
to occur, the dispersive characteristics of the two waves must properly match. The response frequencies of the
two waves (medium dependent) must lie within a definite and restrictive range. The combined dynamics is
represented by a Whitaker-Hill equation, the quintessential model for parametric instabilities. The exponential
growth of the electromagnetic wave is displayed at the resonance; the plasma wave grows at the expense of
the background gravitational wave. Different physical scenarios, where the phenomenon can be possible, are
discussed.

DOI: 10.1103/PhysRevE.107.035205

I. INTRODUCTION

Resonant interactions between two distinct waves, con-
trolled by the same wave operators, are expected to be
especially strong. In a series of recent papers, it was
shown that hyperbolic waves, in particular the dispersive
electromagnetic and the gravitational waves, could very ef-
ficiently transfer energy to relativistic electrons described by
a Klein-Gordon wave [1–3]. These semiclassical calculations
(Klein-Gordon equation representing a quantum relativistic
spinless particle [4]) demonstrated that both electromagnetic
and gravitational waves, through a wave-wave interaction,
could resonantly accelerate relativistic electrons to high en-
ergies. The resonance occurs when the energy propagation
speed of the Klein-Gordon wave and the classical (electro-
magnetic or gravitational) wave are equal. This is possible
only when the classical wave is propagating in a dispersive
medium and its group velocity is close to but less than unity.

This paper is an inquiry into what happens when such
a mildly subluminal electromagnetic wave propagates in a
plasma medium embedded in curved spacetime, specifically
when the spacetime curvature is due to a similarly subluminal
background dispersive gravitational wave. We show that the
resonant interaction rises to an altogether different level of
interest; the phenomenon of parametric amplification of the
electromagnetic wave is observed. That is, when the disper-
sive properties of the two waves (in the absence of the other)
bear specific quantitative relations to one another, even a very
small-amplitude gravitational wave can drive an electromag-
netic plasma wave to large amplitudes. An important and
necessary requirement for this phenomenon to occur is that the
background gravitational wave must be dispersive (possible in
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a massive medium background) [5–16]. Only then does the
gravitational wave become subluminal, and thus couples to
the subluminal electromagnetic field in a resonant manner in
a plasma.

In a general context, parametric instabilities occur in a
variety of physical systems with periodic potentials. Perhaps
the most familiar manifestation is the existence of the band
structure (Brillouin zones) in metals, derived by solving the
Schrödinger equation for an electron moving in the periodic
ionic background [17]. Parametric resonance is an ubiquitous
effect in every branch of physics, such as, for example, in plas-
mas [18–20], lasers [21–27], cosmology [28,29], astrophysics
and particle physics [30–32], etc. Though the wave-wave
interaction and energy exchange processes permeate all
physics, the phenomenon reported here is rarer. It is possible
when the two waves are resonant and simultaneously sat-
isfy certain rather “rigid” relationships in their dispersion
characteristics, especially when the amplitude of the driv-
ing gravitational wave is low. These limiting features of the
parametric process will be later discussed when the coupled
equations are analyzed.

We must emphasize that the interaction of different waves
under diverse conditions is one of the most studied subjects.
After discussing some representative references, we will point
out how our work is different and adds other thinking to
the field. On the different previous studies on this subject,
one may find, for example, how gravity modifies electro-
magnetic fields in Refs. [33–38], or how gravitational waves
may be excited by light waves propagating in vacuum in
Ref. [39], with constant magnetic fields in Ref. [40], and
in plasmas in Ref. [41]. The topic of electromagnetic waves
driven by gravitational waves is highly discussed: in vacuum
[42–49], and in pointlike charge media [50,51]. The effects
of a plasma medium on the modes of the gravitational waves
have also been calculated [52–54]. Our focus, however, is
on the phenomenon resulting from the resonant coupling
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between gravitational and electromagnetic plasma waves
(which becomes possible due to their dispersive properties);
the possibility of parametric amplification is an exciting con-
sequence of this physics.

