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We study the wrinkling dynamics of three-dimensional vesicles in a time-dependent elongation flow by
utilizing an immersed boundary method. For a quasispherical vesicle, our numerical results well match the
predictions of perturbation analysis, where similar exponential relationships between wrinkles’ characteristic
wavelength and the flow strength are observed. Using the same parameters as in the experiments by Kantsler
et al. [V. Kantsler et al., Phys. Rev. Lett. 99, 178102 (2007)], our simulations of an elongated vesicle are in
good agreement with their results. In addition, we get rich three-dimensional morphological details, which are
favorable to comprehend the two-dimensional snapshots. This morphological information helps identify wrinkle
patterns. We analyze the morphological evolution of wrinkles using spherical harmonics. We find discrepancies
in elongated vesicle dynamics between simulations and perturbation analysis, highlighting the importance of the
nonlinear effects. Finally, we investigate the unevenly distributed local surface tension, which largely determines
the position of wrinkles excited on the vesicle membrane.
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I. INTRODUCTION

Vesicles are sacs with fluid inside and have a nearly in-
extensible lipid-bilayer boundary. They are used to study
fundamental physics for more complicated biological systems
such as cells and microcapsules [1–3]. Vesicles also play
a significant role in intracellular and extracellular transport
processes, for example, the courier for drug delivery.

Equilibrium mechanical properties of vesicles are well
understood. The nonequilibrium dynamics of the vesicle sub-
jected to an external flow have received intensive attention in
numerous theoretical [4–9], numerical [10–17], and experi-
mental [18–25] studies, as comprehensively reviewed in [26].

When immersed in a viscous fluid, vesicles show rich
phenomena and shape transitions induced by membrane elas-
ticity, hydrodynamic flows, and thermal fluctuations [26,27].
The existing theoretical models and numerical approaches
satisfactorily describe the properties of the tank-treading and
tumbling motions in linear flows with both rotational and
elongational components [15,20,21]. As the transition be-
tween these two regimes, strong shape deformations and
amplification of thermal fluctuations generate a new regime
called trembling [16,23]. Wrinkles were observed by Kantsler
et al. for the first time [28]. Immediately after, Turitsyn
et al. [29] studied the interaction between the vesicle shape
and the wrinkle structure by perturbation analysis. From then
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on, the transient dynamics of vesicle wrinkling has been the
focus [10,11,30,31].

The vesicle wrinkling has been studied numerically in two
dimensions (2D) before [10,11,32]. However, 2D results only
provide limited information about wrinkles on the vesicle.
Thus, a three-dimensional (3D) scheme is needed to investi-
gate the dynamics. In [16], Yazdani and Bagchi investigated
the 3D vesicle dynamics in a shear flow with 1603 grids
and 5120 triangles. However, we are concerned with small
wrinkles on the vesicle, which require much finer meshes. As
a consequence, a highly efficient parallel algorithm has to be
implemented involving both fluid and vesicles.

To simulate the transient dynamics of a vesicle in a
time-dependent elongation flow, we first establish a phys-
ical dynamical model which uses the Stokes equation to
describe a viscous incompressible fluid and uses a simplified
version of the Helfrich model to describe the vesicle [33].
Then, we implement the immersed boundary method effi-
ciently using graphics processing unit (GPU) parallelization.
The numerical results of the quasispherical vesicle are in
outstanding agreement with the predictions of perturbation
analysis. Similar exponential relationships between the char-
acteristic wavelength of wrinkles and flow strength are found.
For an elongated vesicle, our simulations match well with
the experimental results under different flow strengths. We
get bounteous 3D morphological details of the wrinkling
behaviors, which helps comprehend 2D snapshots from the
experiments. Under the experimental conditions that we set
up, the transient wrinkles on the vesicle follow the highly
disordered zigzag herringbone pattern [34,35]. In a strong
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flow, wrinkles tend to be peanut shaped. Finally, we use spher-
ical harmonics to investigate the morphological evolution of
wrinkles. Our findings are similar to those of the experiments.
Wrinkles are concentrated on two symmetrical poles where
the membrane is mostly compressed. We compare the vesicle
shape with local surface tension under different flow strengths.
A stronger flow speeds up the deformation and activates
higher-order modes.

The paper is organized as follows. In Sec. II, we give the
physical model of the vesicle wrinkling in an extensional flow.
In Sec. III, we revisit a perturbation analysis of the quasispher-
ical vesicle. In Sec. IV, we discuss the numerical methods. In
Sec. V, we give numerical results and analysis. In Sec. VI, we
give concluding remarks and discuss potential future work.

II. PHYSICAL MODEL

We study the evolution of a 3D vesicle in a viscous flow
where the inner and outer fluid properties are matched. The
surface area A0 and volume V0 of the vesicle are conserved.
The extensional flow field u∞ is suddenly reversed at t0, which
causes the vesicle to deform.

A. Vesicle

The bending energy Eb is described by a Helfrich func-
tional [4],

Eb = κ

2

∫
S

H2dA, (1)

where κ is the bending stiffness, dA is the area element on the
membrane S , and H is the mean curvature.

The area of conservation is enforced by Eσ ,

Eσ =
∫
S

σdA. (2)

In perturbation analysis, the surface tension σ is a Lagrange
multiplier to enforce global area conservation [4,10,36,37].
Numerically, it is applied as a springlike energy, which simpli-
fies the simulation. See Appendix A and Ref. [33] for details.

