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Formation of spikes and bubbles in the linear phase of Rayleigh-Taylor instability
in elastic-plastic media
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The generation of spikes and bubbles, a typical characteristic of the nonlinear regime in the Rayleigh-Taylor
instability, is found to occur as well during the linear regime in an elastic-plastic solid medium caused, however,
by a very different mechanism. This singular feature originates in the differential loads at different locations of
the interface, which makes that the transition from the elastic to the plastic regime takes place at different times,
thus producing an asymmetric growth of peaks and valleys that rapidly evolves in exponentially growing spikes,
while bubbles can also grow exponentially at a lower rate.
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I. INTRODUCTION

The Rayleigh-Taylor instability (RTI) in accelerated solids
with elastic-plastic (EP) mechanical properties [1–10] is
a central issue in the design of the LAPLAS (Labora-
tory Planetary Science) experiment planned at the GSI
Helmholtzzentrum Darmstadt (Germany) in the framework
of the high-energy-density (HED) international collaborations
developed around the heavy-ion accelerator FAIR (Facility
for Ion and Antiproton Research) [11–18]. It is also relevant
to physical phenomena present in many different scenarios,
ranging from applications to experiments on HED material
sciences [19–22] to geophysics and astrophysics [22–26].

The nonlinear character of the constitutive properties of EP
media introduces a number of peculiarities into the evolution
of RTI that makes this physical process very interesting in its
own right. In fact, it is the only known case of RTI in which
the stability conditions are determined by the amplitude of
the perturbation as well as by its wavelength. In addition, in
the stable cases, it shows the existence of two kinds of stable
regimes, one in the elastic phase of the instability and another
one in the plastic phase. As it was shown in Ref. [1], the latter
makes plastic flow a necessary but not sufficient condition for
instability.

In this work we report another unique feature of RTI in
EP media that is also a direct consequence of their specific
mechanical properties and that gives rise to the formation of
spikes and bubbles when the instability evolution is still in the
linear phase. In the general case, this kind of asymmetric evo-
lution of peaks and valleys is proper of the nonlinear evolution
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of the instability, and arises as a consequence of the lateral
forces acting on the protuberances of the medium that tend
to squeeze the peaks and to widen the valleys, thus leading
to the formation of spikes and bubbles, respectively [27]. Just
for clarity, let us mention that we are calling peaks and val-
leys protuberances and depressions, respectively, of the solid
media, which is the opposite to the topographic convention
determined by the orientation of the gravity (Fig. 1).

In the present case of RTI in EP media, the asymmetric
growth of peaks and valleys is the direct result of the dif-
ferential transition from the elastic to the plastic regime in
different parts of the interface that are submitted to different
deformations. This issue has been overlooked so far in all the
previous works, in which the main interest was centered on
the time evolution of the instability. The plastic phase of the
instability was treated by following the Drucker observation
that a sinusoidal perturbation on the interface should be con-
sidered like a set of bumps of height twice the amplitude of
the perturbation, which applies a loading force on the bottom
level (the valleys level). Then, the total force was estimated
by averaging it over half a wavelength [28,29]. Therefore, the
effect of this differential deformation at different points on the
interface was missed.

Here we will take into account the spatial variation of the
loading on the interface at different positions, in order to study
the asymmetric evolution of peaks and valleys, which leads
to the singular feature of formation of spikes and bubbles
during the linear evolution of RTI. For this it is sufficient to
restrict ourselves to the simplest configuration consisting in
a semi-infinite EP medium supported against gravity by the
pressure of a massless fluid (Fig. 1). This situation was already
considered in Ref. [1] for studying the stability boundaries
in the irrotational approximation, and it also constitutes a

2470-0045/2023/107(3)/035105(8) 035105-1 ©2023 American Physical Society

https://orcid.org/0000-0003-4626-2148
https://orcid.org/0000-0002-4284-0185
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.035105&domain=pdf&date_stamp=2023-03-20
https://doi.org/10.1103/PhysRevE.107.035105


A. R. PIRIZ, S. A. PIRIZ, AND N. A. TAHIR PHYSICAL REVIEW E 107, 035105 (2023)

FIG. 1. Schematic of the perturbed interface between an elastic-
plastic (y < 0) medium and a massless ideal fluid (y > 0).

limiting case of the configuration studied in Ref. [7] when
a very thick layer is considered (kh � 1, k = 2π/λ is the
perturbation wave number and h is the layer thickness), and
the Atwood number AT is taken equal to one.

