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Ultrasound resonance in coflowing immiscible liquids in a microchannel
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We study ultrasonic resonance in a coflow system comprising a pair of immiscible liquids in a microchannel
exposed to bulk acoustic waves. We show using an analytical model that there are two resonating frequencies
corresponding to each of the coflowing liquids, which depend on the speed of sound and stream width of the
liquid. We perform a frequency domain analysis using numerical simulations to reveal that resonance can be
achieved by actuating both liquids at a single resonating frequency that depends on the speeds of sound, densities,
and widths of the liquids. In a coflow system with equal speeds of sound and densities of the pair of fluids, the
resonating frequency is found to be independent of the relative width of the two streams. In coflow systems with
unequal speeds of sound or densities, even with matching characteristic acoustic impedances, the resonating
frequency depends on the stream width ratio, and the value increases with an increase in the stream width of the
liquid with a higher speed of sound. We show that a pressure nodal plane can be realized at the channel center by
operating at a half-wave resonating frequency when the speeds of sound and densities are equal. However, the
pressure nodal plane is found to shift away from the center of the microchannel when the speeds of sound and
densities of the two liquids are unequal. The results of the model and simulations are verified experimentally via
acoustic focusing of microparticles suggesting the formation of a pressure nodal plane and hence a resonance
condition. Our study will find relevance in acoustomicrofluidics involving immiscible coflow systems.
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I. INTRODUCTION

The manipulation of micro-objects and liquids inside a
microchannel using bulk acoustic waves (BAWs) has been
widely used in applications in various fields such as chemical,
medical, and biotechnology [1–15]. The physics of manip-
ulation of micro-objects suspended in a liquid exposed to
BAWs is well studied [16–20]. In this context, the formation
of acoustic resonance modes that offer a large actuation force
is advantageous for handling such objects in microfluidics
[21]. Typically, for a single liquid, the microchannel width is
maintained equal to the half-wavelength of the acoustic wave;
therefore, the pressure nodal plane (NP) is formed at the cen-
ter of the microchannel. Depending on the acoustic contrast
between the particle and the suspending medium, the particle
will move toward the pressure node at the channel center or
the pressure antinode at the walls. The particle experiences
maximum acoustic radiation force at the resonance modes as
the acoustic power delivered from a transducer to the device
is highest. The locations of pressure nodes and the half-wave
resonance mode are well understood for density interfaces
[13,14,22–24]. In inhomogeneous and miscible liquids, the
density, compressibility, and fluid viscosity vary spatially as a
function of solute concentration. It was shown experimentally
that the speed of sound in the media does not depend on the
solute concentration, and therefore, the half-wave resonance
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mode can be readily achieved in the case of miscible inho-
mogeneous liquids [25]. The effect of acoustic force density
and streaming velocity field suppression in a miscible inho-
mogeneous liquid system exposed to BAWs has been reported
[26,27].

In immiscible fluid systems [28–34], there is a discontinu-
ity in the density and speed of sound of the liquids resulting
in the reflection and transmission of the acoustic waves at the
fluid interface [5]. A sudden jump in the acoustic properties
can significantly alter the total acoustic field, and therefore,
obtaining the half-wave resonance conditions in immiscible
coflow systems is extremely challenging. In contrast to a
single-phase system or a miscible inhomogeneous system in
which a pressure NP can be obtained theoretically via veloc-
ity boundary conditions at the walls [21], the reflection and
transmission of the waves at the interface must be considered
in the case of an immiscible coflow system. Recently we re-
ported the relocation of liquid streams in an immiscible coflow
system exposed to BAWs inside a microchannel [35] and ex-
plained the observed phenomenon in terms of the impedance
contrast between the liquids. On-demand stream-drop tran-
sition and coalescence of aqueous droplets in an immiscible
coflow system exposed to BAWs were also studied [5,36].
However, acoustic resonance modes in immiscible coflow
systems exposed to BAWs have not been explored to date,
which is the focus of the present work. Further, the formation
of the pressure NP which is central to acoustophoretic migra-
tion and focusing in acoustofluidics systems is also not well
understood, which is investigated here. We study ultrasonic
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resonance modes in a coflow system comprising a pair of
immiscible liquids in a microchannel exposed to bulk acoustic
waves using theoretical modeling, numerical simulations, and
experiments.

II. THEORETICAL

In this section, we first discuss the derivation of the
Helmholtz equation for a steady acoustic field applied to a
compressible Newtonian liquid. The Helmholtz equation is
obtained using the first-order perturbation theory from the
fundamental equations of fluid mechanics and thermodynam-
ics relations expressing pressure in terms of density as follows
[18]:

p = p(ρ), (1a)

∂ρ f

∂t
= −∇ · (ρ f uf ), (1b)

ρf
∂uf

∂t
+ρf (uf · ∇)uf = −∇p + µ∇2uf+βµ∇(∇ · uf ) + Fb,

(1c)

where ρ f and uf are, respectively, the density and liquid veloc-
ity, p is the liquid pressure, μ is shear viscosity, β is the ratio
of the bulk viscosity to the dynamic viscosity of the fluid and
Fb is the body force acting on the liquid. We have neglected
external force fields such as gravity and electromagnetism in
the present study.

Let the acoustic wave create tiny perturbations to the
fluid velocity, pressure, and density. The perturbed values are
negligible compared to the corresponding values at thermal
equilibrium, so the first-order perturbation theory can be ap-
plied to derive the acoustic wave equation. We also assume
the process to be adiabatic and neglect the role of heat transfer
in acoustic wave propagation. Therefore, the thermodynamics
state can be described by pressure as considered in Eq. (1).
Before applying the perturbation due to acoustic wave, let us
consider a steady fluid, i.e., initially, the liquid is at rest, with
constant density ρ0 and pressure p0. We consider that acoustic
perturbation is used to actuate the fluid, and the microchannel
walls are considered to be rigid [37]. By including the per-
turbation terms up to the first order (subscript 1), the various
fields are obtained as follows [21]:

p = p0 + p1 + · · · , (2a)

ρf = ρ0 + ρ1 + · · · , (2b)

uf = 0 + v1 + · · · , (2c)

where the subscripts 0 and 1 represent the quiescent (steady)
and first-order perturbed states, respectively. Since we are
interested in understanding the acoustic pressure field for
coflowing liquids inside a microchannel, we have neglected
the higher-order terms in Eqs. (2). The second-order terms are
important to explain the acoustic streaming effects which are
of slow timescale phenomena compared to the fast timescale
involved in the oscillation of the acoustic wave [21]. Since
we have assumed sound waves to be adiabatic, the first-order
pressure field can be written in terms of density perturbation
by performing the isentropic expansion of pressure about the

steady state,

p = p0 +
(

∂ p

∂ρ

)
0

(ρ − ρ0) + . . . = p0 + c2
0ρ1 + . . . , (3)

where c0 is the isentropic speed of sound in the fluid. By
truncating the above expression up to the first order, we can
express the first-order pressure field as

p1 = c2
0ρ1. (4)

Now simplifying the continuity equation [i.e., Eq. 1(b)]
using the first-order perturbations [Eqs. (2)] as follows:

∂ (ρ0 + ρ1)

∂t
= −∇ · [(ρ0 + ρ1)(v1)] (5a)