The total elastic energy reads

E = Eb + Eσ =
∫
S

(κ

2
H2 + σ

)
dA. (3)

The elastic force is derived by an Euler-Lagrange equation,

F = − ∂E
∂X

, (4)

where X is the position of the membrane. Following [33],
this energy (3) is discretized by a triangular mesh, where the
mean curvature H on a vertex is computed by the triangles
connected to it. The discretized force is then derived by a
variational approach via Eq. (4). See Appendix A for details.

B. Stokes flow

We consider a 3D vesicle immersed in a viscous fluid and
containing the same fluid inside. The fluids inside and outside
the vesicle are assumed to be highly viscous and satisfy the
Stokes equation [10],

μ�ui(x, t ) − ∇pi = 0, (5)

∇ · ui(x, t ) = 0, (6)

FIG. 1. Schematic diagrams of the vesicle and the velocity field
around it. When the elongation flow is suddenly switched from
(a) u∞

x = γ̇ x and u∞
y = −γ̇ y to (b) u∞

x = −γ̇ x and u∞
y = γ̇ y at

t0, while u∞
z remains zero, the vesicle undergoes a relaxation from

(a) one stretched stationary state to (b) another one. Here the values
on the axes are nondimensionalized.

where ui(x, t ) is the Eulerian velocity field of the fluid at
the position x ∈ R3 and time t ∈ R+ in the fluid domain �i,
i = 1, 2 refers to the fluid in and out of the vesicle, pi is the
pressure, and μ is the dynamic viscosity.

The velocity is continuous across the vesicle membrane S .
The hydrodynamic force and the elastic force at the membrane
are balanced. So we have the following boundary conditions
on S:

u1|S − u2|S = 0, (7)

[F(x, t ) + (T1 − T2) · n]|S = 0. (8)

Here, Ti is the fluid stress tensor, n is the unit normal vector
of S , and F is the elastic force of the vesicle membrane.

We apply an external extensional flow field u∞(x, t ) for
x ∈ �, where � = �1 ∪ �2. The external extensional flow
u∞

x = γ̇ x, u∞
y = −γ̇ y, u∞

z = 0, where γ̇ is the extensional
rate. The total velocity field u(x, t ) is decomposed into the
external elongational flow u∞ and the induced flow uind due
to the presence of the vesicle [10],

u(x, t ) = u∞(x) + uind(x, t ). (9)

The vesicle moves with the fluid with velocity u(x, t ), as
shown in Fig. 1. When the elongation flow is suddenly
switched from u∞

x = γ̇ x and u∞
y = −γ̇ y to u∞

x = −γ̇ x and
u∞

y = γ̇ y at t0, while u∞
z remains zero, the vesicle undergoes

a relaxation from one stretched stationary state, as shown in
Fig. 1(a), to another one, as shown in Fig. 1(b).

III. REVIEW OF PERTURBATION ANALYSIS

The excess area � = A/R2 − 4π measures how spherical a
vesicle is, with small � representing its proximity to a sphere.
Here, R is the effective vesicle radius, defined as the radius of
a sphere with the same volume as the vesicle.
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The shape of a quasispherical vesicle (
√

� � 1) reads

r(θ, φ)=R

⎡
⎣1+

lmax∑
l�0

l∑
m=−l

√
�

(l−1)(l + 2)
ul,m(t )Yl,m(θ, φ)

⎤
⎦,

(10)
where Yl,m(θ, φ) is the spherical harmonics of mode (l, m)
at (θ, φ) [4]. Here, ul,m(t ) is the scaled amplitude for each
mode. The gradient component of the external field ve-
locity is γ̇ = 11

√
5/(16

√
6π )S(t )

√
�/τ , and τ = μR3/κ is

the characteristic timescale related to the bending modu-
lus. The external flow strength S(t ) = −Ssign(t − t0), where
S = 16

√
6πγ̇ τ/(11

√
5�) is a dimensionless value. Follow-

ing [11], we also define a nondimensional extensional rate
χ = γ̇ τ = γ̇ μR3/κ , a nondimensional time t̄ = γ̇ t , and a
nondimensional surface tension σ̄ = σR2/κ . See more details
in Appendix B.

Following [29], the equation of motion for each mode is
given by

τ u̇l,m = S(t ) fl,m − (Alσ + 
l )ul,m, (11)

where u̇l,m is the time derivative of ul,m(t ), fl,m =
δl,2(δm,2 + δm,−2), δl,m is the Kronecker delta, 
l = (l −
1)l2(l + 1)2(l + 2)/(4l3 + 6l2 − 1), and Al = l (l + 1)(l2 +
l − 2)/(4l3 + 6l2 − 1). By conservation of the volume
and area, i.e., ∂t

∑ |ul,m|2 = 0, the global surface tension
reads [29]

σ = 2S(t )Re[u2,2] − 


A
, (12)

where A = ∑
l Al�l , 
 = ∑

l 
l�l , and �l = ∑
m |ul,m|2.

Combining experimental observations in [28] and analysis
of Eqs. (11) and (12), Turitsyn et al. [29] find that transient
wrinkling dynamics are able to be divided into three stages. In
the first stage, the high-order modes grow exponentially after
the flow direction is reversed. After saturation of the exponen-
tial growth, the second stage starts. The surface tension decays
algebraically and the amplitudes for higher modes grow. After
reaching the highest wrinkles amplitude, the dynamics finally
come to the last stage, where the vesicle evolves to a new
stable state with u2,±2 = −1.