II. LINEAR ANALYSIS

We consider the situation schematically represented in
Fig. 1 of a very thick (semi-infinite) solid medium of den-
sity ρ with elastic-plastic constitutive properties that will be
described as an ideal elastic-plastic material characterized by
an elastic shear modulus G and a yield strength Y . The solid
lies on the top of a massless ideal fluid under the action of a
constant gravity g = gey = −∇ϕ (ey is the unitary vector in
the vertical direction and ϕ is the gravitational potential).

For the analysis we follow the procedure described in
Refs. [7,8] that we will briefly review here in order to obtain
the equation of motion of the interface during the elastic and
plastic phases of the RTI evolution. We start with the conser-
vation equations for mass and momentum for a continuous
medium:

dρ

dt
+ ρ

∂vi

∂xi
= 0, (1)

ρ
dvi

dt
= − ∂ p

∂xi
+ ρgi + ∂σik

∂xk
, (2)

where i, k denote the space coordinates x, y, z in the index
notation for Cartesian tensors, and for the vertical coordinate
i ≡ y, we have gi ≡ g = −∂ϕ/∂y, while gi = 0 for i �= y. In
addition vi, ρ, and p are the corresponding components of the
velocity, the density, and the pressure, respectively, and σik is
the deviatoric part of the stress tensor �ik = −pδik + σik of
the medium (δik is the Kronecker δ).

On the other hand, the material derivative of any magnitude
M in Eqs. (1) and (2) is

dM

dt
= ∂M

∂t
+ vi

∂M

∂xi
. (3)

Then, we linearize Eqs. (1) and (2) as usual, so that a
magnitude M is written as M = M0 + δM, where M0 is the
equilibrium value and δM � M0 is the perturbation. As a
result, for incompressible perturbations (δρ = 0) we get:

∂ (δvi )

∂xi
= 0, (4)

ρ
∂ (δvi )

∂t
= −∂ (δp + ρδϕ)

∂xi
+ ∂Sik

∂xk
, (5)

where we have called Sik the perturbation δσik of the deviatoric
part of the stress tensor. In addition, for the elastic-plastic
medium we adopt the nonlinear constitutive equations ex-
pressing a perfectly elastic Hookean behavior for the smaller
strains, and a behavior like a perfectly rigid plastic when the
stress overcomes the elastic limit Y [1,1–10,30,33]. Then, for
the elastic phase, we have:

∂Sik

∂t
= 2Gėik eik = 1

2

[
∂ηi

∂xk
+ ∂ηk

∂xi

]
, (6)

where upper dots denote time derivative, and eik is the pertur-
bation of the strain tensor. In addition, ηi are the components
of the perturbed displacement vector η so that η̇i = δvi.

On the other hand, for the plastic phase we can write
[1–10,30,33]:

Sik =
√

2

3

ėik

‖ėik‖Yeff , (7)

where Yeff = βY (β > 1) is an effective value of the yield
strength that takes into account that, in order to satisfy the
usual von Mises criterion (corresponding to β = 1) at a dis-
tance of the order of k−1 from the interface (y = 0), a larger
deformation must be achieved at the interface. In fact, as it
was discussed in Refs. [7–10] the transition from the regime in
which RTI is controlled by the elastic properties, to the one in
which it is controlled by the plastic ones, requires that the re-
gion above the interface, within a distance of k−1, overcomes
the phase of contained plastic flow such as it is expressed
by the von Mises criterion [28,29]. Since deformation decays
with the distance from the interface, it will be larger at the
interface than at y ∼ −k−1. This feature can be taken into
account by assuming an effective yield strength Yeff > Y in
Eq. (7). Anyway, this is just a quantitative consideration that
has no qualitative consequence on the present problem. With
the previous considerations, we will obtain the equations of
the interface separately for the elastic and for the plastic
phases as in Refs. [7–10].