= −ρ0∇ · v1 − ∇ · (ρ1v1) (5b)

and neglecting the second-order terms (product of the first-
order terms), we obtained the first-order continuity equation,

∂ρ1

∂t
= −ρ0∇ · v1 (5c)

Similarly, the momentum equation (1(c)) is perturbed us-
ing the first-order perturbations,

(ρ0 + ρ1)
∂v1

∂t
+ (ρ0 + ρ1)(v1 · ∇)v1

= −∇(p0 + p1) + μ∇2v1 + βµ∇(∇ · v1), (6a)

or

ρ0
∂v1

∂t
+ ρ1

∂v1

∂t
+ ρ0(v1 · ∇)v1 + ρ1(v1 · ∇)v1

= −∇p1 + µ∇2v1 + βµ∇(∇ · v1), (6b)

Neglecting the second-order terms and using Eq. (4), we
get

ρ0
∂v1

∂t
= −c2

0∇ρ1 + µ∇2v1 + βµ∇(∇ · v1). (6c)

Now by taking the derivative of Eq. 5(c) with time and
using Eq. 6(c), we have

∂2ρ1

∂t2
= −∇ ·

(
ρ0

∂v1

∂t

)
(7a)

= −∇ · [−c2
0∇ρ1 + µ∇2v1 + βµ∇(∇ · v1)

]
(7b)

= c2
0∇2ρ1 − µ∇2(∇ · v1) − βµ∇2(∇ · v1) (7c)

= c2
0∇2ρ1 − µ(1 + β ) ∇2(∇ · v1) (7d)

= c2
0∇2ρ1 + µ(1 + β )/ρ0 ∇2

(
∂ρ1

∂t

)
(7e)

= c2
0

(
1 + µ(1 + β )

ρ0c2
0

∂

∂t

)
∇2ρ1. (7f)

To ease mathematical treatment, let us assume the har-
monic time dependence of all fields,

ρ1(r, t ) = ρ̃1(r)e−iωt , (8a)

p1(r, t ) = p̃1(r)e−iωt , (8b)

v1(r, t ) = ṽ1(r)e−iωt , (8c)
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FIG. 1. (a) Schematic of the layered two-liquid system exposed to BAWs considered in the theoretical model. (b) Schematic of the
experimental setup used for studying ultrasound resonance in an immiscible coflow system.

where ω = 2π f is the angular frequency, and f is the actua-
tion frequency of the acoustic wave. Using the harmonic fields
and Eq. (4), we further simplify Eq. (7f) as follows [21]:

∂2(ρ̃1e−iωt )

∂t2
= c2

0

(
1 + µ(1 + β )

ρ0c2
0

∂

∂t

)
∇2(ρ̃1e−iωt ), (9a)

or

−ω2ρ̃1e−iωt = c2
0

(
1 + µ(1 + β )

ρ0c2
0

× (−iω)e−iωt

)
∇2ρ̃1,

(9b)
or

−ω2ρ̃1e−iωt = c2
0

(
1 + µ(1 + β )

ρ0c2
0

× (−iω)e−iωt

)
∇2ρ̃1,

(9c)
or

−ω2

c2
0

p1 =
(

1 + µ(1 + β )

ρ0c2
0

× (−iω)

)
∇2

(
c2

0ρ̃1e−iωt
)

(9d)

or

−k2
0 p1 =

(
1 − i

µ(1 + β )ω

ρ0c2
0

)
∇2 p1, (9e)

or

−k2
0 p1 = (1 − i2γ )∇2 p1, (9f)

where k0 is the real-valued wave number and γ is the
damping factor of the acoustic wave defined as γ =
(1 + β )µω/(2ρ0c2

0 ). For the inviscid case, (γ � 1), the
Helmholtz equation can be written as

∇2 p1 = −k2
0 p1. (10)

The 1D Helmholtz equation is given as

∂2 p1

∂y2
= −k2

0 p1. (11)

Considering 1D BAWs, the fundamental properties of the
acoustic resonance modes in the case of a single liquid are
extensively studied by Bruus [21]. The planar resonator can
be modeled in an approximate 1D device where the different
components are composed of different layers that are driven
by a transducer, modeled using a simple forcing function
at the boundary between the layers [38]. Here the acoustic
resonance modes of a layered two-liquid system are studied

using the former approach. Let us consider two planar walls
perpendicular to the xz plane at y = 0 and y = W and a pair of
immiscible liquids, i.e., liquid a and liquid b, present between
the walls in a parallel configuration [see Fig. 1(a)]. Fluid
a is located between y = 0 and y = Wa, with the interface
between the liquids is located at y = Wa. The acoustic waves
are propagating along the y direction, and so the interface
is perpendicular to the acoustic wave direction. We seek a
solution of the 1D Helmholtz equation [Eq. (11)] for inviscid
fluid, as v1 = f (y)e−iωt ey and, ∇×v1 = 0, so that v1 = ∇φ1,

where φ1 is the first-order velocity potential. Here for inviscid
flow, the relationship between the first-order velocity poten-
tial and pressure is given by φ1 = − i

(ρ0ω) p1, where ρ0 is the
zeroth-order density of fluid.

The small oscillations of the planar walls in the y direction
are modeled using the velocity boundary conditions,

va(0, t ) = −ωle−iωt , vb(W, t ) = +ωle−iωt , (12)

where va and vb are the velocity of oscillations of the walls
adjacent to the liquid a and liquid b due to acoustic actuation,
respectively, l is the displacement amplitude of oscillation,
which is considered to be very small compared to the width
of the channel (∼0.1 nm), and thereby, we can neglect the
movement of the walls, ω is the frequency of oscillation, and
t is time. The density and speed of sound in fluid a are ρa,
ca and in fluid b are ρb, cb respectively. Consider a sound
wave traveling through liquid a and at normal incidence to
the interface, represented by

φi = Aae+ikaye−iωt , (13)

where ka = ω/ca and Aa is the amplitude of the incident wave.
The sound wave is generally partially reflected and partly
transmitted at the liquid-liquid interface. Let the reflected
wave be

φr = Bae−ikaye−iωt (14)

and the transmitted wave be

φt = Abe+ikbye−iωt , (15)

where kb is the wave number corresponding to liquid b. Ba

and Ab are the coefficients of the reflected and the trans-
mitted wave, respectively. The boundary conditions for the
first-order acoustic fields at the interface are that the veloci-
ties and normal stresses are continuous across the interface,
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va(Wa, t ) = vb(Wa, t ) and pa(Wa, t ) = pb(Wa, t ). We can re-
formulate the boundary conditions in terms of velocity
potential as

∂yφa(Wa, t ) = ∂yφb(Wa, t ) and ρaφa(Wa, t ) = ρbφb(Wa, t ).

(16)

Further, the transmitted wave is reflected from the other
wall at y = W . The first-order velocity potential φ1 for the
acoustic field takes the form

φ1(y, t )=
{

φa(y, t )=(Aaeikay + Bae−ikay)e−iωt , 0 < y < Wa

φb(y, t )=(Abeikby + Bbe−ikby)e−iωt , Wa < y < W
.