IV. NUMERICAL METHOD

A. Numerical model

We use an immersed boundary method to study the vesicle
dynamics numerically [38]. The length scale of experiments
and simulations is generally dozens of microns, and the ve-
locity is of the same order, resulting in a low Reynolds
number [39]. Therefore, we ignore the nonlinear convection
term in the Naiver-Stokes equation. One obtains the time-
dependent Stokes equation for an incompressible fluid,

ρ
∂uind(x, t )

∂t
= μ�uind(x, t ) − ∇p + f (x, t ), (13)

∇ · uind(x, t ) = 0, (14)

where ρ is the density of the fluid and f (x, t ) is the force den-
sity acting on the fluid. It is worth noting that Atzberger [39]

also considers thermal fluctuations of the aqueous environ-
ment, which will be investigated in the future.

For the typical immersed boundary method, the force den-
sity f (x, t ) acting on the fluid is converted from the force
F(X, t ) associated with the vesicle membrane using a δ

function [38,39]. Similarly, the velocity of the vesicle is an
interpolation of the velocity for the nearby flow field. By
doing so, we get the following fluid-vesicle coupling as

f (x, t ) =
∫
S

δ[x − X(t )]F(X, t )dX, (15)

dX(t )

dt
=

∫
�

δ[x − X(t )]u(x, t )dx. (16)

B. Discretization

In the immersed boundary method [33,38,39], we use an
Eulerian grid to discretize the flow field and a Lagrangian grid
to discretize the vesicle. The flow field is a cube with an edge
L in all directions. The grid size �x = L/N , where N is the
number of grid points along each direction. Following [32,33],
spatial derivatives in (13) and (14) are approximated by finite-
difference schemes,

ρ
duind

m

dt
= μLuind

m − Dpm + fm, (17)

D · uind
m = 0, (18)

where uind
m , pm, and fm are the velocity, pressure, and

force density at the mth grid point, respectively. Here, m =
(m1, m2, m3) is a vector with integer components. L is the
seven-point discrete Laplacian and D is the central difference
gradient. Thus, the coupled velocity-pressure system is solved
on a natural grid.

A discrete fast Fourier transform (FFT),

ûind
k = 1

N3

∑
m

uind
m exp(−i2πk · m/N ), (19)

uind
m =

∑
k

ûind
k · exp(i2πk · m/N ), (20)

is used in the algorithm. Here each sum runs over N3 lattice
points defined by 0 � m(�) � N − 1 and 0 � k(�) � N − 1,
where the parenthesized superscripts � = 1, 2, 3 denote the
Cartesian components of the indicated vector.

The Stokes equation in Fourier space reads [32,39]

dûind
k

dt
= −αkûind

k − iρ−1 p̂kgk + ρ−1 f̂k, (21)

gk · ûind
k = 0, (22)

where αk = 2μ/(ρ�x2)
∑3

j=1 [1 − cos(2πk( j)/N )] and gk =
sin(2πk( j)/N )/�x. Projecting both sides of Eq. (21) and ac-
cording to the incompressibility constraint (22), one obtains
p̂k(t ) = −igk · f̂k/|gk|2. Equation (21) is simplified into a
linear differential equation with one unknown. The recur-
rence equation of ûind

k at discrete time tn = n�t is then given
as [32,39]

ûind,n+1
k = e−αk�t ûind,n

k + (1 − e−αk�t )

ραk
ξkf̂n

k , (23)
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FIG. 2. Illustration of the triangular mesh model.

where ûind,n
k = ûind

k (tn), f̂n
k = f̂k(tn), and ξk = I − gk ·

gT
k /|gk|2. On the other hand, the time derivative in Eq. (21)

can be approximated by the forward Euler, which is simpler
than Eq. (23). The forward Euler gives the same results as that
obtained by Eq. (23). However, the recurrence equation (23)
is more robust and can be extended to investigate dynamics
under thermal fluctuations. Considering the extensibility of
the method and the program, we use the format (23).

The vesicle is discretized by a triangular mesh with edge
a ≈ 2�x and a total number of vertices M [40]. Follow-
ing [33], let Xk , i.e., Xk1(l,k) in Fig. 2, be the position of the kth
mesh point. The curvature vector at the vertex Xk is defined as

H(k) = −1

2

∑
l∈T (k)

nl × Ek
l , (24)

where T (k) is the set of triangles containing Xk , nl is the unit
normal of the lth triangle Tl pointing outside, and Ek

l is the
edge vector in triangle Tl opposite to Xk . See Appendix A
for more detailed mathematical symbols in Fig. 2. The total
discrete bending energy then reads

Eb = κ

2

M∑
k=1

‖H(k)‖2

A(k)
. (25)

Here, A(k) = 1
3

∑
l∈T (k) Al is the area associated with the

vertex Xk , where Al is the area of Tl . Using a variational
approach, we get the discretized elastic force Fb(Xk ) and local
surface tension Fσ (Xk ) at each mesh point. See Appendix A
for details.

In the immersed boundary method, the Eulerian and La-
grangian variables are linked by a Dirac δ function [38], which
is given by

δa(r) = 1

a3
φ
( r1

a

)
φ
( r2

a

)
φ
( r3

a

)
, (26)

for any r = (r1, r2, r3) ∈ R3, where φ(r) is given by

φ(r) =

⎧⎪⎪⎨
⎪⎪⎩

1
8 (3 − 2|r| +

√
4|r| + 1 − 4r2), |r| � 1

1
8 (5 − 2|r| −

√
12|r| − 7 − 4r2), 1 < |r| � 2

0, |r| > 2.

