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Accessibility of the surface fractal dimension during film growth
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Fractal properties on self-affine surfaces of films growing under nonequilibrium conditions are important in
understanding the corresponding universality class. However, measurement of the surface fractal dimension has
been intensively investigated and is still very problematic. In this work, we report the behavior of the effective
fractal dimension in the context of film growth involving lattice models believed to belong to the Kardar-Parisi-
Zhang (KPZ) universality class. Our results, which are presented for growth in a d-dimensional substrate (d =
1, 2) and use the three-point sinuosity (TPS) method, show universal scaling of the measure M, which is defined
in terms of discretization of the Laplacian operator applied to the height of the film surface, M = t δg[�], where t
is the time, g[�] is a scale function, δ = 2β, � ≡ τ t−1/z, β, and z are the KPZ growth and dynamical exponents,
respectively, and τ is a spatial scale length used to compute M. Importantly, we show that the effective fractal
dimensions are consistent with the expected KPZ dimensions for d = 1, 2, if � � 0.3, which include a thin film
regime for the extraction of the fractal dimension. This establishes the scale limits in which the TPS method
can be used to accurately extract effective fractal dimensions that are consistent with those expected for the
corresponding universality class. As a consequence, for the steady state, which is inaccessible to experimentalists
studying film growth, the TPS method provided effective fractal dimension consistent with the KPZ ones for
almost all possible τ , i.e., 1 � τ < L/2, where L is the lateral size of the substrate on which the deposit is
grown. In the growth of thin films, the true fractal dimension can be observed in a narrow range of τ , the upper
limit of which is of the same order of magnitude as the correlation length of the surface, indicating the limits of
self-affinity of a surface in an experimentally accessible regime. This upper limit was comparatively lower for
the Higuchi method or the height-difference correlation function. Scaling corrections for the measure M and the
height-difference correlation function are studied analytically and compared for the Edwards-Wilkinson class at
d = 1, yielding similar accuracy for both methods. Importantly, we extend our discussion to a model representing
diffusion-dominated growth of films and find that the TPS method achieves the corresponding fractal dimension
only at steady state and in a narrow range of the scale length, compared to that found for the KPZ class.
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I. INTRODUCTION

Scale invariance and fractality are expected to emerge for
growth far from equilibrium [1]. In the context of film growth
[2,3], determining the scaling properties of the roughness dur-
ing the kinetic roughening stage has been a source of intense
research [1,3–13].

The squared roughness is defined by

w2(L, t ) ≡ 〈h2(x, t ) − h(x, t )
2〉, (1)

where h(x, t ) is the interface height, which evolves on time t
perpendicularly to a d-dimensional substrate. L is the lateral
size of the substrate, and overbars and brackets indicate the
spatial and configurational averages, respectively. For many
growth processes, including film growth, w(L, t ) increases
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with time via a power law, which is an experimentally acces-
sible regime. However, at sufficiently long times, w(L, t ) is
expected to reach a steady state with saturated roughness ws,
i.e., w(L, t → ∞) = ws. Then, the surface global roughness
evolves over time as:

w(L, t ) =
{

ctβ, if t � t×
ws ∼ Lα, if t 	 t×

(2)

with t× ∼ Lz. In a normal scaling regime, in which the Family-
Vicsek [3,14,15] ansatz holds, z = α/β, the scaling exponents
α, β and z, i.e., the roughness, growth, and dynamic expo-
nents, respectively, define the universality class of the growth
process.

Indeed, the possibility of characterizing the morphology
of an irregular surface experimentally at the nanometer up to
µm scales requires, for example, scanning probe microscopy
[16]. This has stimulated an upsurge in experimental reports
claiming self-affine structures. Of course, care is necessary,
since the finite size of the probe tip does not enable full
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resolution of neither deep valleys nor sloping borders of
plateaus on the interfaces analyzed [16–18].