(17)

The unknown coefficients Aa, Ba, Ab, and Bb are determined using the four boundary conditions given by Eqs. (12) and (16)
as

Aa = − iωl [kaρb(ei2kbWa + ei2kbW + 2eikaWa eikbWa eikbW ) + kbρa(ei2kbWa − ei2kbW )]

ka[kaρb(ei2kbWa + ei2kbW )(1 − ei2kaWa ) + kbρa(ei2kbWa − ei2kbW )(1 + ei2kaWa )]
, (18a)

Ba = − iωleikaWa [kaρb(eikaWa ei2kbWa + eikaWa ei2kbW + 2eikbWa eikbW ) + kbρa eikaWa (ei2kbW − ei2kbWa )]

ka [kaρb (ei2kbWa + ei2kbW )(1 − ei2kaWa ) + kbρa (ei2kbWa − ei2kbW )(1 + ei2kaWa )]
, (18b)

Ab = − iωl[kaρb(−eikbW + ei2kaWa eikbW ) + kbρa(eikbW + 2eikaWa eikbWa + ei2kaWa eikbW )]

kb[kaρb(ei2kbWa + ei2kbW )(1 − ei2kaWa ) + kbρa(ei2kbWa − ei2kbW )(1 + ei2kaWa )]
, (18c)

Bb = − iωleikbWa eikbW [kaρb(eikbWa − ei2kaWa eikbWa ) + kbρa(eikbWa + 2eikaWa eikbW + ei2kaWa eikbWa )]

kb[kaρb(ei2kbWa + ei2kbW )(1 − ei2kaWa ) + kbρa(ei2kbWa − ei2kbW )(1 + ei2kaWa )]
. (18d)

Now we can obtain the velocity fields in the liquids a and b as

va(y, t ) = ∂φa

∂y
= ika(Aaeikay − Bae−ikay)e−iωt , (19a)

vb(y, t ) = ∂φb

∂y
= ikb(Abeikby − Bbe−ikby)e−iωt . (19b)

Using the coefficients defined in Eqs. (18), the velocity fields can be expressed as

va(y, t ) =
{

ωl[kaρb(ei2kbWa + ei2kbW + 2eikaWa eikbWa eikbW ) + kbρa(ei2kbWa − ei2kbW )]

[kaρb(ei2kbWa + ei2kbW )(1 − ei2kaWa ) + kbρa(ei2kbWa − ei2kbW )(1 + ei2kaWa )]
eikay

− ωleikaWa [kaρb(eikaWa ei2kbWa + eikaWa ei2kbW + 2eikbWa eikbW ) + kbρaeikaWa (ei2kbW − ei2kbWa )]

[kaρb(ei2kbWa + ei2kbW )(1 − ei2kaWa ) + kbρa(ei2kbWa − ei2kbW )(1 + ei2kaWa )]
e−ikay

}
e−iωt , (20a)

vb(y, t ) =
{

ωl[kaρb(−eikbW + ei2kaWa eikbW ) + kbρa(eikbW + 2eikaWa eikbWa + ei2kaWa eikbW )]

[kaρb(ei2kbWa + ei2kbW )(1 − ei2kaWa ) + kbρa(ei2kbWa − ei2kbW )(1 + ei2kaWa )]
eikby

− ωleikbWa eikbW [kaρb(eikbWa − ei2kaWa eikbWa ) + kbρa(eikbWa + 2eikaWa eikbW + ei2kaWa eikbWa )]

[kaρb(ei2kbWa + ei2kbW )(1 − ei2kaWa ) + kbρa(ei2kbWa − ei2kbW )(1 + ei2kaWa )]
e−ikby

}
e−iωt , (20b)

The first-order acoustic pressure field can be defined in terms of velocity potential as pa = iωρbφa and pb = iωρbφb. Using
this, we can write the first-order acoustic pressure field for liquid a and liquid b as

pa(y, t ) =
{

ω2ρal [kaρb(ei2kbWa + ei2kbW + 2eikaWa eikbWa eikbW ) + kbρa(ei2kbWa − ei2kbW )]

ka[kaρb(ei2kbWa + ei2kbW )(1 − ei2kaWa ) + kbρa(ei2kbWa − ei2kbW )(1 + ei2kaWa )]
eikay

− ω2ρaleikaWa [kaρb(eikaWa ei2kbWa + eikaWa ei2kbW + 2eikbWa eikbW ) + kbρa eikaWa (ei2kbW − ei2kbWa )]

ka [kaρb ( ei2kbWa + ei2kbW )(1 − ei2kaWa ) + kbρa (ei2kbWa − ei2kbW )(1 + ei2kaWa )]
e−ikay

}
e−iωt , (21a)

pb(y, t ) =
{

ω2ρbl[kaρb(−eikbW + ei2kaWa eikbW ) + kbρa(eikbW + 2eikaWa eikbWa + ei2kaWa eikbW )]

kb[kaρb(ei2kbWa + ei2kbW )(1 − ei2kaWa ) + kbρa(ei2kbWa − ei2kbW )(1 + ei2kaWa )]
eikby

− ω2ρbl eikbW [kaρb(eikbWa − ei2kaWa eikbWa ) + kbρa(eikbWa + 2eikaWa eikbW + ei2kaWa eikbWa )]

kb[kaρb(ei2kbWa + ei2kbW )(1 − ei2kaWa ) + kbρa(ei2kbWa − ei2kbW )(1 + ei2kaWa )]
e−ikby

}
e−iωt . (21b)

The acoustic velocity field acquires significantly high amplitudes in the acoustic resonance modes and thus contains a large
amount of the stored energy. For a single liquid case, the resonance modes can be theoretically determined by minimizing the
denominator of the velocity term. In analogous to the single-fluid case, we obtained the resonance condition by minimizing the
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denominator of Eqs. (20) as eikaWa = ±e−ikaWa or sin(kaWa) = 0, which gives kaWa = mπ , m = 1, 2, 3, . . . , and eikb(W −Wa ) =
±e−ikb(W −Wa ) or sin[kb(W − Wa)] = 0, which gives kb(W − Wa) = nπ , n = 1, 2, 3, . . . ,

ka = mπ

Wa
, (22a)

kb = nπ

(W − Wa)
. (22b)

The corresponding resonating frequencies for the liquid a and liquid b are given as

ωam = cakam = ca
mπ

Wa
, (23a)

ωbn = cbkbn = cb
nπ

(W − Wa)
. (23b)

The acoustic resonance occurs at the wave numbers, kam =
mπ
Wa

, m ∈ N and kbn = nπ
(W −Wa ) n ∈ N, where N is a natural

number. For m = 1 = n, we obtained a half-wave resonance
condition inside the microchannel. The half-wave resonance
mode is the condition where the acoustic pressure node is
formed at the channel center, and the pressure antinodes
are located at the channel walls. Thus theoretically we have
two actuation frequencies for the two different liquids, fa =
ca/(2Wa) and fb = cb/[2(W − Wa)], to establish resonance in
the case of a layered two-liquid system exposed to 1D BAWs.
Suppose a coflow system can be simultaneously actuated at
the two different frequencies, each corresponding to the in-
dividual liquid; in that case, a half-wave pressure NP with
equal pressure amplitudes in both liquids can be achieved.
It is interesting to note that the resonating frequencies are
a function of the relative widths of the liquids. Since the
acoustic parameters are different for each fluid, the resonant
frequency for each fluid, obtained using the theoretical model,
will be different. Theoretically, in a two-fluid system, a half-
wave resonance condition can be achieved when each fluid
is simultaneously actuated with the corresponding resonating
frequency. However, this is not practically feasible. Therefore,
we performed numerical simulations to find a single half-wave
resonating frequency for the two-fluid system. Further, if the
density and speed of sound in the two liquids are equal, then
the interface location becomes irrelevant, and, in that case, the
problem becomes trivial as it is the same as the 1D inviscid
liquid case. For liquids with ca = cb = c0 and, ρa = ρb = ρ f ,
the above analysis gives rise to a single frequency, i.e., k = ka

and the half-wave resonance condition becomes, k = mπ
W or

f = c0
2W . In the present work, we have neglected the losses,

viz., loss due to viscous dissipation, viscous friction in the
acoustic boundary layer, and the radiative loss of the acoustic
wave into the chip holder, surrounding air, and inlet and outlet
tubes [21]. Therefore, pressure amplitudes from the theoret-
ical model will be overpredicted as compared to that from
full-chip numerical simulations that consider the losses and
the experimental device.