(27)
Then the force density acting on the fluid is given as

fn
m =

M∑
k=1

F
(
Xn

k

)
δa

(
xm − Xn

k

)
. (28)

TABLE I. The relative error for the vesicle.

Steps 10 000 100 000 1 000 000

max(EXk ) 1.24 × 10−5 1.12 × 10−4 1.34 × 10−3

max
(
Euind

k

)
1.11 × 10−2 1.15 × 10−2 1.56 × 10−2

The time discretization for Eq. (16) is developed by inte-
grating the induced fluid velocity field over a time step,

Xn+1
k = Xn

k +
∑

m

δa
(
xm − Xn

k

)

n

m�x3 + u∞(
Xn

k

)
�t, (29)

where 
n
m = ∫ tn+1

tn
uind

m (s)ds. According to the properties of the
Fourier transform, this time integral is calculated by expres-
sion (23) for the Fourier modes of the induced fluid velocity
field [39],


n
m =

∑
k


̂n
k exp(i2πk · m/N ),


̂n
k =

∫ tn+1

tn

ûind
k (s)ds,

= −e−αk�t − 1

αk
ûind,n

k + αk�t + e−αk�t − 1

ρα2
k

ξkf̂n
k .

Note that 
n
m is solved under the periodic boundary condi-

tion, while u∞ is not. Following [32,41], we test the influence
of the periodic boundary condition on the vesicle. We increase
the domain size L, which initially is L ≈ 2.5l0 where l0 is
the diameter of the vesicle. We keep all other parameters the
same and rerun the simulation. The maximum relative errors
of the membrane velocity and the membrane shape are shown
in Table I. Those results show that the periodic boundary
condition has little effect on the shape of the vesicle, given
L � 2.5l0. Also, note that EXk is significantly smaller than Euind

k

and the maximum of Euind
k

usually occurs when |uind
k | is small.

According to the algorithm in [33] and [39], we write our
program and use a GPU paralleling strategy to accelerate the
simulation. The FFT solving uind consumes up to 90% of
computing time. It is extremely efficient to use GPU paral-
lelization because the bottleneck of the FFT algorithm is the
memory bandwidth, given sufficient cores. All the parallel
computations carried out with the aid of CUDA C [42] are done
on a single Nvidia V100 GPU with 32 GB memory and 900
GB/second bandwidth. We use AMD Ryzen 7 5800H to test
the performance of the same scheme that runs in MATLAB on
the CPU, as a reference. The results are shown in Table II. The
GPU parallelization accelerates the simulation by at least two
orders of magnitude.

TABLE II. A comparison of the computational time among CPU
algorithm and GPU parallelization at 1 step and 1 s (�t = 10−7 s).

GPU CPU

Nx 1 step 1 s (est.) 1 step 1 s (est.) Ratio

128 0.0024 s 7 h 0.43 s 2 months 183
256 0.0173 s 2 days 1.82 s 7 months 105
512 0.1329 s 15 days 22.57 s 7 years 170
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TABLE III. System parameters.

Parameters Description Value

T Temperature 293 K
L Domain length in each direction 9 × 10−5 m
ρ Uniform density of fluid 1000 kg/m3

μ Dynamic viscosity of fluid 1.435 × 10−3 Pa s
κ Bending modulus 1 × 10−19 J
�t Time step 1 × 10−7 s
�x Mesh width of fluid 1.7578 × 10−7 m

V. RESULTS AND DISCUSSION

We use the same parameters as in the experiments [28],
shown in Table III. The domain of the fluid is a cube of
5123 nodes. The equivalent radii of quasispherical vesicles
and elliptical vesicles used in the simulations are R = 1.671 ×
10−5 m and R = 1.8 × 10−5 m, respectively. The extensional
rates of the weak and strong flows are γ̇ = 1 s−1 and γ̇ =
4 s−1, respectively.

A. Comparison with perturbation analysis

We compare the numerical results of global surface tension
σ , �2 = ∑

m |u2,m|2 and the characteristic �l∗ with predic-
tions of the perturbation analysis. �l represents the amplitude
of wrinkles for the l-order mode. When the membrane sur-
face is smooth, most of the excess area is stored in �2(t ).
When �2(t ) reaches its minimum at t∗, the amplitude of wrin-
kles is the highest. At t∗, �l∗ (t∗) � �l (t∗) (2 � l � lmax),
where lmax is the largest nontrivial mode with |ul,m| > 10−5.
Given l∗, the l∗-order spectral distribution evolves according
to �l∗ (t ) = ∑l∗

m=−l∗ |ul∗,m(t )|2.

1. Wrinkling dynamics for a quasispherical vesicle

We set the vesicle to be an ellipsoid with aspect ratio
x : y : z = 1 : 0.8 : 1, i.e., � = 0.116. For the weak exten-
sional flow, γ̇ = 1 s−1, χ = 67, and S = 553. For the strong
extensional flow, γ̇ = 4 s−1, χ = 268, and S = 2224. The
triangular mesh of the vesicle is composed of 26 070 vertices
and 52 136 triangles.

