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Effect of droplet deformability on shear thinning in a cylindrical channel
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Droplets suspended in fluids flowing through microchannels are often encountered in different contexts and
scales, from oil extraction down to microfluidics. They are usually flexible and deform as a product of the
interplay between flexibility, hydrodynamics, and interaction with confining walls. Deformability adds distinct
characteristics to the nature of the flow of these droplets. We simulate deformable droplets suspended in a
fluid at a high volume fraction flowing through a cylindrical wetting channel. We find a discontinuous shear
thinning transition, which depends on the droplet deformability. The capillary number is the main dimensionless
parameter that controls the transition. Previous results have focused on two-dimensional configurations. Here
we show that, in three dimensions, even the velocity profile is different. To perform this study, we improve and
extend to three dimensions a multicomponent lattice Boltzmann method which prevents the coalescence between
the droplets.

DOI: 10.1103/PhysRevE.107.035106

I. INTRODUCTION

Particles and droplets suspended in fluids flowing through
channels are often encountered in industrial and natural pro-
cesses. The flow of suspensions, microfluidic devices, and
drug delivery are typical applications [1]. For instance, mi-
crofluidics has matured and provided new techniques for the
control of soft suspensions. For example, this has allowed re-
searchers to simulate microgeometries with enhanced control
of droplets for a variety of applications such as the creation
of emulsions and enhancement of mixing reagents, among
others [2].

Generally, these complex suspensions consist of soft de-
formable particles which exhibit different flow behavior when
compared to their hard counterparts [3,4]. Systems where
particles deform due to hydrodynamic interactions have not
been systematically studied, especially in three dimensions,
and a deeper understanding of the key physical mechanisms
underlying their single and collective behavior is needed.

There has been a growing effort to model the role of
deformability in the dynamics of soft suspensions in chan-
nels. Several numerical methods have been developed. A
well-known method is the boundary integral method (BIM)
and its variants, especially used in the study of multiphase
problems [5]. A major challenge to the use of these methods
is how to accurately and effectively include surface tension.
However, the BIM is applicable to certain types of flows such
as Stokes or potential flows. A popular variant of the BIM
is the method of interfacial dynamics [6], which is suitable
for the simulation of incompressible soft particles. Using this
method, it has been shown that ordered droplets driven by
a pressure difference in a periodic channel accumulate at
different regions of the channel depending on the viscosity
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ratio between the droplet and the surrounding (continuous)
fluid [7]. When the viscosity ratio is equal to unity, droplets
accumulate at the center of the channel, while for higher
values of the viscosity ratio the droplets may accumulate at
the walls, leaving a droplet depleted zone in the middle. A
more detailed study on particle migration and concentration
was conducted using Stokesian dynamics in three dimensions
[8], which allows accessing much smaller Reynolds numbers
(Re � 1). However, it appears to be restricted in terms of
applications since it is mainly limited to the study of spherical
particles in Stokes flow.

The lattice Boltzmann method (LBM) provides a way to
include surface tension. The LBM is commonly used to study
deformable particles under different conditions [9–12]. For in-
stance, it has been used to investigate how three-dimensional
(3D) particle migration and distribution are affected by de-
formability and inertia at different Reynolds numbers, in
particular how distinct flow focusing emerges at increasing
Reynolds number for strongly deformable particles [13]. In
those limits, a nonmonotonic behavior of the apparent viscos-
ity of the suspension was reported. The LBM is an efficient
algorithm allowing for extreme simulations such as with bil-
lions of grid points [14].

The flow of suspensions exhibits a wide variety of non-
Newtonian behavior such as shear thinning, which has been
observed in experimental studies of hard suspensions such as
glass balls in oil [15] and cornstarch particles in water [16].
A striking phenomenon is the observation of shear thinning in
noncolloidal suspensions reported in numerous experiments
[17–20]. In these experiments, particles larger than 20 µm
were used and the effects of particle migration, sedimentation,
and confinement were investigated where Brownian effects
are negligible [21].

