
PHYSICAL REVIEW E 107, 035003 (2023)

Pressure and folding effects on the buckling of a freestanding compressed thin film
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The combined effects of compressive stress, applied pressure, and edge folding of a freestanding thin film have
been theoretically investigated on the buckle morphologies of the structure. In the framework of the Föppl–von
Kármán theory of thin plates, the different buckle profiles have been analytically determined, and two buckling
regimes have been identified for the film: one regime where the transition from upward to downward buckling
is continuous, and one that is discontinuous (snap-through). The critical pressures characterizing the different
regimes have then been determined, and an hysteresis cycle has been identified through the study of buckling
versus pressure. The case in which the thin film is deposited on a substrate has also been discussed.
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I. INTRODUCTION

A large number of microsystems of various shapes and ma-
terials are currently manufactured with the aim of accessing
different functionalities, ranging from mechanical to elec-
tronic functionalities, including chemical and optical ones. In
a large number of applications in the engineering field, the
microfabricated devices are composed of slender structures
whose mechanical behavior must be understood and con-
trolled. It is now widely acknowledged that structures under
strain can undergo mechanical instabilities when geometri-
cal nonlinearities are considered. This corresponds to film
buckling, multilayered structures wrinkling, and layer folding
[1–7]. Significant efforts have therefore been made to charac-
terize the threshold of these instabilities in terms of buckling
pattern, shape, and critical load [8–14] in order to control the
mechanical behavior of the recently elaborated metamaterials
[15–19]. For example, a numerical energy-based method has
been developed to analyze the condition for manufacturing
freestanding films when pre- and postbuckling conditions ap-
ply [20]. Likewise, the elastic snap-through phenomenon that
has been identified for structures under various conditions,
such as mechanical loads [21] or capillarity forces [22,23], has
been used to control the viscous flow in a channel by means
of an elastic arch [24].

In the field of materials science and metallurgy, it is also
well-established that an internal compressive stress [25,26] in
the films can be the cause, when it exceeds a critical value,
of interface delamination and thin-film buckling leading to
various patterns such as circular blisters, straight-sided buck-
les, and wormlike wrinkles (see [13,14,27–35] and references
therein). The problem of blister folding has also been investi-
gated, and the configurational stability of the buckled patterns
has been characterized [36]. Later, the folding of buckles in
the case of Y2O3 and Au thin films deposited on Si substrates
was studied considering that the top side or the circumfer-
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ence of the buckles undergoes a plastic folding [37–39]. This
folding can be described in terms of low-angle tilt boundaries
modeled using vertical rows of edge dislocations [40]. For Al
thin films deposited on rigid substrates, molecular-dynamics
simulations at finite temperature have therefore been carried
out, and the role of grain boundaries in the plasticity mecha-
nisms leading to film folding have been identified [41].

The effect of pressure has also been considered, and the
pressure-induced redeposition of the buckled film has been
characterized [42]. More recently, the combined effects of
plastic folding and atmospheric pressure have been consid-
ered through finite-element simulations [43]. The formation
of donut- and croissant-like patterns has thus been explained
when the films are deposited on a substrate. Likewise, the
pressure on the free-surface of Ta thin films deposited on a
Si substrate has been found to be responsible for the shape
transition from circular blisters to ring-shaped buckles, when
blister diameters reach a critical value [44].

From the previously cited literature, it thus appears that
the study of the combined effects of pressure and folding due
to plasticity on the mechanical behavior of metallic layered
materials is a topic of research that deserves attention. It is
the purpose of the present work to investigate the combined
effect of an applied pressure and edge folding in the case of a
clamped free-standing thin film under compressive stress. The
possibility of upward and downward buckling has then been
discussed as a function of the pressure and folding angle. The
configuration where the film is also deposited on a substrate
has been discussed.

II. MODELING OF THE BUCKLING PROBLEM
AND GOVERNING EQUATIONS

An initially planar thin film of thickness h, Young’s
modulus E , and Poisson’s ratio ν is submitted to in-
plane compressive stress σ 0

xx = σ 0
yy = −σ0, with σ0 > 0 [see

Fig. 1(a) for axes]. It is assumed that each of the two rigid
parts of the film is lying on a semi-infinite substrate assumed
to be infinitely stiff, the freestanding part being of length
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FIG. 1. (Sketch not to scale) Thin film of thickness h deposited
on a semi-infinite substrate submitted to an in-plane stress σ 0

xx =
σ 0

yy = −σ0. The free-standing part of the film of length 2b is sub-
mitted to an external applied pressure p. (a) Planar configuration.
(b) Upward buckling of the free-standing film when the pressure
is smaller than a critical value p̃c. (c) Downward buckling when
p̃ > p̃c.