Needless to say, there are different studies on linear
and nonlinear resonant energy exchange processes in which
plasma waves in curved spacetime (Alfvén waves, cyclotron
waves, etc.) grow at the cost of gravitational waves [5,55–57],
or particles can be accelerated by gravitational waves [58–62].
Also, a direct resonant amplification of plasma waves due to
a lightlike (nondispersive) gravitational wave was studied in
Ref. [56]. However, the proposition of a similar process for a
subluminal gravitational wave for plasmas is lacking. It is this
property that allows the occurrence of parametric resonance
when the relation between the dispersive properties of the
systems is very specific. This produces a unique amplifica-
tion process for electromagnetic waves, even in unmagnetized
plasmas, contrasting with previous studied effects under light-
like propagation and pointlike charge media conditions [50],
or in magnetized plasmas [54]. Therefore, this parametric
resonant process opens the possibility that this effect could
be even relevant for diluted plasmas under low-amplitude
gravitational waves, as it is discussed below.

Although the essential physics behind parametric ampli-
fication will be accessible in a rather simple equation, we
will begin by deriving in Sec. II the exact equations obeyed
by transverse electromagnetic plasma waves propagating in
a plasma immersed in a curved spacetime background. In
Sec. III, we explore the solutions for those electromagnetic
waves when the curvature is due to a gravitational wave back-
ground. We will then go on to investigate the rather simplified
equation (pertaining to small-amplitude gravitational waves).
We will first extract the precise conditions when parametric
amplification is possible, and then calculate the characteristics
of the enhanced electromagnetic plasma wave. In Sec. IV, we
will discuss the implications of this work.

II. ELECTROMAGNETIC PLASMAS WAVES IN GENERAL
CURVED SPACETIME BACKGROUND

Our model system consists of a fluid plasma, immersed in
a gravitational field, that has one dynamic charged component
(electrons) moving in a neutralizing background (provided
by ions, for example). Such an ideal general relativistic one-
component plasma fluid (with charge q, mass m, and density
n) can be described in a unified form as [63,64]

qUνMμν = T ∇μσ, (1)

where ∇μ is a covariant derivative for a metric gμν with
signature (−,+,+,+), and with μ, ν = 0, 1, 2, 3. Here, U μ

is the plasma fluid four-velocity, T is the plasma temperature,
σ is its entropy, and

Mμν = Fμν + m

q
Sμν (2)

is the magnetofluid tensor unifying the electromagnetic field,
described by the tensor Fμν = ∇μAν − ∇νAμ (with the
electromagnetic four-potential Aμ), and the fluid vorticity an-
tisymmetric tensor Sμν = ∇μ( f U ν ) − ∇ν ( f U μ), with f =
h/mn, where h is the plasma enthalpy density. Here, f

contains the thermal-inertial effects of the plasma, and it can
be calculated to be f = K3[(mc2)/(kBT )]/K2[(mc2)/(kBT )],
where K2 and K3 are the modified Bessel functions of the
second kind of orders 2 and 3, respectively, c is the speed of
light, and kB is the Boltzmann constant [63,65]. The above
description is valid for an isentropic plasma, as Uν∇νσ = 0.
This plasma dynamics will provide the four-current qnU μ

needed to close the system through Maxwell equations

∇νFμν = qnU μ. (3)

For a homentropic plasma fluid ∇μσ = ∂μσ = 0, and
electromagnetic plasma waves are a straightforward solution
for a plasma in any curved spacetime. In fact, the dynamics
is reduced to Mμν = 0 that leads to a simple relationship
between the transverse components (μ = 1, 2) of the current
and the vector potential,

Aμ + m f

q
U μ = 0. (4)

Substituting (4) into (3), we arrive at the wave equation

∇νFμν + �2
pAμ = 0, (5)

where �p = ωp/
√

f is a constant, with the plasma fre-
quency ωp =

√
nq2/m. This equation describes electromag-

netic plasma waves in any spacetime.
In curved spacetime, gravity will enter Eq. (5) through

the tensor derivatives. The propagation characteristics of the
electromagnetic waves then will depend on the background
curved spacetime in addition to the dielectric properties of
the medium that enter through the plasma frequency (and
make the propagation subluminous). In the following section,
we will show that, under appropriate conditions, the back-
ground curved spacetime provided by a dispersive gravi-
tational wave is able to trigger an instability driving the
electromagnetic wave to high amplitudes.