A. Elastic phase

As it was described in previous works, we will use here the
Helmholtz decomposition for the displacement field [7–10]:

η = ∇φ + ∇ × (ψez), (8)

where φ and ψ = ψez are, respectively, the Lamé scalar
and vector potentials functions. By introducing the previous
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equation into Eqs. (4) and (5), we get the following equa-
tions that determine the potential functions [3–10]:

∇2φ = 0, (9)

∇
(

∂2φ

∂t2
+ δp

ρ
+ δϕ

)
+ ∇ ×

[(
∂2ψ

∂t2
− G

ρ
∇2ψ

)
ez

]
= 0,

(10)

where δϕ = −ρgηy. As it is well known, Eq. (10) can be split
into two equations by taking advantage of the extra degree of
freedom introduced by the vector potential. Then, it turns out
[31,32]:

ρ
∂2φ

∂t2
+ δp − ρgηy = 0, (11)

ρ
∂2ψ

∂t2
= G∇2ψ. (12)

By considering two-dimensional perturbations and solving
Eq. (11) and (12), we obtain the following expressions for
the potential functions in the solid medium during the elastic
phase:

φ(x, y, t ) = a(t )eky sin kx, (13)

ψ (x, y, t ) = b(t )eqy cos kx, (14)

where

q(k) =
√

k2 + γ 2
enρ

G
, (15)

and a, b, are functions of time such that

a(t ) ∝ b(t ) ∝
∑

n

Qneγent , (16)

where Qn are constants, and γen are the asymptotic growth
rates resulting from all the possible solutions of the dispersion
relation that will be determined, together with the time func-
tions a and b, by the boundary conditions on the interface.
These boundary conditions require the continuity of the verti-
cal velocity and of the normal and tangential stresses through
the interface. Then, for the vertical velocity at y = 0, we have:

δvy(0) = η̇ν (x, t ), (17)

where have defined ην as follows:

ην (x, t ) = ηy(x, t, y = 0), (18)

and ν = e or p denotes the elastic or the plastic regimes,
respectively.

Then, for the elastic phase we are now considering, we
have:

ηe(x, t ) = ξe(t ) sin kx, (19)

where ξe(t ) represents the maximum instantaneous amplitude
of the perturbation. Then, Eq. (17) yields:

ξ̇e(x, t ) = k(ȧ + ḃ), (20)

For the tangential stresses at y = 0, we have Sxy(0) = 0 and
we get:

ḃ = − 2k2

q2 + k2
ȧ, (21)

In addition, for the normal stresses, we have at y = 0:

−δp(0) + Syy(0) = 0, (22)

where

Syy(0) = 2kG(ka + qb + C0) sin kx, (23)

with C0 being an integration constant resulting from the time
integration of Eq. (6). Then, Eq. (22) reads:

−ρä + ρgξe = 2kG(ka + qb + C0). (24)

Thus, by noticing that

ä = ξ̈e

k
+ ξ̈e

k

2k2G

ργ 2
en

, (25)

and using Eqs. (20) and (21), the previous equations yield the
equation of motion of the interface during the elastic phase:

ρ
ξ̈e

k
+ Sye = ρgξe, (26)

where

Sye = 2kG

[
ξ̈e − ξ̈0

γ 2
en

+ q − k

q + k
(ξe − ξ0)

]
, (27)

with ξ0 = ξe(t = 0) and ξ̈0 = ξ̈e(t = 0). In writing Eqs. (26)
and (27) we have taken into account that stress-free initial
conditions requires that at t = 0 it must be ξ̈0 = kgξ0. Besides,
these equations must be solved with the following initial con-
ditions:

ξe(t = 0) = ξ0 ξ̇e(t = 0) = 0. (28)

It may be worth to notice that Eqs. (26) and (27) are equally
satisfied by the local amplitude ηe(x, t ) given by Eq. (19), and
this feature will be used later when considering the spatial
shape of the perturbation.