2b, with h/b � 1. The case in which the film is deposited
on a continuous substrate and delaminated on a 2b length
will be discussed later. Depending on σ0 values, the infinitely
long freestanding film in the (Oy) direction may buckle in
the (Oxz) plane [13]. It is thus considered that, once buck-
led, the freestanding part of the film undergoes an applied
overpressure p on its upper free-surface corresponding to the
mismatch between the pressures applied on its upper and
lower free-surfaces. In the following, the cases of buckling
in the upward direction in Fig. 1(b) or in the downward
direction in Fig. 1(c) are considered, assuming that, due to
plastic deformation, both extremities of the film are folded, in
the upper part of the (Oxz) plane, of an angle {∓θ, θ > 0}
with respect to the horizontal axes [13]. It is emphasized
at this point that the study of the plasticity mechanisms at
the microscopic scale responsible for this folding effect in-
cluding defects such as dislocations and/or grain boundaries
is beyond the scope of the present analysis [36–39,43,44].
Consequently, the values of the folding angle θ will be ar-
bitrarily chosen in the following. Considering the plane strain
hypothesis of the isotropic elasticity theory [45], the two
components of the elastic displacements, only depending on
x variable and labeled u and w along the (Ox) and (Oy)
axes, respectively, satisfy in the framework of the Föppl–von
Kármán (FvK) theory of thin plates [13] the following set of
equations:

d4w

dx4
− h

D
σxx

d2w

∂x2
= p

D
, (1)

u(±b) = 0, (2)

w(±b) = 0, (3)(
dw

dx

)
x=±1

= ∓ tan θ, (4)

to which the strain-stress relation

1 − ν2

E
(σ0 + σxx ) = du

dx
+ 1

2

(
dw

dx

)2

(5)

must be added, with σxx the constant stress in the buckled
film and D = Eh3/[12(1 − ν2)]. Introducing the dimension-
less parameters and variables h̃ = h/b, σ̃xx = 1−ν2

E σxx, σ̃0 =
1−ν2

E σ0, p̃ = 1−ν2

E p, α2 = − 12
h2 σ̃xx, α2

0 = 12
h2 σ̃0, x̃ = x/b, ũ =

u/b, and w̃ = w/b, the system of Eqs. (1)–(5) has been recast
as

d4w̃

dx̃4
+ α2 d2w̃

∂ x̃2
= 12

h̃3
p̃, (6)

ũ(±1) = 0, (7)

w̃(±1) = 0, (8)(
dw̃

dx̃

)
x̃=±1

= ∓ tan θ, (9)

h̃2

12

(
α2

0 − α2
) = dũ

dx̃
+ 1

2

(
dw̃

dx̃

)2

. (10)

Solving this system of Eqs. (6)–(9), and integrating Eq. (10)
on the interval x̃ ∈ [−1,+1], leads to the following elastic
solution:

w̃(x̃) = 1

α3h̃3
{6α p̃(x̃2 − 1)

+ (α2h̃3 tan θ + 12 p̃)

× (cos αx̃ − cos α) sin−1 α}, (11)

ũ(x̃) = h̃2

12

(
α2

0 − α2)x̃ − 1

8α6h̃6
{192α2 p̃2x̃3

+ (α2h̃3 tan θ + 12 p̃) sin−1 α[96α p̃x̃ cos αx̃

− 96p̃ sin αx̃ + α(α2h̃3 tan θ + 12 p̃) sin−1 α

× (2αx̃ − sin 2αx̃)]}. (12)

The parameter α related to the stress in the film, once it is
buckled, is implicitly determined by Eq. (10) recast as

h̃2

12

(
α2

0 − α2
) − 1

4α6h̃6
{−48p̃(α2(h̃3 tan θ − 2 p̃)

+12 p̃) + α(α2h̃3 tan θ + 12 p̃)[(36p̃ − α2h̃3 tan θ )

× tan−1 α + α(α2h̃3 tan θ + 12 p̃) sin−2 α]} = 0, (13)

the smallest absolute value of α being the one selected, since
it corresponds to the more relaxed configuration. It has to be
noted that, because of the imposed angle ±θ at the extremities
of the film, the relaxed buckle configuration can be found to
be either in compression (σ̃xx < 0 and α2 > 0) or in tension
(σ̃xx > 0 and α2 < 0). Thus, solutions have to be sought for
α ∈ Re in compression and for α ∈ Im in tension.
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FIG. 2. Evolution of pressures p̃1 and p̃2 with respect to α for
different values α0 = 1, 2, 3, and 4 and for θ = π/20 and h̃ = 0.1.
The pressures corresponding to buckle configurations in tension
(compression) are shown by dotted lines (solid lines).