III. PARAMETRIC RESONANCE DUE TO DISPERSIVE
GRAVITATIONAL WAVE BACKGROUND

A gravitational wave propagating in a massive medium is
dispersive and subluminal; the medium is endowed with a
refractive index [5–16]. An alternative interpretation is that
the graviton acquires an effective mass in a massive medium
just as the photon does in a plasma.

Let us model a dispersive gravitational wave as a a pertur-
bation on the flat spacetime. Without loss of generality, let us
assume that it is propagating in the z direction. The spacetime
interval ds2 = gμνdxμdxμ (μ, ν = 0, 1, 2, 3), described by
the metric gμν = ημν + hμν , is split into ημν = (−1, 1, 1, 1),
the flat spacetime metric, and hμν the perturbation (hμν �
ημν). Let us further restrict to a simple gravitational wave
with two nonzero components h11 = −h22 = h(χ ) that are
functions only of the wave phase, χ = ωt − kz, where ω and
k are, respectively, the frequency and wave number [5–16].

The simplest example of a dispersive gravitational wave
has a dispersion relation of the form ω2 − k2 ≡ ω2

G �= 0 (in
close analogy with the electromagnetic wave in a plasma)
where ωG (determined by the properties of the medium) forces
its group velocity (dω/dk) to fall below unity. In general, it is
expected that the response frequency be quite small compared
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to the frequency of the wave, ωG � ω, k; the gravitational
wave will travel with group velocities near (but below) the
speed of light.

We are now ready to go back to seek more explicit solu-
tions of Eq. (5). Spelling out the tensor derivatives (notice
that the amplitude of the electromagnetic wave has to be small
enough that it does not affect gravity), we have

1√−g
∂ν[

√−ggμαgνβ (∂αAβ − ∂βAα )] + �2
pgμαAα = 0. (6)

Fixing z to be the direction of propagation, we let the trans-
verse components of the electromagnetic wave potential to be
A1 = A+ and A2 = A−. Using the metric for the gravitational
wave (specified above), these potentials obey

∂

∂t

(
f±

∂A±
∂t

)
− ∂

∂z

(
f±

∂A±
∂z

)
+ �2

p f±A± = 0, (7)

where f+ = √−gg11 ≈ 1 − h, and f− = √−gg22 ≈ 1 + h.
Since we are out to explore the interaction of resonant

electromagnetic plasma waves and gravitational waves, we
demand that we seek solutions in which the electromagnetic
potentials are functions of exactly the same phase as grav-
itational waves, i.e., A± = A±(χ ). In this form, the phase
velocity of the electromagnetic plasma waves coincide with
the phase velocity of the gravitational wave background. The
wave Eq. (7) then becomes an ordinary differential equation

d2A±
dχ2

∓ dh

dχ

dA±
dχ

+
(

�p

ωG

)2

A± = 0, (8)

representing a driven homogeneous oscillator, the driver being
the gravitational field h.