As it was shown in Ref. [5], the previous equations yield
the following asymptotic dispersion relation:

γ 2
en − kg = 4k2G

ρ

[
−1 + kG

γ 2
enρ

(√
k2 + γ 2

enρ

G
− k

)]
. (29)

A very good approximation of the growth rate can be ob-
tained in the irrotational limit, which results for k2 � γ 2

enρ/G
[1,5,33]:

γ 2
en ≈ kg − 2k2G

ρ
. (30)

Certainly, this simple expression can be obtained from the
very beginning, by adopting the irrotational approximation,
from Eqs. (13), (17), and (22) [1,5,33]. It will allow us to keep
the theory completely analytic without missing any essential
physics, and it will be used hereafter. As it is well known
this growth rate presents a cutoff wave number kc = ρg/2G
beyond which the interface is elastically stable and oscillates
with a frequency ω such that ω2 = −γ 2

en [5,33,34].

035105-3



A. R. PIRIZ, S. A. PIRIZ, AND N. A. TAHIR PHYSICAL REVIEW E 107, 035105 (2023)

Therefore, the solution of Eqs. (26) and (27) with the
boundary conditions given by Eq. (28), read:

ξe

ξ0
= 1 + kg

γ 2
en

(cosh γent − 1) f or k � kc. (31)

ξe

ξ0
= 1 + kg

ω2
(1 − cos ωt ) f or k � kc. (32)

Besides, we notice that since ξ̈e − ξ̈0 = γ 2
en(ξe − ξ0), and that

in the irrotational approximation it is q ≈ k, Eq. (27) yields:

Sye ≈ 2kG(ξe − ξ0). (33)

B. Plastic phase

As in previous works, we consider here classical plasticity,
so that the displacement field will be irrotational [7–10,35].
Then, the vector potential is a constant that can be taken as
ψ = 0, and the scalar potential φ is given by Eq. (13). On
the other hand, as it was first noticed by Drucker, the initial
sinusoidal perturbation on the interface, must be considered
as a succession of protuberances of high 2ξ0, so that the
total loading on the bottom level that leads to plastic flow,
is determined by the whole material contained between the
peaks and the valleys (bottom of the valleys in the plastic
phase is at y = −ξp(t ) at the time t) [28,29]. Therefore, from
Eq. (22), the equation of motion during the plastic phase is

ρ

k
η̈p + Syp = ρgηp, (34)

where ηp must be referred to the bottom level of the valleys:

ηp(x, t ) = ξp(t )(1 + sin kx). (35)

On the other hand, Syp is given by Eq. (7), with ‖ėik‖2 =
ė2

xx + ė2
yy + 2ė2

xy. Since the tangential stress is Sxy = 0, and
incompressibility imposes ėxx = −ėyy, it turns out ‖ėik‖2 =
2ė2

yy. Therefore, we get

Syp = Yeff√
3
. (36)

It is worth to notice that Syp does not depend on the x coordi-
nate and, therefore, the spatial dependence of the deformation
ηp(x, t ) cannot be dropped from the equation of motion given
by Eq. (34), such as it was done in Eq. (26) for the elastic
phase.

Thus, the general solution of Eq. (34) is

ηp(t ) = Yeff√
3ρg

+ K ′
1eγpt + K ′

2e−γpt ; γp =
√

kg, (37)

where the constants K ′
1,2 have to be determined from the

matching conditions between the solutions for the elastic and
for the plastic regimes at the transition time tT . For this, first
we need to refer also the elastic solution to the valleys bottom
level by redefining ηe(x, t ) in Eq. (19) as follows:

ηe(x, t ) = ξe(t )(1 + sin kx), (38)

which, of course, also satisfies Eq. (26). Then, the matching
conditions read:

ηe(x, tT ) = ηp(x, tT ) η̇e(x, tT ) = η̇p(x, tT ), (39)

C. Stability and EP transition boundaries

As discussed in previous works, in order to determine
the region of stability, it is sufficient to consider the elastic
stable solutions given by Eqs. (32) and (38), together with
the solution for the plastic phase given in Eq. (37) and then
to impose the conditions for marginal stability, which have
to be satisfied when the perturbation amplitude η achieves an
absolute maximum at a certain time tM � tT [1,7–10]:

η̇(tM ) = 0; η̈(tM ) = 0; (tM � tT ). (40)

For this, it is convenient to introduce first the following di-
mensionless magnitudes:

z = η

ξ0
; T = t

√
k0g; � = iσ = ω√

k0g
; k0 = ρg

G
. (41)