From Eq. (11), the buckle profile parameter δ̃ = w̃(0) de-
fined as

δ̃ = −6α p̃ + (α2h̃3 tan θ + 12 p̃) tan α
2

α3h̃3
(14)

has also been considered in the following to characterize the
thin-film morphology.

III. FREESTANDING FILM BUCKLING

A. Buckled configurations with respect to pressure

Although we could not obtain an explicit analytical so-
lution for α versus pressure from Eq. (13), an analytical
expression of the pressure versus α can be provided. More
specifically, two solutions labeled p̃1 and p̃2 (with p̃1 < p̃2 <

0) have been explicitly derived from Eq. (13), but their ex-
pressions have not been displayed in this paper for the sake
of simplicity. The pressures p̃1 and p̃2 have been plotted in
Fig. 2 with respect to α for α0 = 1, 2, 3, and 4. It is seen that,
for α0 = 1, the solutions correspond to buckled configurations
in tension (α2 < 0) for any pressure. For the other considered
values of α0 (2, 3, and 4), the solutions can correspond to
either buckled configurations in tension or in compression,
depending on the value of the pressure. Another result high-
lighted by Fig. 2 is that for α0 = 1, 2, and 3, one pressure
value corresponds only to one buckled configuration, i.e., one
value of α. On the contrary, for α0 = 4, when p̃1 and p̃2 take
values in the range [ p̃l , p̃r], three different buckled config-
urations can be found, underlining a possible snap-through
between two stable configurations (the third one being unsta-
ble). Before studying the stability of the configurations, which
is required to fully understand the snap-through, the critical
value α0c at which the system transits from a stable behavior
(α0 < α0c) to an unstable one (α0 > α0c) is determined in the
following paragraph.

The study of p̃1 and p̃2 variations versus α shows that there
exists a particular value α	 such that p̃1 = p̃2 at α = α	. In
Fig. 2, they are labeled α	

i for α0 = i with i = 1, 2, 3, and 4.
When 0 < α	 < π or when α	 ∈ Im (see α	

1, α	
2, and α	

3 in
Fig. 2), it is found that the buckled configuration evolves in
a continuous and stable way with the pressure. When α	 > π

(see α	
4 in Fig. 2), a shape instability or snap-through from

upward to downward buckling may occur for the film. The
critical value α0c is then given by the following expression
determined by finding α0, which verifies α	 = π :

α0c =
√

π2 + 2
π2 − 6

h̃2π2
tan2 θ. (15)

In the cases in which α0 > α0c, it is found that the limits of p̃1

and p̃2 when α tends to π are equal to p̃c:

p̃c = lim
α→π

p̃1 = lim
α→π

p̃2 = −π2

12
h̃3 tan θ. (16)

To illustrate these statements, the profiles w̃(x̃ − ũ(x̃))
versus x̃ have been plotted in Figs. 3(a), 3(c), and 3(e) for
α0 = 1, 2, and 4, respectively, and for increasing pressure p̃
(in absolute value) from top to bottom profiles, which can
alternatively be either p̃1 or p̃2, with h̃ = 0.1 and θ = π/20.
For such values of the thickness and the folding angle, the
critical value α0c beyond which it has been suggested that the
system is unstable is equal to 3.44. It is underlined that the
pressure variation in Figs. 3(a), 3(c), and 3(e) corresponds to
α variations with a step equal to 0.05 (0.05i, with i2 = −1)
for buckled configurations in compression (in tension). It is
observed in Figs. 3(a) and 3(c) that for α0 = 1 and 2, respec-
tively, the transition from upward to downward buckling is
continuous. This evolution has been confirmed in Figs. 3(b),
3(d), and 3(f), where δ̃ has been displayed versus p̃ for α0 = 1,
2, and 4, with h̃ = 0.1 and θ = π/20. Indeed, in Figs. 3(b) and
3(d), the δ̃ evolution from A to B is observed to be continuous
for α0 = 1 and 2 as the pressure increases (in absolute value)
and δ̃ continuously decreases to zero and then goes under
the horizontal plane as the film buckles downward. The main
difference between both cases lies in the stress state of the
buckles with respect to pressure: for α0 = 1, the buckle is
in tension at any pressure, whereas for α0 = 2, the buckle
is in tension at low pressures, changes into compression at
intermediate pressures, and goes back to tension at higher
pressures.