III. NUMERICAL

The acoustic eigenmodes are analyzed for a 3D microchan-
nel filled with coflowing liquids to gain insight into acoustic
resonances. The ultrasonic resonance modes are obtained by
solving a 3D numerical model which is described below. The

Helmholtz equation given by Eq. (10) is solved to determine
the acoustic pressure eigenmodes, p1 = p̃1(r)e−iωt , by con-
sidering appropriate boundary conditions. In the case of an
immiscible coflow system, a part of the plane wave traveling
through fluid a will get reflected from the fluid-fluid interface,
and the other part will be transmitted to fluid b. The first-order
velocity field and normal stresses are considered to be con-
tinuous at the fluid-fluid interface. The boundary conditions
[given by Eq. (16)] are used to obtain the background 1D
pressure field as a sum of the incident and reflected waves
[39],

pb = pin[Rcos(ky + ωt ) + cos(ωt − ky)], (24a)

where R is the reflection coefficient defined as R =
(Za − Zb)/(Za + Zb), Za, and Zb are, respectively, the charac-
teristic acoustic impedance in liquid a and liquid b. Here pin

is the amplitude of the incoming background pressure wave.
In acoustophoresis, a resonating frequency of MHz range is
applied to obtain half-wave resonance in a microchannel of
submillimeter width, and the amplitude of the acoustic pres-
sure field is of the order, pin ∼ 1 MPa [37]. The corresponding
velocity field is given by [39]

vb = kpin

ρω
[cos (ωt − ky) − Rcos(ky + ωt )]. (24b)

Typically there is a timescale required for the build-up of
an unsteady acoustic resonance field, and for BAW devices the
build-up time scales as τE = Q/ω [37], where Q is the quality
factor of the acoustic wave. Since it is difficult to predict the
Q factor for a two-fluids case, for our experimental system
we assume the value to be ≈ 1000 [21], and we obtained the
buildup resonance timescale as τE ≈ 80 µs where the resonat-
ing frequency of the transducer is 2 MHz. The flow rate of
the coflowing fluids scales as Q ≈ 10 µl/min. Therefore, we
can define the average strain rate as γ̇ = Q/W 2H , where W
is the width and H is the height of the microchannel [40].
The characteristic timescale for the coflowing fluids scales as
t f = W 2H

Q ∼ 0.25 s. Since the timescale for acoustic build-up
resonance is in microseconds, which is much smaller than the
characteristic flow timescale, which is in hundreds of millisec-
onds, in the present case the acoustic fields can be considered
to be steady. It was shown that, as build-up time increases
(� 290 µs), the unsteady time-averaged acoustic field con-
verges to the well-known steady time-averaged solution cal-
culated in the frequency domain [37]. In the present case, our
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TABLE I. Properties of liquids used in experiments.

Material Density (kg/m3) Speed of sound, c (m/s) Impedance, Z [kg/(m2 s)]

Silicon wafer 8490 2330 19781700
Borosilicate glass 5560 2230 12398800

Liquid a Liquid b ρa (kg/m3) ρb (kg/m3) ρa/ρb ca (m/s) cb (m/s) ca/cb Za Zb

Mineral oil Silicone oil 858 991 0.8566 1440 1032 1.395 1235520 1022712
Olive oil Silicone oil 915 991 0.923 1430 1032 1.386 1308450 1022712
Dextran (10% wt.) PEG (5% wt.) 1050 1005 1.045 1581 1540 1.027 1660050 1547700
Mineral oil Olive oil 858 915 0.937 1440 1430 1.007 1317600 1226940

focus is to predict half-wave resonating frequency for a two-
fluid system using eigenfrequency analysis in the frequency
domain. The total acoustic pressure field for a two-fluid
system is obtained in the frequency domain for a given back-
ground pressure field using 3D simulations. The microchannel
wall boundary conditions have a significant effect on the
resonance modes. Typically, there are three different ways of
defining the wall boundary conditions: soft wall, hard wall, or
lossy wall [35]. In the present case, we see that the silicon and
borosilicate substrate impedances are one order of magnitude
higher than the impedances of the individual liquids used (see
Table I). Therefore, in the present simulations, it is appropriate
to use the hard wall boundary condition, which is given as

n · ∇p1 = 0, (25)

where n is the unit normal vector at the interface. Equation
(10) is solved in COMSOL Multiphysics to obtain the
acoustic eigenmodes using the background pressure and
velocity fields given by Eqs. (24).

IV. EXPERIMENTAL

We have used a through-etched glass-silicone device com-
prising a straight microchannel, two inlets, and two outlets
[see Fig. 1(b)]. The straight channel has a length of 20 mm
and a cross section of 370 µm×200 µm. The details of the
fabrication of the device are described elsewhere [18,19]. The
device is actuated by driving a piezoelectric transducer with
an AC voltage by sweeping actuation frequency from 1.300 to
2.900 MHz. Pulsation-free pumps (neMESYS Cetoni GmbH
pumps) are used to infuse the liquids inside the microchannel
at different flow rates depending upon the pair of liquids used
so that a stable coflow interface is established. The properties
of the liquids used in our experiments are presented in Table I.
Polystyrene particles of radius 20 µm are used to observe the
acoustic focusing of particles when resonance is achieved and
a pressure NP is formed.

V. RESULTS AND DISCUSSION

Three-dimensional numerical simulations are performed
to understand the nature of acoustic resonance conditions
in a coflow system inside a rectangular channel of width
w = 375 µm, height h = 200 µm, and length l = 2 mm. As
described in Sec. III, we solve the Helmholtz equation in the
frequency domain by considering hard wall boundary condi-
tions [21] to predict the acoustic eigenmodes of the coflowing

liquids. The background pressure field given by Eqs. (24) is
used to actuate the whole system, and the amplitude of the
background pressure is taken to be pin = 5.965 MPa. The total
acoustic field is obtained via an eigenfrequency analysis for
different coflow systems, which is presented in Fig. 2. We
find that for a polyethylene glycol (PEG)-dextran system with
a width ratio Wa/W = 0.35, the pressure node is located at
the center of the microchannel at an actuation frequency of
f = 2.070 MHz [see Fig. 2(a)]. Similarly, for the same width
ratio, the pressure node is obtained for the mineral oil-olive
oil system at an actuation frequency of f = 1.890 MHz [see
Fig. 2(b)]. The pressure field contours at different frequencies
obtained from simulations for mineral oil-silicone oil with
Wa/W = 0.35 are presented in Appendix A. The 1D pres-
sure field along the axial direction is plotted as a function
of channel width for different frequencies. We observe that a
half-wave pressure node is formed for an actuation frequency
of 1.573 MHz, which is taken as the resonating frequency of
the two-fluid system. At actuation frequencies of 1.5 and 1.6
MHz, we do not observe the half-wave resonance condition,
and the pressure amplitudes drop significantly compared to
the resonating case (see Appendix A). The variation of max-
imum pressure amplitude (Pmax) as a function of actuation
frequency for different stream width ratios is presented in
Fig. 2. It is found that when the speeds of sound and densities
of the liquids are comparable, (ca/cb) = 1 and (ρa/ρb) = 1,
the resonating frequencies at which the maximum pressure
amplitude (i.e., half wave resonance) is obtained, converge
to a single value and are independent of the stream width
ratios. The resonating frequency for PEG-dextran and mineral
oil-olive oil is obtained as 2.07 and 1.90 MHz, respectively.