Then, Eqs. (32), (37), and (38) yield

ze(X, T ) =
[

1 + σ 2
p

�2
(1 − cos �T )

]
(1 + sin X ); T � TT ,

(42)

zp(T ) = 1

ξ ∗ + K1eσpT + K2e−σpT ; T � TT , (43)

where

ξ ∗ =
√

3ρgξ0

Yeff
; σp = √

κ; X = kx; κ = k

k0
, (44)

and TT is the dimensionless transition time, when the match-
ing conditions of Eq. (39) must be satisfied for a given fixed
value of X . On the other hand, from Eqs. (26), (33), (34),
and (36), we see that at the time TT for which η(TT ) = ηT =
ξT (1 + sin kx), the following relationship is found:

2kG(ξT − ξ0)(1 + sin kx) ≈ Yeff√
3
. (45)

Or, in dimensionless form:

(zT − 1)(1 + sin X ) ≈ λ∗

ξ ∗ ; λ∗ = ρgλ

4πG
, (46)

which, from Eq. (32), can also be written as follows:

σ 2
p

�2
(1 − cos �TT )(1 + sin X ) ≈ λ∗

ξ ∗ . (47)

As we will see later, the previous equation, together with
Eq. (31) or Eq. (32) evaluated in t = tT , gives the instant TT

when the transition from the elastic to the plastic regime takes
place for a given fixed position X on the interface. Alterna-
tively, for a given time T , it also determines the position XT

that separates the parts of the interface that are still evolving
in the elastic regime from those that are already in the plastic
regime. That is, the peak of the perturbation (X = π/2) is
the first to make the transition to the plastic regime and, as
time evolves, the transition point moves towards the valleys
(X = −π/2), which at the bottom remain always in the RTI
regime controlled by the elastic properties, unless they achieve
first the stable plastic regime, as we will see later. In other
words, Eq. (46) shows that the elastic strain necessary to
achieve the elastic limit is determined essentially by Yeff , but
the amplitude necessary to achieve such a strain is different for
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every position X and, therefore, it will be achieved at different
times.

The constants K1,2 in Eq. (43) are determined from the
matching conditions at T = TT given in Eq. (39):

K1 = A + B

2
; K2 = A − B

2
, (48)

where

A =
[

1 + σ 2
p

�2
(1 − cos �TT )

]
(1 + sin X ) − 1

ξ ∗ , (49)

B = σp

�
(1 + sin X ) sin �TT . (50)

Besides, in order to satisfy the conditions for marginal stabil-
ity of Eq. (40), we can put K2 = 0 at T = TT [8–10], and the
following relationship turns out:[

1 + σ 2
p

�2
(1 − cos �TT )

]
(1 + sin X ) − 1

ξ ∗

= σp

�
(1 + sin X ) sin �TT . (51)

By eliminating �TT from Eqs. (47) and (51), we get the
following equation for η∗ = ξ ∗(1 + sin X ) giving the stability
boundaries:

(η∗)2 − 2η∗ + H − 1 +
(

H�

σp

)2

= 0; H = q + k

2k
λ∗,

(52)
As it was already mentioned, for the present purpose it is suf-
ficient to adopt the irrotational approximation, which allows
us to keep the analysis completely analytic without missing
any fundamental physics. Then, for κ2 � �2 it is

q ≈ k; � ≈
√

2κ2 − κ, (53)

and with κ = 1/(2λ∗), Eq. (52) becomes [1]:

η∗ ≈ 1 −
√

λ∗. (54)

This expression yields the condition for marginal stability at
any fixed position X on the interface, and we have represented
it in Fig. 2. Of course, the absolute condition for stability of
the interface is determined by the less stringent case corre-
sponding to the peak at X = π/2.

In the same figure we show the boundary for the EP tran-
sition, which corresponds to the situation when plastic flow
occurs just at the time of maximum amplitude of the elastic
oscillation in the stable regime. In the irrotational approxima-
tion it reads [1]:

η∗
EP ≈ 1

2 (1 − λ∗). (55)

Figure 2 shows that the perturbations grow unstably for
λ∗ > 1 and for any perturbation amplitude, and also for λ∗ <

1 for amplitudes η > 1 − √
λ∗. In both cases, a part of the

unstable interface will evolve in the plastic regime while the
rest may do it in the elastic regime. This differential growth
at different parts of the interface produces the progressive
deformation of the initial sinusoidal profile of the interface
leading to the formation of linear spikes and bubbles.