We first solve Eqs. (11) and (12) numerically using the Eu-
ler method. The initial distribution is |ul,m|2 ∼ 2kBT/κ (l4 +
Sl2/A2) [29], where kB is the Boltzmann constant. One obtains
the evolution of global surface tension σ (t ) and the amplitude
of each mode in the spherical harmonics ul,m(t ) from pertur-
bation analysis.

Next, for the vesicle in simulation, we use spherical har-
monics expansion to investigate its shape at time t . We set
Xc

i (t ) to be the geometric center for the ith triangle at time
t . The spherical coordinate [ri(t ), θi(t ), φi(t )] is calculated
through the vector Xc

i (t ) − XC (t ), where XC (t ) is the geomet-
ric center of the whole vesicle. The amplitude for each mode
is then computed as

ul,m(t ) =
√

(l − 1)(l + 2)

�

M∑
i=1

ri(t ) − R

R
Yl,m(θi, φi )��i,

(30)

FIG. 3. Wrinkling dynamics of a quasispherical vesicle from
the immersed boundary method (IBM) and perturbation analysis
(PA). (a) and (c) show the evolution of dimensionless σ (t ); (b) and
(d) show the evolution of �2 and �l∗ , for flow strength S = 553 and
2224, respectively. In the weak flow (S = 553) and the strong flow
(S = 2224), perturbation analysis predicts the characteristic wrin-
kle wavelength l∗ = 14 and l∗ = 25, while simulation results show
l∗ = 15 and l∗ = 28, respectively. The timescale starts with t0.

where ��i = Ai/r2
i is the integral element that approximates

sin θdθdφ.
As shown in Fig. 3, our numerical results agree with the

perturbation analysis. Figures 3(a) and 3(c) compare the evo-
lution of σ (t ). Figures 3(b) and 3(d) compare �2 and �l∗ .
When S = 553 and S = 2224, perturbation analysis predicts
the characteristic wrinkle mode l∗ = 14 and l∗ = 25, while
numerical results produce l∗ = 15 and l∗ = 28, respectively.
A possible reason for this discrepancy is that the effective
excess area, characterized by the change in �2, is less in
nonlinear simulations. The minimum value of �2 by IBM is
close but not equal to 0, as shown in Figs. 3(b) and 3(d).

We mark the three evolution stages along the curve in
Fig. 3. During the first stage, the global surface tension
is almost constant and most of the excess area is stored
in the second-order angular harmonics. The high-order har-
monics grow exponentially following the equation ul,m(t ) =
ul,m(0) exp(−
l t/τ + Alζ ), where ζ = − ∫ t

0 σ (t ′)/τdt ′ is the
solution of the equation τdζ/dt = −σ [29]. The second
stage starts after the exponential growth has saturated. The
numerical global surface tension decays algebraically as
σ (t ) ∼ t−0.7439 and σ (t ) ∼ t−0.8108 for S = 553 and S =
2224, respectively. The |ul,m(t )| for high-order modes are still
increasing. During the third stage, σ (t ) recovers its equilib-
rium value. We further explore the relationship between the
characteristic wrinkle wavelength l∗ and the flow strength S.
The wavelength l∗ is calculated in the same way as k∗ in
Ref. [28],

l∗ =
√∑

3�l�lmax
l2/(l2 + l − 2)

∑
−l�m�l u2

l,m∑
3�l�lmax

1/(l2 + l − 2)
∑

−l�m�l u2
l,m

. (31)
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l*=1.232*S
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l*=0.9783*S
0.372

FIG. 4. The relationship between the characteristic wrinkle
wavelength l∗ and the flow strength S is shown in a log-log scale.

The theoretical results are given under 15 flows of S from
100 to 9500. In the simulation, l∗ is obtained under five flows
with S = 227, 553, 1106.5, 2224, and 4448. The relationship
between l∗ and S in the log-log scale is presented in Fig. 4.
The perturbation analysis l∗ obeys the function l∗ ∼ S0.372. It
is in good agreement with the numerical result l∗ ∼ S0.3923.
The slope of the fitting curve is also in reasonable agreement
with the conclusion l∗ ∼ S1/3 given in [29].

2. Wrinkling dynamics for an ellipsoidal vesicle

We study the wrinkling dynamics of ellipsoidal vesicles
with � = 0.997. As shown in Fig. 5, we plot results for an
ellipsoidal vesicle in the weak flow S = 237 (χ = 83.5) and
the strong flow S = 947 (χ = 335). The minimum value of

FIG. 5. Comparison with perturbation analysis. Evolution of the
global surface tension with � = 0.9972 in (a) weak flow χ = 83.5,
S = 237 and (c) strong flow χ = 4, S = 947. (b) and (d) show �2

and �l∗ . When S = 237 and S = 947, perturbation analysis predicts
l∗ = 10 and l∗ = 17, while the simulation results show l∗ = 12 and
l∗ = 24, respectively.

�2 for nonlinear simulations is always away from 0, which
means the effective excess area is smaller than the perturba-
tion analysis. The effective excess area is larger in a strong
flow. Note that the global surface tension is larger and the
relaxation time is shorter in numerical simulations. We also
study ellipsoidal vesicles with � = 1.65 and get similar re-
sults. These discrepancies imply that nonlinear effects are
significant for off-spherical vesicles.