Previous experimental studies have shown that shear thin-
ning in soft suspensions of droplets depends strongly on the
size of the droplets [22–24]. These experiments typically
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involve oil droplets in water studied over a large range of
volume fractions. In parallel with experiments, shear thinning
has also been reported in emulsions through numerical simu-
lations, for example, using interface tracking methods [25].
The collective dynamics of a large number of deformable
particles in microchannels was also investigated [26] via 3D
simulations using an immersed boundary method. Addition-
ally, the immersed boundary method has been used to address
more complex situations such as the implementation of mem-
brane viscosity in fluid-filled bodies like capsules [27,28].
The trajectories and the plug-flow profile of the particles were
analyzed as a function of the deformability and channel size.

Other works [29,30] investigated the effect of elasticity and
confinement of capsules such as red blood cell suspensions
for different cell rigidity. They observed shear thinning be-
havior and reported that at high enough capillary numbers the
effective viscosity of the suspension converges to the solvent
viscosity. These studies suggest that a key parameter when
investigating the flow of deformable particles is the capillary
number, defined as the ratio of viscous forces to interfacial
tension forces.

Recently, a discontinuous shear thinning behavior was re-
ported in the flow of deformable droplets in two dimensions
[31,32]. This behavior is associated with a nonequilibrium
transition between a soft and a hard phase, which depends
on the area fraction of droplets in suspension and the applied
pressure difference. Strong shear thinning behavior was re-
ported at a higher area fraction and it was further revealed that
when the area fraction is higher than 0.5, the shear thinning
becomes discontinuous, i.e., there is a jump in the viscosity
at a critical value of the forcing. In addition, the velocity (in
the flow direction) was measured and it was reported that the
velocity of the droplets remains close to that of the continuous
fluid throughout the channel. Simulations were performed
using a 2D hybrid LBM. A more recent study [33] inves-
tigated and confirmed the robustness of this discontinuous
behavior. This study reported additional discontinuous jumps
in viscosity over a larger parameter range, showing how the
discontinuous shear thinning is preserved at lower values of
the confinement, defined as the ratio between channel height
and droplet radius. To do so, they simulated a large 2D sys-
tem with up to 500 droplets (approximately 0.85 of the area
fraction).

The effect of the viscosity ratio as well as the ratio
of droplet to channel radius was also investigated. While
discontinuous shear thinning behavior of droplets has been
investigated over a wide parameter range in two dimensions,
these effects have not yet been identified and tested in 3D ge-
ometries. In particular, it is elusive how deformability affects
the discontinuous shear thinning and the overall fluid flow in
3D systems. In this paper we simulate droplets in 3D flows
and investigate the discontinuous shear thinning behavior as
a function of the surface tension, which is related to droplet
deformability. We improve and extend to three dimensions a
multicomponent LBM with frustrated coalescence [34]. We
analyze the shear thinning for different flow conditions and
droplet deformability and discuss the main properties of the
velocity profiles.

The paper is organized as follows. The lattice Boltzmann
model is described in Sec. II. In Sec. III the effect of droplet

TABLE I. Velocity vectors and weights for the D3Q41 lattice.
The speed of sound c2

s is 1 − √
2/5.

ci wi

(0,0,0) 2(5045 − 1507
√

10)/2025
(±1, 0, 0), (0,±1, 0), (0, 0, ±1) 377/(5

√
10) − (91/40)

(±1,±1, 0), (±1, 0, ±1), (0, ±1, ±1) (55 − 17
√

10)/50
(±1,±1, ±1) (233

√
10 − 730)/1600

(±3, 0, 0), (0,±3, 0), (0, 0, ±3) (295 − 92
√

10)/16200
(±3,±3, ±3) (130 − 41

√
10)/129600

deformability is studied for a dense suspension flow in a 3D
cylindrical channel. We highlight the differences and similar-
ities between the results in 2D and 3D flows. In Sec. IV we
make some final observations. The Appendix contains numer-
ical validation [35].