FIG. 2. Boundaries for stability (full line) and for the elastic-
plastic transition (dotted line).

III. SPIKES AND BUBBLES FORMATION

A. λ∗ > 1

In this regime the interface is always unstable, evolving
elastically at early times at a given position X and, then,
continuing plastically at later times. Let us first to consider
the shape of the interface at a fixed time T . From Eqs. (31),
(38), (43), and Eqs. (48)–(51) we obtain:

z(X, T � TT ) =
[

1 + σ 2
p

σ 2
e

(cosh σeT − 1)

]
(1 + sin X ). (56)

z(X, T � TT ) = 1

ξ ∗ + A(X ) cosh[σp(T − TT )]

+ B(X ) sinh[σp(T − TT )], (57)

where σ 2
e = −�2 is given by Eq. (53) and, from Eqs. (46),

(49), and (50), we write:

A(X ) = 1 + sin X + λ∗ − 1

ξ ∗ . (58)

B(X ) = σp

σe

√√√√(
1 + sin X + λ∗

ξ ∗
σ 2

e

σ 2
p

)2

− (1 + sin X )2. (59)

TT (X ) = 1

σe
arcosh

[
1 + λ∗

ξ ∗
σ 2

e

σ 2
p

1

1 + sin X

]
. (60)

In order to represent the interface profile we need to refer
the amplitude back again to the mean interface. For this we
need to invoke the conservation of the total mass, which
requires that, at any given time, spikes and bubbles contain
an equal amount of mass.

Thus, the interface profile is shown in Fig. 3 for several
different times, and for the particular case of λ∗ = 1.10 and
ξ ∗ = 0.5. At T = 0 the interface is perfectly sinusoidal. At
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FIG. 3. Interface profile at different times for λ∗ > 1.

relatively short times like T = 1.5, the perturbation is growing
elastically and only a small part near the peak is growing in
the plastic regime. Thus, it still has a practically sinusoidal
shape. As the time advances, a progressively larger part of
the peak grows plastically while the rest, mainly in the valley
region, continues evolving in the elastic regime and, therefore
it grows at a smaller rate. As a consequence, at T = 5 a clear
asymmetry is observed between the peaks and the valleys due
to the different elastic and plastic growth rates, giving origin
to the formation of spikes and bubbles, respectively. This is
already very evident at T = 6 although at this time RTI will
be still in linear regime.

For instance, in the case considered in Refs. [7,9,10,12–18]
of a strongly accelerated tungsten media (Y = 2.2 GPa, G =
160 GPa), and taking β = 3, we have zpeak ≈ 20 for T = 6
(ξ ∗ = 0.5, λ∗ = 1.1). Then,

kξpeak = β

2
√

3

Y

G

ξ ∗

λ∗ zpeak ≈ 0.11. (61)

That is, RTI is still in the linear regime even at this rather long
time.

We can now consider the time evolution of the interface,
which we have represented in Fig. 4 and shows the pertur-
bation amplitude as a function of time for several different
locations of the interface. Namely, at the peaks (X = π/2),
at the valleys (X = −π/2), and at two intermediate posi-
tions (X = π/4 and X = −π/4). As it can be seen, at early
times, when the perturbation grows in the elastic regime, the
growth in symmetrical for peaks and valleys. The symmetry
endures for a longer time at the intermediate locations, like
X = ±π/4. Then, at sufficiently long times, the perturbation
starts to grow in the plastic regime in the peaks, so that they
grow faster than the valleys, which are still in the elastic
regime. This behavior is similar for larger values of λ∗ but the

FIG. 4. Amplitude of the perturbation as a function of time for
different locations on the interface for λ∗ > 1.

time required for the appearance of the asymmetry becomes
progressively longer.

B. λ∗ < 1

This case presents some differences because, as it is shown
in Fig. 2, for relatively small amplitudes the interface is stable.
Therefore, some parts close to the peaks are growing in the
unstable plastic regime, while regions close to the bottom of
the valleys remain in the stable elastic or plastic regimes, thus
slowing down the growth of the entire bubble.