For α0 = 4, Fig. 3(f) shows that, for pressures in the range
[ p̃l , p̃r], three different configurations labeled A, B, and C are
in equilibrium at the same pressure p̃. It is seen in Fig. 3(e)
that A, B, and C correspond to upward, downward, and in-
termediate camel back buckle shapes, respectively. To study
the stability of the three equilibria, the energy of the buckle
configurations needs to be determined.

B. Stability analysis of the equilibrium configurations

The total energy of the system is given by

Etot = Es + Eb − p̃Ṽ , (17)
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FIG. 3. Buckle evolution under pressure for θ = π/20 and h̃ =
0.1. Buckle profile w̃(x̃ − ũ(x̃)) vs x̃ for (a), (c), (e) increasing
pressure p̃ (from top profile to bottom) and (b), (d), (f) evolution
of δ̃ vs p̃ for (a), (b) α0 = 1; (c), (d) α0 = 2; and (e), (f) α0 = 4.
Curves corresponding to pressures p̃1 and p̃2 (with p̃1 < p̃2) are,
respectively, blue (dark gray) and orange (light gray). Solid lines are
used for buckled configurations in compression, and dotted lines for
those in tension. Dashed lines correspond to buckled configurations
at pressures in the range [ p̃l , p̃r].

where the two terms Es and Eb are the stretching and bending
energies, respectively, written as [46]

Es =
∫ 1

−1

h̃

2
ε2

xxdx̃, (18)

Eb =
∫ 1

−1

h̃3

24

(
∂2w̃

∂ x̃2

)2

dx̃, (19)

with ũ and w̃ given by Eqs. (2) and (3), respectively, and the
strain εxx in the buckle is given by [13,46]

εxx = ε0 + ∂ ũ

∂ x̃
+ 1

2

(
∂w̃

∂ x̃

)2

. (20)

The third term in Eq. (17) represents the work of the pressure,
with Ṽ the volume below the buckle,

Ṽ =
∫ 1

−1
w̃(x̃ − ũ(x))dx̃ ≈

∫ 1

−1
w̃(x̃)dx̃. (21)

The evolution of the energy Etot has been calculated from
configuration A to B, passing through C. To do so, a path

FIG. 4. Energy path between three buckle configurations A, B,
and C in the range pressure p̃ ∈] p̃l , p̃r[ for which the buckle can tran-
sit from the upward configuration A to the downward configuration
B. The considered parameters are α0 = 4, θ = π/20, and h̃ = 0.1.

has been linearly interpolated between A, B, and C in the
configuration space such that

w̃(x, ξ ) =
{−ξ w̃A(x) + (1 + ξ )w̃C (x) for ξ � 0,

−ξ w̃B(x) + (1 − ξ )w̃C (x) for ξ > 0,
(22)

and

ũ(x, ξ ) =
{−ξ ũA(x) + (1 + ξ )ũC (x) for ξ � 0,

−ξ ũB(x) + (1 − ξ )ũC (x) for ξ > 0,
(23)

where the configurations A, C, and B are found for ξ = −1,
0, and 1, respectively. Using ũ(x, ξ ) and w̃(x, ξ ) in Eqs. (18)–
(21), Etot(ξ ) has been calculated for any value ξ ∈ [−1.2, 1.2]
and plotted in Fig. 4 for some pressures p̃ ∈] p̃l , p̃r[. It is seen
that, for any pressure in the range p̃ ∈] p̃l , p̃r[, configuration
C is unstable (the energy is maximum) whereas configura-
tions A and B are stable. It is recalled that A and B are
the only stable configurations for | p̃| < | p̃l | and | p̃| > | p̃r |,
respectively. The energy of configuration A is lower than that
of the B for | p̃l | < | p̃| < | p̃c|, and this is the opposite for
| p̃c| < | p̃| < | p̃r |, the energies of both configurations being
equal when | p̃| = | p̃c|. This suggests a hysteresis behavior as
described in Fig. 5. At low pressures | p̃|, configuration A is
the most stable configuration, and δ̃ continuously decreases as
| p̃| increases. At p̃ = p̃c, the energies of configurations A and
B are equal and, as soon as | p̃| > | p̃c|, configuration B has the
lower energy and A becomes metastable. The system can re-
main in the metastable configuration A until the snap-through
to B occurs at p̃ = p̃r , after which configuration B becomes
the only stable configuration. The buckle is in configuration B
and its maximum deflection δ̃ continuously decreases as the
pressure | p̃| increases. From high pressure to low pressure,
configuration B is first the most stable configuration, then it
becomes metastable when | p̃| < | p̃c|, and the snap-through
from B to A finally occurs at p̃ = p̃l . Thus, the transitions
from upward to downward buckling and from downward
to forward buckling take place at two different pressures,
exhibiting indeed a hysteresis behavior. It is worth noting
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FIG. 5. Evolution of the maximum deflection δ̃ with respect to
the pressure | p̃| for α0 = 4, θ = π/20, and h̃ = 0.1. The filled arrows
correspond to the path from upward to downward buckling, and the
empty arrows correspond to the path from downward to upward
buckling.