II. METHOD

We extended to three dimensions a multicomponent model
with frustrated coalescence. For flexible droplets, the motion
of the fluid is represented by a set of distribution functions
fk,i(x, t ) at position x and time t , where the subscripts k and
i denote the fluid component and discrete velocity directions,
respectively. The time evolution of fk,i(x, t ) is given by the
discrete Boltzmann equation

fk,i(x + ci, t + 1) − fk,i(x, t ) = − 1

τk
[ fk,i(x, t ) − f eq

k,i (x, t )]

+ Fk,i, (1)

where τk is the relaxation time for each component and Fk,i

is the forcing term. Unless otherwise stated, we express our
results in lattice units (l.u.), which means that the lattice spac-
ing �x and the time step �t are equal to one. The equilibrium
distribution is given by

f eq
k,i = ρkwi

[
1 + ueq · ci

c2
s

+ (ueq · ci )2

2c4
s

− (ueq)2

2c2
s

]
, (2)

where cs is the speed of sound. The lattice used in the stream-
ing step is the D3Q41 lattice (see Table I for the vectors ci

and weights wi). As will be discussed, using higher-order
lattices to solve the Boltzmann equation reduces the spurious
velocities. Here ueq is the equilibrium velocity given by

ueq =
∑

k
ρkuk

τk∑
k

ρk

τk

, (3)

where ρkuk is the kth component of momentum. The Guo
forcing scheme [36] was adopted to implement the forces
acting in a fluid as it yields a viscosity-independent surface
tension. Thus,

Fk,i =
(

1 − 1

2τk

)
wi

[
ci − ueq

c2
s

+ (ci · ueq)ci

c4
s

]
· Fk, (4)
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TABLE II. Velocity vectors and weights for the D3Q39 lattice.
The speed of sound c2

s is 2/3.

ci wi

(0,0,0) 1/12
(±1, 0, 0) 1/12
(±1,±1, ±1) 1/27
(±2, 0, 0) 2/135
(±2,±2, 0) 1/142
(±3, 0, 0) 1/1620

where Fk is the sum of all the forces. The equilibrium velocity
is the same as in Eq. (2) [36]. Also,

ρk =
40∑

i=0

fk,i, ρkuk =
40∑

i=0

fk,ici + Fk

2
. (5)

The barycentric velocity u of the fluid mixture, i.e., the phys-
ical velocity, is given by

u =
∑

k ρkuk

ρ
, ρ =

∑
k

ρk, (6)

where ρ is the total density of the fluid mixture.
There are three internal forces acting on the fluid: an intra-

component short-range attractive force, a midrange repulsive
force, and a repulsive force between different components.
The midrange force prevents droplet coalescence and for that
we use the D3Q39 lattice [37] (see Table II). For the attractive
short-range and repulsive forces between components, we use
the D3Q41 lattice [37]. The intracomponent forces acting on
the same component are

Fc
k = − Gk,1ψk (x)

40∑
i=0

wiψk (x + ci )ci

− Gk,2ψk (x)
38∑
j=0

p jψk (x + c j )c j, (7)

where ψk (ρk ) = ρ0(1 − e−ρk/ρ0 ) is a pseudopotential with a
uniform reference density ρ0. Additionally, Gk,1 and Gk,2

are the self-interaction forces within each component. The
repulsive forces between the components are implemented as
usual [38]:

Fr
k = −ρk (x)

∑
k

Gkk

40∑
i=0

wiρk (x + ci )ci. (8)

The adhesion force with the solid boundary is given by

Fs
k = −Gksρk (x)

solid∑
i=0

wis(x + ci )ci, (9)

where s(x) is the switch function, which takes the values 0
and 1 for fluid and solid nodes, respectively, and Gks is the
interaction strength between fluid component k and the solid
boundary. The subscript k represents the component A or B.
Additionally, to the force (9), other forces [Eqs. (8) and (7)]
are applied to the solid nodes by using a virtual solid density,
which in our case is the initial density of the surrounding

FIG. 1. Spurious velocities (arrows) around a circular interface
(red) of radius r = 20 at equilibrium for Gk,1 = −7.9 and Gk,2 = 4.9.
The largest spurious velocities are (a) 0.017 l.u. for the D3Q19 lattice
and (b) 0.0092 l.u. for the D3Q41 lattice. The velocity field is on the
same scale in both panels. The ratio of the density inside and outside
the droplet is 1.133 for D3Q19 and 1.062 for D3Q41.

fluid. We use Gks = −0.35, resulting in a contact angle of 90◦
(neutral wetting).