When the speeds of sound or densities differ significantly,
i.e., mineral oil-silicone oil and olive oil-silicone oil com-
binations, the half-wave resonance mode can occur over a
range of frequencies, depending on the stream width ratio
[see Figs. 2(c) and 2(d)]. It is to be noted that for a given
coflow system, irrespective of the stream width ratio, the
resonating frequency falls between the resonating frequencies
corresponding to the two individual liquids. The resonating
frequency for mineral oil-silicone oil coflow system falls in
the range fmi = 1.920 MHz and fsi = 1.375 MHz. Similarly,
the resonating frequency for the silicone oil-olive oil com-
bination lies in the range fsi = 1.375 MHz and fol = 1.970
MHz. Further, we show that the resonating frequency varies
with the stream width ratio for liquids having (ca/cb) �= 1
or (ρa/ρb) �= 1 even if there is a match in the characteristic
impedances of the liquids, i.e., Za = Zb; see Appendix B.
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FIG. 2. Numerical simulation results for different coflow systems: (a) PEG-dextran with (ca/cb) = 1 and (ρa/ρb) = 1: (a-i) acoustic
pressure contours, stream width ratio, (Wa/W ) = 0.35, and actuation frequency, f = 2.070 MHz; (a-ii) variation of the maximum pressure
amplitude (Pmax) with actuation frequency ( f ), for (Wa/W ) = 0.25, 0.45, and 0.65; (a-iii) particle trajectories showing particle focusing
at the pressure N-P, f = 2.070 MHz, (Wa/W ) = 0.35. (b) Mineral oil-olive oil with (ca/cb) = 1 and (ρa/ρb) = 1: (b-i) acoustic pressure
contours, (Wa/W ) = 0.35, and f = 1.910 MHz; (b-ii) variation of Pmax with f , for (Wa/W ) = 0.25, 0.45, and 0.65; (b-iii) particle trajectories
showing particle focusing at the pressure N-P, f = 1.910 MHz, (Wa/W ) = 0.35. (c) Mineral oil-silicone oil with (ca/cb) �= 1 and (ρa/ρb) �= 1:
(c-i) total acoustic pressure field contours, (Wa/W ) = 0.35, and, f = 1.573 MHz; (c-ii) variation of Pmax with f for (Wa/W ) = 0.25, 0.45,

and 0.65; (c-iii) particle trajectories showing particle focusing at the pressure N-P, f = 1.573 MHz, (Wa/W ) = 0.35. (d) Olive oil-silicone
oil with (ca/cb) �= 1 and (ρa/ρb) �= 1: (d-i) total acoustic pressure field contours, (Wa/W ) = 0.35, and, f = 1.584 MHz; (d-ii) variation of
Pmax with f for (Wa/W ) = 0.25, 0.45, and 0.65; (d-iii) particle trajectories showing particle focusing at the pressure N-P, f = 1.584 MHz,
(Wa/W ) = 0.35.

We find that the speed of sound and density ratios indi-
vidually affect the resonating frequency of coflow systems
depending on the width ratio, irrespective of the characteristic
impedance values. The variation of resonating frequency for

(ρa/ρb) = 1 and varying (ca/cb), and for (ca/cb) = 1 and
varying (ρa/ρb), are presented in Appendix B. In coflow
systems with (ca/cb) �= 1 and (ρa/ρb) �= 1, the component
of the wave reflected from the interface is nonnegligible, and
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therefore, the background pressure field can change signifi-
cantly depending on the stream width ratio. We see that at
half-wave resonance, the amplitude of the pressure field from
simulations is of the order of 104–106 for all liquid combi-
nations, which matches that predicted using the theoretical
model [Eqs. (21)].

Further, we perform transient simulations with polystyrene
particles of size 20 µm using the particle-tracing module in
COMSOL to demonstrate particle focusing at the pressure
nodal plane at the resonant condition. The steady acoustic
pressure profile at half wave resonance frequency obtained
from the eigenfrequency analysis is coupled with the Particle
Tracing Module, where the transient dynamics of polystyrene
particles are analyzed. Further, we assumed a steady-state
condition wherein the velocity of the liquids is neglected. The
model for the particle dynamics considers primary acoustic
radiation force due to the acoustic pressure and velocity fields
at half-wave resonance and the drag force acting on the parti-
cles. The drag force acting on the particles is modeled using
the linear Stokes drag formula given by FD = 6πµrv, where
v is the particle velocity and r is the radius of the particle. The
primary acoustic radiation force acting on the particles due
to scattering of the acoustic wave from the particle surface
is defined as Fp = −2πR3∇[ f1

1
3ρ0c2

0
p2

in− 1
2 f2ρ0v

2
in], where f1

and f2 are the monopole and dipole coefficients defined
as f1 = 1−[(ρ0c2

0 )/(ρpc2
p)] and f2 = 2(ρp − ρ0)/(2ρp + ρ0)

[41]. The above expression is derived by considering terms
only up to monopole and dipole coefficients, and considering
the Rayleigh limit and the shear waves inside the particle
are neglected in calculating scattering coefficients from the
particle. For simplicity, the interparticle radiation force due
to multiscattering effects between the particles is neglected
in the present study. The particles are randomly positioned in
the liquid containing the pressure NP initially and get focused
at the pressure NP when the system is exposed to BAWs, as
shown in Fig. 3. For PEG-dextran and mineral oil-silicone oil
systems, the particles move to the pressure NP in 2.5 s and
1.8 s, respectively. Next, we experimentally verify ultrasonic
resonance conditions in the different coflow systems by ob-
serving the particle migration towards the pressure NP.