that the two previously described regimes for the thin-film
buckling, i.e., the continuous and discontinuous transitions,
have also been observed (but not shown) while considering
different folding angles θ at constant initial stress α0 > α0c

[Eq. (15)].
For convenience, the transition will be considered in the

following to occur at the pressure p̃c, i.e., when both upward
and downward buckled configurations have the same energy.

IV. STUDY OF THE BUCKLING BEHAVIOR
WITH SUBSTRATE

The configuration where the film is delaminated on a length
2b after deposition on a continuous substrate has also been
briefly addressed. Indeed, some information on the buckling
state can be derived in this case from the freestanding analysis,
considering the limit configuration where the snap-through or
the continuous deposition leads to the situation in which the
buckle amplitude is zero, i.e., δ = 0, such that the buckled film
touches the substrate under pressure. It is emphasized that the
full redeposition process of the film and the contact modeling
with the substrate are beyond the scope of the present analysis.
Consequently, two other critical pressures p̃0 and p̃0

c can be
defined for the film touching the substrate. The pressure p̃0

corresponds to the case in which δ̃ goes to 0 without any
abrupt transition as α → 0, i.e., when the film is fully released
(without compression or tension). The other pressure p̃0

c is the
pressure at which the buckle touches the substrate just after
the abrupt transition, i.e., when α → π . It yields

p̃0 = −
√

35

22
h̃4α0, (24)

p̃0
c = −1

3
π2h̃4

√
α2

0 − π2

3π2 − 16
. (25)

FIG. 6. (a) (α0, | p̃|) diagram describing the thin-film behavior for
h̃ = 0.1. The straight black solid line is given by | p̃0| variation with
respect to α0 [Eq. (24)] and delimits the region C (buckles in a tensile
stress state) from the region B (buckles in a compressive stress state),
the buckle touching the plane z = 0 by continuously increasing the
pressure. The dash-dotted black curve, given by | p̃c| variation with
respect to α0 [Eq. (26)], delimits the region B (continuous transition)
from the regions D and A (abrupt upward to downward transition).
The dotted black curve, given by | p̃0

c| variation with respect to α0

[Eq. (25)], delimits the region D, where the buckle touches the sub-
strate after a snap-through for a pressure | p̃| > | p̃c|, from the region
A, where the buckle touches the substrate immediately after a snap-
through at | p̃| = | p̃c|. Dashed blue (dark gray) lines in the regions
B, C, and D are the iso-θ curves indicating the pressure p̃ required
for the buckles to touch the plane z = 0 (δ̃ = 0) vs α0. Dashed orange
(light gray) lines give the critical pressure | p̃c| [Eq. (16)] at the abrupt
transition in the regions A and D. (b) Evolution of δ̃ with respect to
| p̃| for different values of the applied stress α0 = 3.40, 3.45, and 3.50.
The hysteresis is displayed with dotted lines.

The critical pressure p̃c at which the snap-through phe-
nomenon occurs can also be considered as a function of α0,
without any consideration on the film position with respect
to the substrate (contrary to p̃0

c). Its expression is given by
combining Eqs. (15) and (16):

p̃c = − 1

12
π3h̃4

√
α2

0 − π2

2π2 − 12
. (26)

In Fig. 6(a), the thin-film behavior diagram, only valid in
the case in which δ = 0, has been displayed in the (α0, | p̃|)
plane for h̃ = 0.1. The limits defined by Eqs. (24)–(26) split