We can consider a gravitational wave described by a plane-
wave form h = h0 cos χ , with the respective phase χ and
amplitude h0 � 1. In this case, Eq. (8) can be written more
explicitly as

d2A±
dχ2

± h0 sin χ
dA±
dχ

+
(

�p

ωG

)2

A± = 0. (9)

The oscillator is clearly subject to a periodic potential; this has
immensely interesting consequences. Noting that A−(χ ) =
A+(χ − π ), it is enough to solve for only one polarization.
For the A− polarization, a change of variable

A− = exp

(
h0

2
cos χ

)
A− (10)

converts Eq. (9) into the more standard form of a Whittaker-
Hill equation,

d2A−
dχ2

+
[(

�p

ωG

)2

+ h0

2
cos χ − h2

0

4
sin2 χ

]
A− = 0. (11)

A similar equation can be found for + polarization. There
is vast literature on the exact solutions of equations such as
Eq. (11) with periodic coefficients. However, our goal here
is to explore the interesting physics and delineate the pre-
cise conditions where the parametric resonance is triggered.
The key is to recognize that the Whittaker-Hill equation has
different instabilities zones for its two-dimensional parameter
space (�p/ωG, h0) [66].

For small enough |h0|, however, most zones of instability
shrink, and mostly the only regime where we can observe
parametric amplification is the first one. In this limit, neglect-
ing high-order terms O(h2

0), Eq. (11) reduces to a Mathieu
equation, where the first and likely the only relevant unstable
region for the dynamics is in the vicinity(

�p

ωG

)2

= 1

4
, (12)

and has a width of order h0 (see, for instance, Ref. [67]). In
this part of the parameter space, the electromagnetic plasma
wave displays an exponentially growing amplitude with the
form

|A−| ∝ exp

(
h0

4
χ

)
. (13)

Since the A+ polarization is just phase shifted, it will have the
same exponential growth.

This parametric amplification is a manifestation of a com-
bination of two effects: the resonance phase between the
electromagnetic plasma wave and the gravitational wave, and
their dispersion characteristics having (as remarked earlier)
a definitive relationship. Consequently, the electromagnetic
plasma wave (of both polarizations) draws energy, very ef-
ficiently, from the background gravitational field. In this way,
the phenomenon described here has a pure general-relativistic
origin.

In order to fully display the parametric amplification for
the propagating electromagnetic plasma wave, Eq. (9) [or
Eq. (11)] is solved numerically under several conditions. In
Fig. 1(a) we plot the solutions for A−(χ ) in the unstable
region (12). We have considered initial conditions A−(0) =
1.5 × 10−5, with a background gravitational wave amplitude
h0 = 5 × 10−3. The (initial) amplitude of the electromag-
netic wave is chosen to be smaller than the amplitude of
the gravitational wave in order to maintain the condition
of the gravitational wave as a background for the dynamics of
the electromagnetic field. The propagating oscillating solution
for A− is displayed as the blue solid line. We also show the
exponential grow (dashed black line) of the electromagnetic
wave amplitude predicted by Eq. (13). The electromagnetic
plasma wave amplitude grows by approximately one order of
magnitude by χ ≈ 1800. In order to highlight the parametric
resonant growth, in the same figure we display the solution for
A− (with the same previous initial conditions) for a departure
of the condition (12), by choosing (�p/ωG)2 = 3/10. This
solution (magenta line) represents mainly a sinusoidal oscilla-
tion with no amplification. Similar behavior can be found for
A+.

Notice that the growth rate is quite small as compared to the
oscillation frequency. It will become commensurately larger
for larger h0. To show this, in Fig. 1(b), we plot the numerical
solution for A−(χ ) in the unstable region (12), with initial
conditions A−(0) = 10−5 and h0 = 10−2. For this case, by
χ ≈ 1800, the electromagnetic plasma wave amplitude grows
by two orders of magnitude. Again, the dashed line represents
the exponential grow (13).

Finally, in Fig. 1(c), we display the solutions for Eq. (9)
for the following two unstable regions of Mathieu equation,
(�p/ωG)2 = 1 (blue line) and (�p/ωG)2 = 9/4 (magenta
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FIG. 1. Numerical solutions for electromagnetic plasma wave A−
from Eq. (9). In all figures, in dashed line is shown the theoretical
exponential growing (13) for wave amplitude. (a) Solution in the blue
oscillating line for A−(0) = 1.5 × 10−5, h0 = 5 × 10−3, and under
condition (12). In the magenta line we plot the solution with the same
initial conditions but with (�p/ωG)2 = 3/10. (b) Solution in the blue
oscillating line for A−(0) = 10−5, h0 = 10−2, and under condition
(12). (c) Solutions with initial conditions A−(0) = 1.5 × 10−5 and
h0 = 5 × 10−3, where we have considered (�p/ωG)2 = 1 (blue line)
and (�p/ωG)2 = 9/4 (magenta line).