For different coflow systems, once the resonance frequency
is obtained from the eigenfrequency analysis, the resonance
mode is predicted from the theoretical model, and the first-
order pressure profiles across the microchannel width are
obtained using Eqs. (21), as shown in Fig. 3. The interface
location is indicated by a black dotted line, with the pres-
sure profiles in liquids a and b indicated by red and blue
lines, respectively. Further, the location of the nodal plane
is denoted by a brown color dotted line. The displacement
amplitude of the oscillation is considered to be l = 1 nm,
and the oscillation frequency of the walls is taken from the
frequency domain analysis as obtained from the simulations.
For comparison with the simulation results, in the theoretical
model, the interface location is taken to be at Wa/W = 0.35
for all the liquid combinations. In the case of PEG-dextran
and mineral oil-olive oil coflow systems, the speeds of sound
and the densities of liquids in a pair are approximately equal
(see Table I), and therefore the pressure node is obtained at the
center of the microchannel while actuating the system with
resonating frequency fr = 2.070 MHz and fr = 1.91 MHz,

FIG. 3. The 1D first-order acoustic pressure fields plotted across
the width of the microchannel for the different coflow combinations:
(a) PEG and dextran, Wa/W = 0.35, fr = 2.07 MHz; (b) mineral oil
and olive oil Wa

W = 0.35, fr = 1.91 MHz; (c) mineral oil and silicone
oil, Wa/W = 0.35, fr = 1.573 MHz; (d) silicone oil and olive oil,
Wa/W = 0.35, fr = 1.584 MHz. The interface location is indicated
by a black dotted line with the pressure profiles in liquids a and b
indicated by red and blue lines. The location of the nodal plane (NP)
is denoted by a brown dotted line for each case.

respectively [see Figs. 3(a) and 3(b)]. The nodal plane (NP)
is obtained exactly at the center of the microchannel for these
pairs of liquids. For the mineral oil-silicone oil combination,
since the speeds of sound and densities of the liquids in a
pair are markedly different, when the liquids are actuated
at the corresponding resonance frequency, fr = 1.573 MHz,
half-wave resonance with NP away from the center of the
microchannel is observed [see Fig. 3(c)]. Similarly, for the
silicone oil-olive oil combination, the frequency of actuation
to obtain the half-wave resonance is fr = 1.584 MHz, and
the pressure amplitude variation across the channel width is
shown in Fig. 3(d). We observed that the NP is formed away
from the channel center towards the liquid having a higher
speed of sound. Further, we also use the above model to
predict the higher-order resonance modes in different coflow
combinations (see Appendix C). We found that coflow sys-
tems with (ca/cb) ≈ 1 and (ρa/ρb) ≈ 1 can be actuated
with a resonating frequency predicted from theory or simu-
lations to obtain half-wave resonance, and the NP is formed
exactly at the center of the microchannel. Coflow systems with
(ca/cb) �= 1 or (ρa/ρb) �= 1 can also be actuated with a single
resonating frequency obtained from the simulations to achieve
the half-wave resonance where the NP has formed away from

TABLE II. Resonating frequency and acoustic contrast factor of
polystyrene particles in different fluids.

Fluid Resonating frequency (MHz) Contrast factor

Mineral oil 1.97 0.608
Silicone oil 1.375 0.7094
Olive oil 1.93 0.5177
PEG 2.02 0.258
Dextran 2.018 0.1351

035104-8



ULTRASOUND RESONANCE IN COFLOWING IMMISCIBLE … PHYSICAL REVIEW E 107, 035104 (2023)

FIG. 4. The experimental images showing particle focusing or nonfocusing, suggesting the formation or absence of pressure NP, in different
coflow systems with ultrasound OFF and ON: (a) PEG-dextran, Qdex = 15 µl/min, QPEG = 10 µl/min, fr = 2.018 MHz; (b) mineral oil-olive
oil, Qmi = 10 µl/min, Qol = 15 µl/min, f = 1.905 MHz; (c) mineral oil-silicone oil, Qmi = 15 µl/min, Qsi = 25 µl/min, W1/W2 = 0.72, f =
1.3–2.9 MHz; (d) silicone oil-olive oil, Qsi = 5 µl/min, Qol = 10 µl/min, W1/W2 = 0.54, f = 1.3–2.9 MHz. Trajectories of particle migration
towards the pressure NP with time in different coflow systems. (e) PEG-dextran and olive oil-mineral oil; insets show the experimental images
of the particle motion towards NP. (f) Mineral oil-silicone oil and silicone oil-olive oil.

the channel center (see Fig. 3). For each coflow system with
a fixed width of liquids, we can obtain a single resonating
frequency from numerical simulations, and interestingly the
single resonating frequency falls between the two resonat-
ing frequencies predicted using our theoretical model [Eq.
(23)]. For example, in a mineral oil-silicone oil combination,
with Wa/W = 0.35, the resonating frequency obtained from
numerical simulations ( fr = 1.573 MHz) is between the the-
oretically predicted resonant frequencies, fmi = 1.920 MHz
and fsi = 1.375 MHz. So our model can predict a bound for
the resonating frequency in the case where the speed of sound
and density differ significantly.

Finally, we verify the resonance modes obtained from the
eigenfrequency analysis and theoretical model using experi-
ments. First, we performed experiments with a single liquid
system to determine the half-wave resonating frequencies of
individual liquids at which particles get focused at the pres-
sure NP (see Appendix D). The resonating frequency and
acoustic contrast factor of polystyrene particles in each of the
liquids are presented in Table II. The density and speed of
sound of polystyrene particle are given by ρp = 1050 kg/m3

and cp = 1700 m/s, respectively. The acoustic contrast fac-
tor is defined as ψ = 1

3 f1 + 1
2 f2. The experimental images

of acoustic particle migration towards the pressure NP, and

the variation of nondimensional particle trajectory (y∗ = y
W )

with the normalized time (t∗ = t
tmax

) in the different individual
liquids, are shown in Appendix D. Here tmax is the maximum
time required for the particles to migrate to the pressure
nodal plane. Next, we performed experiments with different
coflow systems. In each case, particles are suspended in the
liquid having a higher stream width covering the center of
the channel where the pressure NP is expected at half-wave
resonance condition. The system is then exposed to BAWs,
and the actuating frequency is varied to achieve a half-wave
resonance condition and particle migration toward the NP.
The experimental images of particle focusing in the different
immiscible coflow systems before and after the application
of the BAWs are presented in Fig. 4. We have applied an
acoustic power of 5.49 W to the coflowing system so that
the acoustic energy density is low satisfying acoustocapillary
number Caac < 1 and thus preventing the relocation of liquids
[5]. The acoustocapillary number, Caac, is defined as the ratio
of acoustic radiation force to the interfacial tension force that
acts on the liquid-liquid interface. In each coflow system,
the actuation frequency is varied in the range from 1.300 to
2.900 MHz to determine the resonating frequency at which
particle focusing at the pressure NP is achieved. In PEG-
dextran and mineral oil-olive oil systems, having comparable
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FIG. 5. Variation of resonance frequency with the stream width
ratio for different immiscible coflow systems: mineral oil-silicone oil
(�), olive oil-silicone oil (•), PEG-dextran (�), and olive oil-mineral
oil (♦).

speed of sound values (see Table I), we find that the particles
are focused at the center of the microchannel suggesting the
formation of a pressure NP at the channel center. The variation
of nondimensional particle trajectory (y∗) with the normalized
time (t∗) is presented in Fig. 4. The resonating frequency at
which particle focusing is observed is found to be 2.018 MHz
and 1.905 MHz, respectively, for PEG-dextran and mineral
oil-olive oil combinations, which is in agreement with the
predictions of both the analytical model and numerical sim-
ulations. In this case, with (ca/cb) = 1, and (ρa/ρb) = 1, the
resonant frequency is found to be independent of the stream
width ratios. In the case of mineral oil-silicone oil and silicone
oil-olive oil combinations, owing to a marked difference in
the speeds of sound in the liquids, the resonating frequency
is sensitive to the variation of stream width ratio as discussed
earlier [see Fig. 3(c) and 3(d)]. In this case, with (ca/cb) �= 1,
and (ρa/ρb) �= 1, experimentally finding the exact resonating
frequency is extremely challenging since the resonance fre-
quency for a given coflow system is dependent on the stream
width ratio and sensitive to the frequency variation in the
kHz range. In such systems, the acoustic resonance conditions
could be easily predicted using the 3D numerical model.