The total force Fk in Eq. (4) is the sum of the external body
forces Fb

k (e.g., gravity, which we neglect here), the internal
forces, and the solid boundary interaction force: Fk = Fb

k +
Fc

k + Fr
k + Fs

k . For simplicity, we assume that GA,1 = GB,1,
GA,2 = GB,2, and GA,B = GB,A. The parameters GA,1, GB,2,
etc., are the strength coefficients of the interaction forces.
More specifically, a positive (or negative) strength coefficient
represents a repulsive (or attractive) interaction. To have the
desired repulsive and attractive forces Gk,1 < 0, Gk,2 > 0,
and Gk,k > 0. In the competing force Fc

k , the attractive force
must overcome the repulsive force to form droplets, so we
set |Gk,1| > |Gk,2|. Details on how the strength parameters
Gk,1, Gk,2, and Gk,k and reference density ρ0 are related to
the surface tension can be found in [39].

Multiphase and multicomponent LBMs suffer from spuri-
ous velocities caused by an imbalance between the interaction
forces. These velocities can increase if the viscosity ratio
deviates much from one or if the surface tension is high.
Thus, the simulations might become unstable for realistic
physical parameters. Previous works have demonstrated that
by increasing the isotropy of the lattice used to calculate the
interaction forces in the pseudopotential models it is possible
to reduce the spurious velocities [40–42]. In two dimensions
the lattice used for the midrange repulsive force was D2Q25
[43,44]. In three dimensions the equivalent of the D2Q25
lattice would be a D3Q125 lattice, which includes all the
neighbors in the first and second belts. However, such a lat-
tice would be computationally expensive. Instead, we use the
D3Q39 lattice for the midrange force (see Tables I and II).
A nonphysical effect causes droplets to become glued in the
direction of the diagonal vectors of the lattice. We also observe
this effect in the usual 2D models [39,41,45]. Peng et al. [46]
showed that using lattices with higher isotropy in the stream-
ing process significantly reduces the spurious velocities. In
our simulations, we use an eighth-order isotropic lattice in the
streaming step. By contrast, the D3Q19 lattice has only fourth-
order isotropy. In Fig. 1 we compare the spurious velocities
when these two lattices are used in the streaming step. We note
that it reduces spurious velocities by nearly one-half. Notice
in Fig. 1 that spurious velocities are stronger in the diagonal
direction of the grid, which explains why the droplets stick to
each other at these points but not along the grid axes.
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FIG. 2. Initial setup. (a) Here 105 droplets are arranged in a
hexagonally non-close-packed system with a volume fraction of
0.61. A force F is imposed in the z direction and varied. The walls
have a neutral wetting condition [47]. The droplets (red) are inside
the cylindrical channel (gray). The system is periodic in the direction
of the flow. The parameters for the interactions are Gk,1 = −7.9 and
Gk,2 = 4.9 and the viscosity ratio of the droplet and the continuous
fluid is set to one. (b) Top view. (c) Front view.

Regarding computational cost, in the present model the
number of droplets does not increase the computational cost
at a given system size. This is because the repulsion between
droplets is based on the density of each lattice Boltzmann
node. In other models [27,28], an increase in the number
of immersed flexible fluid-filled bodies leads to an increase
in computation, which is significant for a larger number of
immersed objects. However, these do not suffer from spurious
velocities as in the present model. They describe funda-
mentally different mechanisms due to the different boundary
conditions on the droplet and the capsule. While the cap-
sule has a fluid-solid boundary, the droplet has a fluid-fluid
boundary.