035003-5



DURINCK, HAMADE, GRILHÉ, AND COLIN PHYSICAL REVIEW E 107, 035003 (2023)

the diagram into four regions A, B, C, and D. In region A,
the deflection δ is equal to 0 as soon as the snap-through
phenomenon from upward to downward buckling has taken
place. In regions B and C, the transition is continuous, the
buckle being in compression in region B and in tension in
region C for any value of θ when the condition δ̃ = 0 is
reached. From this configuration where δ is zero, the free-
standing film can then go from the upper part of the plane to
the lower part with increasing pressure, while in presence of a
substrate the redeposition should take place. Region D defines
a region where the buckle can undergo an abrupt transition
at p̃ = p̃c and can reach δ̃ = 0 at a pressure | p̃| > | p̃c|. To
highlight the differences between regions A, B, and D, the
evolution of the deflection δ̃ with respect to | p̃| is plotted
in Fig. 6(b) for h̃ = 0.1, tan θ = π/20, and α0 = 3.40, 3.45,
and 3.50 corresponding to regions B, D, and A displayed in
Fig. 6(a), respectively. It can be seen that for α0 = 3.40, the
buckle touches the substrate (δ̃ = 0) after δ̃ has continuously
decreased with increasing | p̃|, whereas it undergoes an abrupt
upward to downward transition at | p̃c| ≈ 1.30 for α0 = 3.45
and 3.50. The contact between the buckle and the substrate
occurs at p̃ = p̃c for α0 = 3.50 and at p̃ > p̃c for α0 = 3.45.
It should be emphasized here that this analysis is valid only
if the snap-through is assumed to occur at pressure p̃c. In the
case in which the hysteresis behavior is taken into account, the
region D can disappear under certain conditions of applied
stresses α0 and folding angles θ , making the diagram much
more difficult to read.

Solving together Eqs. (13) and (14) for δ̃ = 0, it is possible
to plot, in regions B and C of the (α0, | p̃|) diagram, iso-θ
curves for which the position of the buckle center reaches
z = 0. Other iso-θ curves corresponding to the abrupt transi-
tion at p̃ = p̃c with respect to α0 [see Eq. (16)] have also been
displayed in region A of Fig. 6. To sum up, the transition from
upward to downward buckling can be described by following
iso-θ curves in the (α0, | p̃|) diagram. Taking θ = π

20 as an
example, it can be seen that the buckle can redeposit at z = 0
in a tensile stress state (region C) for α0 < 1.25 and in a
compressive stress state (region B) for α0 > 1.25, the state
at α0 = 1.25 corresponding to a completely released buckle.
The pressure | p̃| required to maintain δ̃ = 0 decreases from
1.61 to 1.30 as the applied stress α0 increases from 0 to 3.44.
For 3.44 < α0 < 3.46, the buckle configuration is found in
region D (see the zoom in Fig. 6), where an abrupt transition
occurs at p̃c ≈ 1.30, but δ̃ = 0 for a pressure p̃ > p̃c. Finally,
for α0 > 3.46, the buckle configuration is found exclusively

in region A where the transition from δ̃ > 0 to δ̃ < 0 occurs
suddenly at p̃ = p̃c.

V. CONCLUSION

The study of the buckling of a free-standing thin film
clamped at its edges has been investigated in the framework
of the Föppl–von Kármán theory of thin plates when the
film is submitted to a compressive stress and to an applied
pressure on its upper free-surface. Assuming that the film can
undergo an upward folding at its edges due to the thin-film
plasticity, including dislocations and/or grain boundaries, the
buckling profile of the film has been determined and two
different buckling regimes have been identified. Depending
on the applied pressure and initial stress, the transition from
upward to downward buckling can be either continuous or
discontinuous. This transition (continuous or abrupt) has been
theoretically characterized from a linear stability analysis as
a function of the different parameters of the problem, such as
the applied pressure, the compressive stress, and the folding
angle, focusing on the conditions required for the buckle to
snap from the upper to the lower plane. An hysteresis cycle for
the thin-film buckling versus pressure has also been identified,
and the strain state of the film (compression, tension) has
been discussed. As such, these films could be considered for
the design of nano-/microdevices such as sensors sensitive to
pressure and stress. When the film is deposited on a continu-
ous substrate and delaminated, the critical pressures for the
redeposition onto the substrate (continuous or abrupt) have
also been derived.

The next step of this work could be a study of the post-
buckling regime and the dynamics of the snap-through. To
do so, a numerical approach could be used to characterize
this transition (continuous or abrupt) as a function of the
different parameters of the problem identified in the present
work, including the applied pressure, the compressive stress,
and the folding angle. When the film is lying on a continu-
ous substrate, its full redeposition should also be investigated
numerically.
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