B. Comparison with experiments

We explore two wrinkling dynamics which are observed in
the experiments [28]. Comparison between numerical and ex-
perimental results are shown in Fig. 6. After the external flow
is reversed, the vesicle membrane produces high-frequency
disturbances driven by negative surface tension, as shown in
Figs. 6(a) and 6(c). In both strong and weak flow, the extrusion
and stretching processes of the simulations are almost the
same as that observed in the experiments. Yet, our simulations
clearly capture much richer details. The vesicle finally retains
a stable ellipsoidal shape aligning with the new external flow,
in agreement with Ref. [43]. Figure 6(e) shows the detail of
vesicle wrinkles from different angles. At t̄ = 2.33, we plot
the shape of the wrinkled membrane from the front, back, left,
right, top, and bottom points of view. The back direction is the
angle of view in Fig. 6(c).

As shown in Fig. 6, a numerical study is beneficial and
necessary for comprehending the wrinkling phenomenon of
vesicles. In 2D experimental snapshots, one could not fully
understand the exact shape of the vesicle, even the number
and size of wrinkles. For example, as shown in Fig. 6(b) at t̄ =
1.46, on the left side of the vesicle, one might wonder what the
shadow area near the three protrusions indicates. On the other
hand, there are two depressions at this part in Fig. 6(a) at t̄ =
1.46. These are two troughs, if we describe wrinkles as waves
(wrinkles are described as waves in following paragraphs for
convenience). Our findings are helpful in understanding the
experimental results. Comparing Figs. 6(c), 6(d), and 6(e),
we find that the vesicle wrinkle reduction stage might not
be as smooth as the experimental snapshots show. The edge
is sharp and there are many depressions and protuberances
evolved around the middle, which can hardly be imagined in
Fig. 6(d).

Compared with 2D simulations, much more detailed mor-
phological information about wrinkles is obtained from 3D
simulations. Figure 6(e) shows that wrinkles are concentrated
around the axial vertex of the ellipsoid along the elongational
axis direction, while there are fewer wrinkles on other sides.
Similar facts are observed in both 2D simulations and ex-
perimental snapshots, but are not as adequate and precise.
According to [34,35], wrinkles are described as highly dis-
ordered zigzag herringbone patterns and tend to be peanut
shaped for the strong flow (see Appendix C and Ref. [34] for
more details).

C. Properties of wrinkling dynamics

The local surface tension is calculated on each triangle of
the membrane mesh according to Appendix A 2, but not on
nodes. The global surface tension is obtained by averaging
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1.5 1.67 1.84 2.00 2.16 2.33 2.49 2.66 2.82 2.98

3D Front Back Left Right Top Bottom (e)

FIG. 6. Comparison with experiments. The wrinkling dynamics in time-dependent extensional flow at (b) χ = 81, (d) χ = 323.5 are taken
from Fig. 2 of Kantsler et al. [28]. The simulated wrinkling dynamics of the vesicle are shown in (a) χ = 83.5, S = 237 and (c) χ = 335,
S = 947, where numbers are t̄ = γ̇ t . (e) Wrinkling of a vesicle in extension flow χ = 335, at t̄ = 2.33. The front and back are the views of the
two opposite directions along the z axis. The left and right are the views of the two opposite directions along the y axis. The top and bottom
are the views of the two opposite directions along the x axis.

all the local surface tension. In Figs. 5(a) and 5(b), we plot
the evolution of the global surface for wrinkling dynamics of
the vesicle with � = 0.997 and S = 237, 947, respectively.
The corresponding local surface tension is shown in Figs. 7(a)
and 7(b). We also present the corresponding detailed local
surface tension of the vesicle in Fig. 6(e), as illustrated in
Fig. 7(c).

As shown in Figs. 5(a) and 5(c), the global surface tension
quickly changes from positive to negative after the external
flow is suddenly reversed. Then it gradually increases until
reaching the same positive value, which represents a new
equilibrium state. Changes in surface tension correspond to
the generation, growth, and decay of wrinkles. Figure 7 shows
that the local surface tension varies significantly along the
vesicle, and the inhomogeneous local surface tension causes
the irregularity of wrinkles on the membrane.

Quantitative analysis is performed with the help of spher-
ical harmonics. Using the least-squares method, the vesicle
surface is fitted by an ellipsoid. The amplitude Ap(θ, φ; t̄ ), i.e.,
the deviation from the fitted ellipsoid, is taken as a function of
φ and θ for each time step. Examples of Ap(θ, φ; t̄ ) are shown
in Figs. 8(a) and 8(b). These figures clearly show that wrinkles
are mainly concentrated near the points θ = π

2 , φ = ±π
2 , i.e.,

the intersections of the y axis and the membrane, and tend
to converge towards the y axis. This trend is not seen in [28]

and [29]. We use

Āp(t̄ ) = 1

A

∑
i∈T

Ap
2(θi, φi; t̄ )Ai

to quantify the magnitude of the wrinkling behavior, as shown
in Figs. 8(d) and 8(e). The results show precisely when the
process begins. The maximum value of the amplitude is larger
in the weak flow, which indicates less excited high-order
modes.