III. FLOW OF DROPLETS

To understand the effect of droplet deformability on the
overall flow of concentrated suspensions, we simulate a
densely packed system of 105 droplets of radius r = 8 lat-
tice units in a 3D cylindrical channel with periodic boundary
conditions in the z direction (see Fig. 2). The droplets are
not close packed, resulting in a total volume fraction of 0.61.
Initially, the droplets cannot be close packed; otherwise they

will coalesce immediately due to the presence of diffusive in-
terfaces. Thus, we allow a small distance between the droplets
(three to five lattice points) to avoid this. So, while not fully
jammed, the droplets are in close contact with each other. Our
simulations are parallelized using OPENMP and we use eight
cores for our simulations, each with 2.3 GHz. Our simulations
deliver approximately 1.8 × 106 lattice updates per second.
The length and radius of the cylinder are 95 and 47.5 l.u.,
respectively. We impose no-slip boundary conditions in ve-
locity and a neutral wetting boundary condition which creates
a layer of wetting droplets along the wall. The fluid is driven
by a fixed external force. Figure 2 shows a snapshot of the
initial setup.

To study the effect of droplet deformability we first vary
the external force F in the z direction and measure the effec-
tive relative viscosity μr = μ/μ0, where μ is the (apparent)
dynamic viscosity of the fluid with droplets and μ0 is the
dynamic viscosity of the fluid without droplets. The effective
viscosity in terms of the volume flow rate

μr = Q0

Q
(10)

is measured, where Q0 is the flow rate of the fluid without
droplets and Q is the flow rate with droplets. The flow rate
Q is defined as Q = ∫

A vzdA, where vz is the axial velocity
and A is the cross-sectional area. This measurement of μr is
obtained for different values of surface tension γ (by vary-
ing ρ0). The surface tension may be used as a measure of
the droplet deformability; however, since we compare forces
resulting from fluid motion with forces resulting from surface
tension, the capillary number Ca = μ0v/γ is a more appro-
priate dimensionless parameter, where v is the characteristic
velocity (taken as the maximum velocity of the fluid). We vary
it by changing the surface tension. The flow rate is measured
along a plane perpendicular to the flow (XY ). We measure
the flow velocity on each lattice node along this plane to
obtain the overall flow rate Q at a particular time step. Due
to the discretization of the droplets on the lattice, the value of
Q fluctuates around an average value, as the intersection of the
flowing droplets with the pane is not fixed. Then Q is averaged
over subsequent instants of time (over 15 frames with 5000
iterations between them) in the steady state. We study the
relationship between effective viscosity and surface tension.
We plot the dependence of μr on the surface tension in Fig. 3.
In Fig. 3 we see the discontinuous behavior which happens at
larger values of F as we increase the surface tension. In ad-
dition, we see that the viscosity curves collapse when plotted
against the capillary number. The discontinuous drop of the
viscosity suggests shear thinning. For soft particles, deforma-
bility has been shown to promote shear thinning analogous to
cells flowing in microenvironments [48]. We report data col-
lapse in both regimes by taking the maximal velocity in each
respective regime (before or after shear thinning) as shown
in Fig. 3(b). Shear thinning is also observed in non-Brownian
hard-sphere suspensions [49] and the decrease in viscosity has
been studied under more controlled conditions for those par-
ticles [17,50]. The results are nearly independent of the size
of the channel [35]. For a channel with 170 nodes, the largest
difference between the two curves of relative viscosity is less
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FIG. 3. Discontinuous shear thinning for different values of γ . (a) Discontinuous shear thinning occurs for progressively larger values of
the external force which drives the flow. The black arrow indicates the threshold viscosity μ∗

r , i.e., the relative viscosity before shear thinning.
(b) Relative viscosity μr (normalized by the threshold viscosity μ∗

r ) as a function of the capillary number Ca. The transition is at approximately
0.025. Simulations were carried out for different values of surface tension γ .

than 2%. This information can be found in the Supplemental
Material [35], which includes Refs. [51,52].