line) [67]. We have used the initial conditions A−(0) = 1.5 ×
10−5 and h0 = 5 × 10−3. Both electromagnetic plasma wave
solutions do not present a resonant amplification, as it was
discussed previously.

In general, the width of the parametric resonance is of
order h0; exponentially growing solutions are found only in
the range [67] (

�p

ωG

)2

= 1

4
± h0

4
, (14)

beyond which pure oscillatory solutions pertain.

IV. DISCUSSION

Since the basic physics is contained in the rather simple
(highly investigated) equation, it is no wonder that numerical
and semianalytical treatments give the same results. The most
important task, however, is to dwell on precise conditions for
the whole dynamic to take place.

The first one is the phase-matching condition in a dis-
persive realm. Practically, it is insured by demanding that
both wave amplitudes are functions of the same propagation
phase, ωt − kz. It is this demand that leads to the ordinary
differential equation coupling the gravitational wave to the
electromagnetic wave. This kind of phase-matching process
between the electromagnetic wave and its gravitational wave
background can only be possible for subluminal waves; both
waves must be dispersive.

The second condition relates the two different (grav-
itational and electromagnetic) frequency responses of the
medium; these must lie in the near neighborhood of ωG =
2�p [see Eqs. (12) and (14)]. When this condition is satisfied,
even a low-amplitude gravitational wave (that adds a periodic
potential to the equation of the electromagnetic propagation)
can trigger a parametric instability.

For a medium with an electron plasma, one can estimate
from this condition that ωG = 113, 5

√
n/ f , where n is mea-

sured in m−3. We can use this relation to examine what
class of media will support this parametric resonance. For an
electron density n ∼ 1030 m−3, and relativistic temperatures
T ∼ 1010 K ( f ∼ 7), for instance, ωG ∼ 43 PHz. This is a
very high frequency for electromagnetic plasma waves, on the
range of ionizing radiation. Therefore, in order for a gravita-
tional wave to trigger the parametric resonance, the frequency
ω of the gravitational wave must be even larger. On the con-
trary, for a very diluted cold plasma with n ∼ 1 m−3 and f ∼
1, it is obtained that the gravitational wave has a frequency re-
sponse ωG ∼ 113.5 Hz. This is well within the range of future
technological capabilities of gravitational wave detectors—
frequencies of the order ω ∼ 300–1000 Hz [68].

On the other hand, under the same conditions, it is very
unlikely that a reverse process with the same features takes
place, i.e., this kind of parametric amplification of gravita-
tional waves in an electromagnetic background field. The
contribution of the electromagnetic wave to the energy mo-
mentum tensor is likely to be insignificant to affect the nature
of the gravitational wave.

The transfer of energy from the subluminal gravitational to
the subluminal electromagnetic wave may be one of the more
significant contributors to the presence of electromagnetic en-
ergy in the universe. Though this model calculation was done
for the low-amplitude gravitational waves, such an exchange
is likely to happen even when the gravitational wave is very
strong as in some cosmic cataclysmic events. In fact, for low-
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amplitude waves, one can excite only the first parametric reso-
nance. However, higher unstable bands do become accessible
for large-amplitude gravitational drives. In such a case, para-
metric resonance can occur for much larger ranges of ωG and
�p. One should expect this energy transfer process between
the two waves traveling in the same medium to be ubiquitous.

Since this paper has presented a clear, initial demon-
stration of what may turn out to be a very efficient
source of electromagnetic energy, we plan to investi-
gate the parametric resonance between subluminal elec-
tromagnetic and gravitational waves in more depth and
detail.
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