The spherical harmonics expansion of the amplitude is
Ap(θ, φ) = R

∑lmax
l�0

∑l
m=−l ũl,mYl,m(θ, φ). The coefficient is

calculated as

ũl,m(t̄ ) =
M∑

i=1

Ap(θ, φ; t̄ )

R
Yl,m(θi, φi )��i. (32)

An example of ũl,m(t̄ ) is shown in Fig. 8(c). Higher-order
modes are also excited at t̄ = 2 and 2.33. For the same l ,
ũl,m(t̄ ) is large for only a few m. High-order modes are qua-
sisymmetric for m = 0. These results agree with Figs. 8(a)
and 8(b), where the amplitudes are also quasisymmetric with
respect to θ = π/2. One possible reason is that the two-
dimensional external flow (u∞

x = γ̇ x, u∞
y = −γ̇ y, but u∞

z =
0) induces “two-dimensional” wrinkles. Therefore, 2D simu-
lations are able to capture many important features.
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FIG. 7. The local surface tension of vesicles in extensional flow with (a) χ = 83.5, S = 237, (b) χ = 335, S = 947 (values in color);
numbers are γ̇ t . (c) From the front, back, left, right, top, and bottom view, local surface tension of the vesicle as shown in (b) at γ̇ t = 2.33
(values in color).

In Figs. 8(f) and 8(g), we plot the distribution of excess area
�̃l (t̄ ) = ∑

m |ũl,m(t̄ )|2 as a function of time and l . Even-order
modes are more excited due to the symmetry of the shape of
the vesicle and the flow field. Also, the diagrams clearly show
that more high-order modes are excited for the strong flow,
which is consistent with [28].

VI. CONCLUSION

The main goal of the current study is to explore the wrin-
kling dynamics of 3D vesicles in a time-dependent elongation
flow. We have simulated the dynamics of 3D vesicle wrin-
kling observed in the experiment [28] utilizing the immersed
boundary method. Our results suggest more accurate detailed
information and explanation of experimental snapshots. We
also obtain information about wrinkle patterns that are not ap-
proached in 2D simulations. 3D simulations of quasispherical
vesicles match well with the perturbation analysis predic-
tions. We have proposed a quantified relationship between
the characteristic wrinkle wavelength and the flow strength
l∗ ∼ S0.3923. But there are some discrepancies in the elongated
vesicle dynamics between simulations and perturbation anal-
ysis, highlighting the importance of nonlinear effects. Thus,
we have investigated an efficient and accurate numerical to
solve a fluid-structure interaction problem. Using a spherical
harmonic function to parametrize the vesicle profile, we have
analyzed the mode of vesicle wrinkling dynamics. Not only
are low-order modes excited, but many high-order modes are
also excited. Even-order modes excite more obviously than
odd-order modes. For the same l , ũl,m(t̄ ) is large for only a few

m. The wrinkle amplitudes are quasisymmetric to θ = π/2.
The excited high-order modes are quasisymmetric to m = 0.
The inhomogeneous local surface tension causes the irregu-
larity of wrinkles on the vesicle membrane. A stronger flow
excites larger surface tension and more high-order modes.
Accordingly, we have observed smaller wrinkle amplitudes.

It is interesting to note that our methods and studies are
favorable to the simulation of dynamics in a broad class
of applications arising in technological systems and biol-
ogy [2,3]. Since specific information about wrinkle patterns
can be obtained in 3D simulations, we are able to conveniently
and concretely study the relationship between various factors,
such as external field intensity, vesicle shape, and wrinkle
morphology. In turn, vesicle morphology can be applied to
many applications, including diffraction gratings, stretchable
electronics, cell adhesion and growth, and antifouling [34].
Although we focus on the 3D simulation of the ellipsoidal
vesicle in extensional flow, the numerical methods are uni-
versal and can be swimmingly applied to other vesicles and
viscous fluids. Moreover, thermal noise is an influential factor
affecting vesicle wrinkling dynamics [8,31]. We plan to study
the effect of thermal noise on the vesicle.
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FIG. 8. Quantitative analysis of the wrinkle dynamics. Amplitudes Ap(θ, φ; t̄ ) of the higher harmonics vs θ and φ at certain times for
(a) S = 237 and (b) S = 947 (values in color). (c) The spherical harmonics coefficient |ũl,m(t̄ )| of amplitudes at certain times for S = 947
(values in color). The average amplitude of the higher harmonics with respect to t̄ for (d) S = 237 and (e) S = 947. (f) and (g) show the
temporal evolution of excess area �̃l (t̄ ) = ∑

m |ũl,m(t̄ )|2 (values in color).

APPENDIX A: DISCRETIZATION OF THE VESICLE

We discretize energies of (1) and (2), and compute forces
in this Appendix which is closely related to Ref. [33].

We first introduce some necessary mathematical symbols.
Let Xk1(l,k) be the vertex Xk in the lth triangle Tl . The next
vertex of Xk1(l,k) is Xk2(l,k) and the next vertex of Xk2(l,k) is
Xk3(l,k) in triangle Tl . The vertices are in counterclockwise
order when viewed from outside the vesicle, as shown in
Fig. 2. The edge vector of triangle Tl opposite to the vertex
Xk1(l,k) is Ek1(l,k)

l = Xk3(l,k) − Xk2(l,k).
Thus, the unit normal of the triangle Tl can be computed as

nl = (Xk2(l,k) − Xk1(l,k) ) × (Xk3(l,k) − Xk1(l,k) )

‖(Xk2(l,k) − Xk1(l,k) ) × (Xk3(l,k) − Xk1(l,k) )‖

= Ek3(l,k)
l × Ek2(l,k)

l∥∥Ek3(l,k)
l × Ek2(l,k)

l

∥∥ . (A1)

The area of Tl is Al = 1
2 nl · (Ek2(l,k)

l × Ek3(l,k)
l ). In addition, let

V (l ) be a set of indices of vertices in triangle Tl and N (k) be
a set of indices of all neighboring vertices that are connected
to Xk .