We define F∗ as the threshold force applied to the system
necessary to trigger discontinuous shear thinning (see Fig. 4).
We observe that at higher values of γ the force required to
trigger discontinuous shear thinning F∗ increases in a roughly
linear fashion until it saturates. This is shown in Fig. 4(a). In
fact, as we increase γ the droplets become less flexible and
eventually reach a state similar to that of hard particles. We ex-
pect in that limit shear thickening, as reported, for example, in
Ref. [15] for hard suspensions (cornstarch in water and glass
spheres in oil) between parallel plates (rotating top plate).
Figure 4(b) shows that as the droplets become less deformable
(increasing γ ), the threshold viscosity μ∗

r increases.
The simulations are performed for a fixed value of the

ratio between the channel diameter and the droplet radius. In
two dimensions [33], it is reported that the effective relative
viscosity μr increases with this ratio. We do not vary this
ratio, but we do not expect that the effect of confinement
is qualitatively different in three dimensions. The fully de-
veloped velocity profile across a cylindrical channel with no
droplets can be computed analytically from the Navier-Stokes
equations. For a cylindrical channel with a circular cross
section of radius R, the solution is a parabolic velocity distri-
bution [53]. The velocity distribution for droplets suspended

FIG. 4. (a) Threshold force F∗ required to trigger discontinuous
shear thinning as a function of γ . Here F∗ increases roughly linearly
with the droplets’ surface tension. (b) Corresponding threshold vis-
cosity μ∗

r as a function of γ .

in flow is however more complex. The flow in this channel
is described by small characteristic dimensions and veloci-
ties. Consequently, the flow is characterized by low Reynolds
number Re and is laminar. Low-Re flows also indicate that
the viscous forces are relevant. While the flow is laminar, the
regime is not Stokesian. Viscous forces usually arise due to
friction, for example, near the walls. The presence of both sus-
pended and adhered droplets in a 3D channel leads to distinct
profiles. In particular, the droplets adhered at the channel wall
offer resistance to the flow of other droplets up to a certain
point.

We plot the velocity distribution as a function of
the nondimensional radius r/R. We measure the velocities
of the continuous phase and of the droplet phase separately
before (high μr) and after (low μr) the discontinuous shear
thinning. An average in space is taken between the radial
distances r and r + �r, at a fixed �r in steady-state flow.
The velocities of the droplet phase vd (r) and of the contin-
uous phase v f (r) are identified by means of the density field
for the droplet component. A threshold of 0.6 is considered,
which is half of the density of the droplets, 1.2. Regions
with density above this threshold are considered part of the
droplets, while those below are part of the continuous fluid.
The diffusive interface has a thickness of 2.84 l.u. The �r
value is 6 l.u. for droplets and 4 l.u. for continuous fluid. When
shear thinning has occurred, the v f (r) and vd (r) are similar
and are consistent with plug flow behavior. Before shear thin-
ning the flow is no longer well described as plug flow (as
reported in two dimensions [32]), i.e., the radial profile of
the continuous fluid velocity defined as v f (r) = 〈v f (r, θ, z)〉
in cylindrical coordinates is higher than that of the droplets
phase vd (r) = 〈vd (r, θ, z)〉. The average is taken along z and
angle θ . After shear thinning v f (r) ≈ vd (r). We also observe
that for a low number of droplets, no shear thinning occurs
(plot not shown) as in two dimensions. The situation before
shear thinning, however, contrasts with that of a 2D channel
where the system flows slowly and is in a nearly jammed
state. While previous studies in two dimensions [31,33] have
not reported differences between the fluid and droplet ve-
locity before shear thinning, we observe differences in a 3D
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FIG. 5. Velocity profile given by the dimensionless Reynolds
number Re = 〈Vz〉D

ν
, where D is the diameter of the channel, ν is the

kinematic viscosity, and 〈Vz〉 is the average velocity in the z direction.
The capillary numbers are Ca = 0.017 and 0.0314. The droplet and
fluid velocity are plotted separately.