The variation of resonance frequency with the stream width
ratio for the different coflow systems is presented in Fig. 5.
We find that for PEG-dextran and olive oil-mineral oil systems
with (ca/cb) = 1 and (ρa/ρb) = 1, the resonating frequency is
independent of the width ratio, (Wa/W ). For coflow systems
with (ca/cb) �= 1 or (ρa/ρb) �= 1, the resonating frequency
varies with the stream with ratio. In our study, the liquid
streams are arranged in such a way that the resonating fre-
quency corresponding to fluid a is higher than that of fluid
b, and therefore, by increasing the width of the stream a
(i.e., Wa), the resonating frequency increases. As discussed,
irrespective of the stream width ratio, the resonating frequency
for a given coflow system falls within the two resonating
frequency values corresponding to the two individual single-
fluid systems. Further, by varying the frequency of actuation
and stream width ratio, we show that a maximum pressure
amplitude higher than 104 Pa is achieved at the resonance

FIG. 6. Maximum acoustic pressure amplitude contours as a
function of actuating frequency and width ratio of liquids in a coflow
system: (a) PEG-dextran, (b) mineral oil-olive oil, (c) mineral oil-
silicone oil, and (d) olive oil-silicone oil. The maximum pressure
amplitude is more significant than 104 Pa at the resonance condition,
irrespective of the coflow systems and width ratios.

condition for a coflowing system when actuating with the
incoming pressure amplitude of 106 Pa. The contour plot of
maximum acoustic pressure amplitude (Pmax) as a function of
stream width ratio and actuating frequency for the different
pair of liquids is presented in Fig. 6. For the dextran-PEG
and mineral oil-olive oil combination, the Pmax is higher than
104 Pa along the line where the actuation frequency remains
constant [see Figs. 6(a) and 6(b)]. Thus, the resonating fre-
quency for a coflow system with comparable fluid parameters
is independent of the width ratio. However, for the cases
where the fluid parameters are significantly different such as
mineral oil-silicone oil and olive oil-silicone oil, we observed
that the Pmax is higher than 104 Pa for a particular actuation
frequency and a given stream width. These results suggest that
the resonating frequency for the fluid pair with different speed
of sound and density is highly sensitive to the stream width of
the two liquids. The results obtained from the eigenfrequency
analysis are in good agreement with the predictions of the 1D
analytical model for a displacement amplitude of oscillation
of 1 nm [Eq. (21)]. To summarize, a 3D plot of maximum
pressure amplitude as a function of actuation frequency and
stream width ratio is presented in Fig. 13 (see Appendix E).

VI. CONCLUSION

In summary, we studied ultrasonic resonance in a coflow
system with a pair of immiscible liquids in a microchannel
exposed to BAWs. We discovered that resonance could be
achieved in a coflow system by actuating at a single res-
onating frequency whose value is governed by the ratio of
the speeds of sound, densities, and the widths of the liq-
uids. The resonating frequency of a system with liquids of
equal speeds of sound and densities is independent of the
width ratio. On the other hand, the resonating frequency of
a coflow system with unequal speeds of sound and densities
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FIG. 7. Variation of acoustic pressure field (p1) for the mineral oil-silicone oil case for the stream width ratio, Wa
W = 0.35. The pressure

field contours across the domain and the pressure field variation across the width of the microchannel are shown for the actuation frequency
(a) f = 1.5 MHz, (b) f = 1.573 MHz, and (c) f = 1.6 MHz. This shows that the half-wave resonance is obtained at the frequency f = fr =
1.573 MHz, the resonating frequency of the coflowing system for the given width ratio, Wa

W = 0.35. The half wave pressure node is not formed
when the system is actuated at frequency, f = 1.5 MHz and f = 1.6 MHz.

is proportional to the stream width ratio. In the latter scenario,
a frequency sweep can be used to identify the resonating
frequency from numerical simulations, which is found to be
between the resonant frequencies corresponding to the in-
dividual liquids. The resonating frequency predicted using
eigenfrequency analysis from simulations is used in the the-
oretical model to predict the acoustic pressure field variation
along the width of the channel. We found that a pressure
nodal plane is formed inside the channel when the system is
actuated with the predicted resonating frequency from simu-
lations, irrespective of the density and speed of sound ratios
of the two fluids. Both from the theoretical model and simu-
lations, we predicted a maximum pressure amplitude greater
than 104 Pa at resonance condition considering the lossless
and inviscid medium. Experiments were used to validate the
analytical model and numerical simulations, which showed
an excellent match in terms of the resonating frequency for
liquids with equal density and speed of sound. In the case
of liquids with marked density and speed of sound contrast,
the resonating frequency varies in the kHz range with the
variation in stream width ratio. Therefore, it is extremely
difficult to identify the resonating frequency precisely to ex-
perimentally observe particle migration towards the nodal
plane. However, a half-wave resonance mode can be predicted
using eigenfrequency analysis for a fluid pair irrespective of
density and speed of sound ratios. At the half-wave resonance
condition, in a coflow system with equal speeds of sound
and density, the pressure nodal plane is formed at the chan-
nel center, while in a coflow system with unequal speeds
of sound and density, the pressure nodal plane is shifted

away from the channel center toward the liquid having a
higher speed of sound. The present study reveals resonance
conditions in an immiscible coflow system that may find
relevance in biochemical applications involving bulk acoustic
waves.

FIG. 8. Variation of maximum pressure amplitude (Pmax) with the
actuation frequency ( f ) for a coflowing fluids with impedance match,
i.e., Za = Zb = 2.045×106 kg/m2 s. The density of fluid a and fluid
b are ρa = 1120 kg/m3 and ρb = 1410 kg/m3 (i.e., ρa �= ρb). The
speed of sound in fluid a and fluid b is Ca = 1825.45 kg/m3 and
Cb = 1410 kg/m3 (i.e., Ca �= Cb). The resonating frequency for the
coflowing fluids with Wa/W =0.25, 0.45, and 0.65 is given by 1.993,
2.095, and 2.206 MHz respectively. The resonating frequencies lie
between the theoretically obtained frequency for the fluid a and fluid
b (i.e., fa = 2.434 MHz > fr > fb = 1.88 MHz).
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FIG. 9. (a) Variation of maximum pressure amplitude (Pmax) with the actuation frequency ( f ) for coflowing fluids as a function of density
variations with (ca/cb) = 1 and (Wa/W ) = 0.45. The resonating frequency for (ρa/ρb) = 0.77, 1.00, and 1.43 is given by fr = 2.027, 2.053,

and 2.090 MHz, respectively. (b) Variation of the maximum pressure amplitude (Pmax) with actuation frequency ( f ), for (Wa/W ) = 0.25, 0.45,

and 0.65 with (ca/cb) = 1 and (ρa/ρb) = 0.77. The resonating frequency for width ratios (Wa/W ) = 0.25, 0.45, and 0.65 is given by fr =
1.968, 2.027, and 2.124 MHz, respectively.
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APPENDIX A: ACOUSTIC PRESSURE FIELD VARIATION
AS A FUNCTION OF ACTUATION FREQUENCY

The acoustic pressure field contours for the mineral oil-
silicone oil as cofluids actuated at different frequencies are
shown in Fig. 7. The pressure variation along the width of
the channel is also plotted at the midplane. It can be seen
that the half-wave pressure nodal plane is obtained at the
frequency f = 1.573 MHz. However, the half-wave pressure
node formation is not observed when the system is actuated at
frequencies, f = 1.5 MHz and 1.6 MHz.