1. Bending forces

The bending force at Xk is deduced by (25),

Fb(Xk ) = − ∂Eb

∂Xk
= − ∂

∂Xk

⎛
⎝κ

2

M∑
j=1

‖H( j)‖2

A( j)

⎞
⎠

= −κ

2

⎛
⎝ ∂

∂Xk

‖H(k)‖2

A(k)
+

∑
k′∈N (k)

∂

∂Xk

‖H(k′ )‖2

A(k′ )

⎞
⎠.

(A2)

We use the chain rule and the triple vector product alge-
braic rules to simplify the above partial derivatives. Then we
rearrange terms so that they are organized by triangles instead
of vertices and obtain the bending force,

Fb(Xk ) = κ

2

∑
l∈T (k)

[
(Hl − nl · Cl )

(
1

2
nl × Ek

l

)]

+ κ

2

∑
l∈T (k)

(
1

2
Cl × Ek

l + nl × hk
l

)
, (A3)
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where ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Hl = 1
3

∑
p∈V (l )

‖H(p)‖2

(A(p) )2 ,

Cl = 1
Al

∑
p∈V (l ) Ep

l × H(p)

A(p) ,

hk
l = H[k3(l,k)]

A[k3 (l,k)] − H[k2 (l,k)]

A[k2 (l,k)] .

(A4)

That is, we compute the bending force only using the morpho-
logical information about the vesicle. The complete derivation
of this formula is shown in Appendix A of Ref. [33].

2. Surface tension forces

Numerically, we consider the surface tension energy men-
tioned in Ref. [33],

Eσ =
∫
S

1

2
∧

(
dA − dA0

dA0

)2

dA0, (A5)

where ∧ equals the surface tension at every point of the mem-
brane. We remark that this is still not realistic enough for a
lipid bilayer, which resists local change in area more strongly.
This surface tension ∧ is about two orders of magnitude larger
than the surface tension of real lipid membranes, reported
by Rawicz [44]. The reason that we use this simple surface
tension model is that the simulation is able to be compared
with the perturbation analysis.

Deriving a discrete surface tension force from (A5) is very
complicated. Considering the computational cost, we take the
numerical approximation of the surface tension forces,

Fσ (Xk ) ≈β
∧
Al

(
Ek

l · Ek3(l,k)
l

)
Ek2(l,k)

l

− β
∧
Al

(
Ek

l · Ek2(l,k)
l

)
Ek3(l,k)

l ,

(A6)

where β = (Al − A0
l )/A0

l and A0
l is the initial area of Tl . The

dimensionless initial surface tensions ∧̄ = ∧R2/κ of quasi-
spherical vesicles used in weak flow and strong flow are
6 × 1010 and 4.8 × 1011, respectively. The ∧̄ of elliptical
vesicles used in weak flow and strong flow are 2.9 × 1010

and 2.31 × 1011, respectively. The theoretical surface tension
force and the numerical surface tension force are the same
because we must have a force balance between the hydrody-
namic force and elastic force at the vesicle membrane [45].
We divide Fσ by the perimeter of the small triangle on the
membrane to obtain a new numerical local surface tension σ .
This surface tension has the same physics as the theoretical
surface tension in Eq. (2).

Finally, we obtain the total forces at Xk ,

F
(
Xn

k

) = Fb
(
Xn

k

) + Fσ

(
Xn

k

)
. (A7)

APPENDIX B: NONDIMENSIONALIZATION

We take nondimensional space x̄ = x/R and time t̄ = γ̇ t .
Then the nondimensional immersed boundary equations are
written as

Re
∂ūind

∂ t̄
= ∇̄2ūind − ∇̄ p̄ + χ f̄, (B1)

∇̄ · ūind = 0, (B2)

f̄ =
∫
S̄

δ̄[x̄ − X̄(t̄ )]F̄(X̄, t̄ )dX̄, (B3)

dX̄(t̄ )

dt̄
=

∫
�̄

δ̄[x̄ − X̄(t̄ )]ū(x̄, t̄ )d x̄. (B4)

Here, Re = γ̇ ρR2/μ is the Reynolds number. The nondi-
mensional velocity ūind = uind/(γ̇ R), ū∞

x̄ = x̄, ū∞
ȳ = −ȳ,

and ū∞
z̄ = 0. The nondimensional pressure p̄ = p/(μγ̇ ),

F̄(X̄, t̄ ) = F(X, t )R/κ , Ā = A/R2, and δ̄(x̄) = R3δ(x).

APPENDIX C: WRINKLE PATTERNS

Mechanical instabilities in soft materials, specifically wrin-
kling, have led to the formation of unique surface patterns.
Reference [34] discusses ten representative patterns of wrin-
kles, as shown in Fig. 9.

FIG. 9. Schematics of representative patterns of wrinkles: (a) rip-
ples (a periodic array of straight wrinkles), (b) ripples with
bifurcation, (c) truncated ripples with bifurcation (zigzag), (d) a
more symmetrical zigzag herringbone structure, (e) herringbones (a
periodic array of zigzag wrinkles), (f) a highly disordered zigzag
herringbone pattern, and (g) from left to right, random wormlike
structures, lamellar, peanut shape, and highly ordered hexagonal pat-
tern, respectively. They are taken from Figs. 3 and 7(c) of Ref. [34].
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