geometry. The velocity of the continuous fluid v f (r) is sig-
nificantly higher than vd (r), as shown in Fig. 5. We point out
that for a 3D channel there is space between the droplets (see
Fig. 6) for the continuous fluid to flow in contrast to the 2D
case with a similar arrangement. While the velocity is con-
tinuous at the interface, the gaps between some droplets are
large enough [see Fig. 2(c)] so that before shear thinning the
average continuous fluid flows 〈v f (r)〉 with a higher velocity
than the average velocity of the droplets phase 〈vd (r)〉. In
Fig. 5, before shear thinning 〈v f (r)〉 and 〈vd (r)〉 are 0.000 88
and 0.000 21, respectively. Thus, the continuous fluid flows
4.2 times faster than the droplets for this particular force.

As we increase the forcing, the fluid eventually pushes
the droplets, leading to the discontinuous shear thinning. The
droplets and fluid then flow with matching velocities. We
highlight that, although simulations in 2D geometries can
capture the essential flow qualities such as discontinuous
shear thinning and plug flow behavior, 3D geometries give
more realistic results (in two dimensions a circular cross
section would be representing a cylinder and not a sphere like

FIG. 6. Streamlines (blue) for a central region of the channel just
before shear thinning, which indicates that the continuous fluid flows
between droplets (red). The system has Ca = 0.025.

FIG. 7. Relative velocity fields and droplet shape cross
section (a) before and (b) after discontinuous shear thinning. The
capillary numbers are (a) Ca = 0.017 and (b) Ca = 0.0314. The
relative velocity is obtained by subtracting the velocity at the center
of the droplet and it is on the same scale in both images. The cross
section is obtained along the ZY plane. Large black arrows indicate
the direction of flow. (c) Relative position of the sample droplet in
question marked as A (front view, i.e., XY plane).

in the case of a droplet), in particular, the difference between
the droplet and continuous fluid velocities. The flow of the
continuous fluid between 2D droplets is affected by geometri-
cal restrictions caused by narrow passages and dead-end pores
between droplets [54,55], especially at high area fractions.
By contrast, 3D geometries with droplets allow significant
interconnected space between the droplets and therefore the
continuous fluid can flow through it. The importance of this
effect and the role it plays in the hydrodynamics of droplets
are not well understood.

The deformation of the droplets also causes distinct in-
ternal flows. Figures 7(a) and 7(b) show cross sections of
a nondeformed droplet before and a deformed droplet after
shear thinning, respectively. The droplet in question is next to
the wetting layer of droplets. Droplet deformation is naturally
associated with shear thinning as the deformation promotes
the flow of droplets. In line with the results in two dimensions
[31], not only do the droplets deform but internal currents are
set up within the deformed droplets. Notice that the internal
flow is almost nonexistent before shear thinning when the
droplets are hardly deformed.

IV. CONCLUSION

We have simulated the flow of droplets in a 3D channel. For
progressively higher values of the external force, we observed
discontinuous shear thinning. We studied in this transition
the effect of the surface tension, which is proportional to the
droplet deformability. At higher surface tension the droplets
are less deformable and thus larger values of force are required
for discontinuous shear thinning to occur. We observed that
this transition occurs at a given capillary number. We also
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FIG. 8. Pressure difference �p as a function of the inverse of the
droplet radius r. We simulate a static droplet for a fixed ρ0 (reference
density) and let it reach the steady state. The symbols represent the
pressure difference inside and outside the droplet in our simulations.
The solid lines are linear fits corresponding to Eq. (A1), where the
slope is γ .

noticed that μr increases with the surface tension. This is to be
expected as the droplets become less deformable. Simulations
for low volume fractions do not exhibit any discontinuous
shear thinning in line with 2D studies. We analyzed the ve-
locity profiles before and after shear thinning and noticed that
after shear thinning the velocity profile is that of plug flow
similar to 2D flows. However, closer inspection of the velocity
profile before shear thinning revealed an essential feature that
distinguishes our results from those in two dimensions. We
noticed that the fluid and droplet velocities are different, with
the fluid velocity being higher and that of the droplets being
near zero. Additionally, we were able to observe internal cur-
rents in the droplets after shear thinning. A possible extension
of this study is to analyze how the viscosity ratio (between the
droplets and the fluid) affects the overall flow.