The shape of the interface for a fixed time T is now given
by Eqs. (32), (38), (43), and Eqs. (48)–(51), which yield:

z(X, T � T0) =
[

1 + σ 2
p

σ 2
e

(1 − cos �T )

]
(1 + sin X ). (62)

z(X, T � T0) = 1

ξ ∗ + A(X ) cosh[σp(T − T0)]

+ B′(X ) sinh[σp(T − T0)], (63)

where A(x) is still given by Eq. (58) and

B′(X ) = σp

σe

√√√√(1 + sin X )2 −
(

1 + sin X + λ∗

ξ ∗
σ 2

e

σ 2
p

)2

. (64)

In addition, the time T0 is the lesser between the time Tm =
π/� when the elastic oscillation achieves the maximum, and
the time T ′

T :

T ′
T (X ) = 1

�
arcos

[
1 − λ∗

ξ ∗
�2

σ 2
p

1

1 + sin X

]
. (65)

If the transition occurs at T ′
T < Tm, then T0 = T ′

T , and the
instability goes first from the elastic stable regime to the
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FIG. 5. Interface profile at different times for λ∗ < 1.

plastic stable regime. Instead, when T ′
T � Tm, it is T0 = Tm,

and it goes directly to the plastic unstable regime.
In Fig. 5 we show the resulting shape of the interface

at different times. At T = 0 the interface is sinusoidal and,
as time progresses, the amplitude increases by following the
initial stage of an elastic oscillation (T = 1) [1]. Then, at later
times, it achieves the plastic regime in which the parts of the
interface close to the valleys remain plastically stable, while
those close to the peaks have already reached the unstable
plastic regime. This gives rise to an asymmetric evolution that
makes the peaks to progressively develop in spikes and the
valleys in bubbles (T = 1.8 and T = 2.5).

This behavior is also appreciated in Fig. 6 where we have
represented the time evolution of the interface at different
locations. Once again, we can see that, at early times, peaks
(X = π/2) and valleys (X = −π/2) grow symmetrically. But
once the peaks enter in the plastic regime, they grow expo-
nentially while the bottom of the valleys remain stable in the
plastic regime thus making the bubbles to grow to a slower
rate.

For intermediate positions, as for instance X = ±π/4, the
behavior is quite similar but with a slower growth (X = π/4),
or at practically the same growth since the regions close to the
bottom of the valleys remain elastically stable (X = −π/4).

IV. CONCLUDING REMARKS

We have shown the existence of another unique feature of
RTI in EP media, which leads to the formation of spikes and
bubbles in the linear regime of growth of the instability. This
behavior is a consequence of the nonlinear character of the
constitutive properties that makes the medium to behave as a
Hookean elastic material for the smallest deformations, and
as a plastic material when it overcomes a certain limit. This
is because the required deformation for the transition from

FIG. 6. Amplitude of the perturbation as a function of time for
different locations on the interface for λ∗ < 1.

the elastic to the plastic regime is determined by the yield
strength, being a material property that is invariant all over the
interface. While the deformation, instead, changes at different
points of the interface. Therefore, the plastic flow threshold
in each different location is achieved at different times, thus
giving place to a differential deformation of the surface that
leads to the creation of spikes and bubbles. However, differ-
ently from the nonlinear case, the present linear spikes have
an exponential growth.

The mechanism described here is very different from the
one present in the standard nonlinear regime of the RTI, which
is caused essentially by the rise of lateral forces on the peaks
and valleys that tend to squeeze the former and to expand the
latter [27]. Actually, one should expect that when RTI in EP
media enters in the nonlinear regime, both mechanisms will
be present, thus affecting the late evolution of the interface
and probably accelerating the formation of the spikes. On the
other hand, it can be speculated that a similar process may
also take place in a similar phenomenon like the Ritchmyer-
Meshkov instability in EP media, which is currently studied
in the framework of jets generation [36–40].

Finally, we want to point out that the change in the shape
of a sinusoidal perturbation during the RTI evolution in a
solid was already predicted by Drucker in Ref. [28] based
on heuristic arguments, although the concept was not further
analyzed.
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