APPENDIX B: EFFECTS OF DENSITY AND IMPEDANCE
CONTRAST ON THE RESONATING FREQUENCY

Figure 8 shows the variation of maximum pressure ampli-
tude as a function of the actuation frequency for two fluids
with equal impedances. The resonating frequencies vary as a
function of the interface irrespective of no impedance contrast
between the fluids. This shows that the resonating frequency
for a coflow system depends on the individual values of the
density and speed of sound in the two fluids.

For a fluid pair with an equal speed of sound, the pressure
field variation as a function of actuation frequency and density
contrast is shown in Fig. 9. We observed that for a fixed
width ratio (i.e., Wa

W = 0.45), the resonating frequency doesn’t
vary significantly with the density contrast between the flu-
ids [see Fig. 9(a)]. The resonating frequency for (ρa/ρb) =
0.77, 1.00, and 1.43 is given by fr = 2.027, 2.053, and
2.090 MHz, respectively. However, a significant difference
in the resonating frequency can be observed when the width
of the two streams is varied. The resonating frequency for
width ratios (Wa/W ) = 0.25, 0.45, and 0.65 is given by
fr = 1.968, 2.027, and 2.124 MHz, respectively. The results
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FIG. 10. The 1D first-order pressure field plotted against the width of the microchannel for the coflowing fluids PEG and dextran. (a)
Second-order modes m = n = 2, two nodal planes are observed; and (b) third-order modes m = n = 3, three nodal planes can be seen
irrespective of the location of the fluid-fluid interface.
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FIG. 11. The 1D first-order pressure field plotted against the width of the microchannel for the coflowing fluids mineral oil and olive oil.
(a) Second-order modes m = n = 2, two nodal planes are observed; and (b) third-order modes m = n = 3, three nodal planes can be seen
irrespective of the location of the fluid-fluid interface.

imply that even with the equal speed of sound in the two fluids,
there is an influence of the density contrast on the resonating
frequency of the system.

APPENDIX C: HIGHER-ORDER RESONANCE MODES

We study higher-order acoustic modes for the coflow-
ing fluids inside the rectangular microchannel for the cases
where the speed of sound in the fluids a and b is equal (i.e.,
ca ≈ cb). Second-order resonance modes (i.e., m = n = 2)
are obtained for the PEG-dextran combination, and the am-
plitude of the first-order pressure field is plotted as shown

in Fig. 10. We observed two pressure node formations (one
in each fluid) for second-order modes, i.e., m = n = 2 [see
Fig. 10(a)]. Similarly, third harmonic modes can be obtained
for the mode number m = n = 3. In this case, a pressure
nodal plane is formed in PEG, and the other two pressure
nodes are observed in the dextran phase, as depicted in
Fig. 10(b). The corresponding resonating frequencies to ob-
tain the second- and third-order modes are given by fr =
4.14 MHz and fr = 6.21 MHz respectively. Interestingly, an
immiscible fluid-fluid interface doesn’t affect the formation
of the pressure nodal planes when actuated at the resonance
frequency.

FIG. 12. Experimental images of particle focusing towards the center of the microchannel in a single-fluid case: (a) dextran (10% wt),
f = 2.018 MHz, (b) PEG (5% wt), f = 2.02 MHz, (c) silicone oil, f = 1.375 MHz, (d) olive oil, f = 1.93 MHz, (e) mineral oil, f =
1.97 MHz, (f) variation of the trajectory of polystyrene particles with time in different fluids.
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Similarly, for the mineral oil and olive oil as the fluid
combination, we obtained the higher-order acoustic modes for
mode numbers 2 and 3, respectively. The results are presented
in terms of acoustic pressure amplitudes in Fig. 11. The corre-
sponding actuation frequencies for the second- and third-order
modes are given by fr = 3.78 MHz and fr = 5.67 MHz,
respectively. Two pressure nodes are observed for second-
order modes for m = n = 2, while the three nodal planes are
obtained for the mode number, m = n = 3. The location of
the interface doesn’t have any impact on the formation of the
acoustic modes when actuated with the resonating frequencies
for the fluid combinations.

APPENDIX D: PRESSURE NODAL PLANE
IN A SINGLE FLUID

In the present case, the actuation frequency of the
transducer considered is 2 MHz. The half-width of the mi-
crochannel is kept at 375 µm such that the pressure node is
formed at the center of the microchannel for the fluid with
a speed of sound around 1500 m/s. Polystyrene particles of
sizes 15–20 µm are suspended in each liquid and actuated
with an acoustic wave to obtain the resonating frequency of
the corresponding fluids. The density and the speed of the
sound of the particle are 1050 kg/m3 and 1700 m/s. The
contrast factor of the particle in different fluids is calculated
and presented in Table II. The contrast factor is of the same
order in all the liquids. Therefore, the acoustic contrast factor
is nonnegligible in all fluids.

Further, we have observed for a single fluid that the parti-
cles are getting focused in all fluids. The particle trajectories
towards the pressure nodal plane considering a single fluid
are shown in Fig. 12. We observed that depending on the
speed of sound in each fluid, the resonating frequency of the
system varies since the width of the microchannel is kept
constant. Although the actuation frequency of the transducer
used is 2 MHz, we obtained the resonating frequency for the
different fluids in the range 1.3–2 MHz (see Table II). The
variation of nondimensional particle trajectory (y∗ = y/W2)
with the normalized time (t∗ = t/tmax) towards the center of
the microchannel in each fluid is presented in Fig. 12(f). Here
tmax is the time the particle takes to traverse to the center of
the microchannel.

FIG. 13. Formation and absence of half wave resonance mode
in various immiscible coflow systems represented in terms of the
maximum pressure amplitude depending upon the stream width ra-
tios and actuation frequency. The maximum pressure amplitude is
more significant than 104 at the resonance condition, irrespective of
the coflow systems and width ratios: mineral oil-silicone oil (�),
olive oil-silicone oil (•), PEG-dextran (�), and olive oil-mineral
oil (♦).

APPENDIX E: MAXIMUM PRESSURE AMPLITUDE
AS A FUNCTION OF ACTUATION FREQUENCY

AND WIDTH RATIO

We found that the resonating frequency of the system
varies when the width of the two fluid streams changes
inside the microchannel. Also, the acoustic pressure ampli-
tude is found to be maximum at the resonating frequency
from the eigenfrequency analysis. The results are summarized
in a 3D plot where the pressure amplitude is plotted as a
function of actuation frequency and stream width ratio as
shown in Fig. 13. By doing a frequency sweep for a given
width ratio the resonating frequency of the coflowing fluids
is obtained.
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