To carry out this study we extended to three dimensions
a previous multicomponent LBM that prevents coalescence
between the droplets. We measured the disjoining pressure,
which is independent of the viscosity ratio. We were able to
reduce spurious velocities which cause unphysical effects
in the simulations such as sticking droplets and coales-
cence when a collision occurs in certain directions. This was
achieved by using higher-order lattices in the streaming step.

We note some prospects for experimental studies of de-
formable droplets in microchannels. Recently, hydrodynamic

TABLE III. Surface tension γ for different reference densities ρ0

in lattice units. The values of γ are obtained from linear fits in Fig. 8.

ρ0 γ

1.000 0.026
1.025 0.023
1.050 0.021
1.075 0.019
1.100 0.017
1.150 0.012

FIG. 9. Disjoining pressure 	 as a function of the distance
h between two flat interfaces with fixed Gk,1 = −3.5 and Gk,2 = 2.5
achieved with competing forces Fc given by Eq. (7), which provides
the repulsive force to avoid coalescence. A positive value indicates
repulsion, while a negative value indicates attraction. (a) Disjoining
pressure for different values of the reference density ρ0. (b) Dis-
joining pressure for different values of the viscosity ratio M with
ρ0 = 1.00.

resistance (the extra resistance due to the presence of an object
in a channel) has been suggested as a parameter for character-
izing such flows [56]. It would be interesting to calculate the
dependence of the hydrodynamic resistance on the capillary
number in experiments with a setup similar to the one pre-
sented in this paper.

FIG. 10. Snapshots of a collision between two droplets illustrat-
ing the frustrated coalescence.
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APPENDIX: NUMERICAL TESTS

In this Appendix we analyze the properties of the 3D
multicomponent method. We measure the surface tension,
which is related to the deformability of the droplets, and
we analyze the disjoining pressure. To measure the surface
tension, we perform the Laplace test in two dimensions. At
equilibrium, the curved interface of a static droplet increases
the pressure inside the droplet. The radius, pressure differ-
ence, and surface tension must satisfy the Young-Laplace
equation [38]

�p = pin − pout = γ

r
, (A1)

where r is the radius of the droplet, pin and pout are the
pressures inside and outside the droplet, respectively, and
γ is the surface tension. To test Laplace’s law, a series of

LBM simulations with different values for the droplet radius
were performed. As seen in Fig. 8, the pressure difference
�p increases linearly with the inverse of the droplet radius
r (curvature). To vary the surface tension, we fix the param-
eters Gk,1 and Gk,2 and change the uniform reference density
ρ0 (effectively varying the interaction forces). The solid lines
represent results calculated from Laplace’s law and the sym-
bols are obtained from the simulations. The slope of the solid
lines is γ . The simulation results are consistent with Laplace’s
law. The values of γ are shown in Table III. The ratio of the
total densities inside and outside the droplets for the values
of ρ0 = 1.000 and 1.150 are 1.058 and 1.062, respectively.
When the parameter GAB exceeds a certain threshold it gives
rise to stable interfaces between fluids A and B with positive
surface tension. However, when the droplets approach each
other, a thin film is formed, leading to coalescence. The phase
separation promotes negative disjoining pressure and thus the
competing interactions prevent the coalescence of neighbor-
ing droplets and give rise to positive disjoining pressure as
seen in Fig. 9. This mechanism has been used in other stud-
ies to simulate noncoalescing droplets [34,57,58]. We further
show this mechanism in action for 3D droplets, in Fig. 10. The
disjoining pressure is also independent of the viscosity ratio
M defined as the viscosity of the droplet over the viscosity of
the continuous fluid [59].
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