Prior work has involved experimental studies of the mor-
phology of thin solid films and estimated their surface fractal
dimension [19]. For example, Zhu et al. studied evolution of
the film morphologies of organic semiconductors [20] and
measured the fractal dimensions during thin film growth (i.e.,
t � tx). Kavyashree et al. [21] measured fractal dimension
to explore how different substrates affect the morphologies
of deposited barium fluoride (BaF2) thin films. Ţălu et al.
[22] studied Ag/Cu thin films deposited on (001)-oriented
Si via reactive dc magnetron sputtering and investigated the
self-affine nature of the sample morphology. Ghosh et al.
calculated the fractal dimension of surface microstructures
for sol-gel spin coated ZnO thin films with varying precursor
molarities [23]. A recent study revisited fractal analyses of
thin film surfaces and reinforced the importance of the fractal
dimension in exploring the mechanisms of film growth under
different conditions [24].

However, it is important to understand under which condi-
tions the fractal dimension is a reliable quantity to determine
the underlying dynamics of surface growth and, consequently,
help to understand and improve materials production. In this
work, we investigate this problem in the context of lattice
models of film growth, for a class of kinetic roughening pro-
cesses characterized by nonconserved surface relaxation.

This problem has been stimulated, at a coarse-grained
level [11], for the Kardar-Parisi-Zhang (KPZ) class, for which
the space-time evolution of h(x, t ) is given by the KPZ
Eq. [5],

∂h(x, t )

∂t
= ν∇2h(x, t ) + λ

2
[∇h(x, t )]2 + η(x, t ). (3)

The parameters ν, i.e., surface tension, and λ are related to
Laplacian smoothing and the tilt mechanism, respectively.
The scaling properties of h(x, t ) are different from those of
x. Therefore, we refer to this situation as a d + 1 growth. The
stochastic process is characterized by the noise, η(x, t ), which
in its simplest form is white noise:

〈η(x, t )η(x′, t ′)〉 = 2Dδd (x − x′)δ(t − t ′), (4)

where D is the noise intensity.
For a film growing in 2 + 1 dimensions, one possible way

to determine the corresponding global roughness exponent is
to measure h(x, t ) along a single line in the x plane [25]. In
this work, this section through the surface is analyzed as if it
were a one-dimensional profile, and averages are taken over
many profiles along directions x and y parallel to the substrate
to calculate the effective fractal dimensions. This suggests a
relationship between the global roughness exponent and the
fractal dimension of the profile in a steady state, which is
experimentally inaccessible for studies of film growth. In such
cases it is possible to write [3]:

α = 2 − d f , d = 1, 2. (5)

Therefore, regarding one of the challenges described previ-
ously, a relevant issue is: is the surface fractal dimension
extracted, for the growth regime (t � tx), connected with the
corresponding universality class?

II. LATTICE MODELS AND METHOD

In order to investigate this issue, we consider three well-
known KPZ lattice models, namely: the etching [9], restricted
solid-on-solid (RSOS) [26], and single step (SS) models
[25,27–29]. We explore the situations for d = 1, 2, which
encompasses cases with experimental relevance. For the pre-
sentation of simulation results along this work, we consider
the lattice constant as the unit length, i.e., a = 1. In general,
at time t , we randomly choose a column of the deposit in Rd

space. Time unity corresponds to a deposition of Ld particles.
All simulations have been performed by considering periodic
boundary conditions and an initial substrate with h(x, 0) = 0,
except with the SS model, for which hi = [1 + (−1)i]/2 for
d = 1 and hi, j = [1 + (−1)i+ j]/2 for d = 2 [1 � (i, j) � L].
The etching model is an automaton that mimics erosion of a
surface with acid [9,30–35], and it was recently [36] proved
to belong to the KPZ universality class. Here, this model was
simulated in its deposition version in order to be consistent
with film growth. After each deposition attempt, the height of
the column of incidence, h0, was increased by one lattice unit
and any neighboring column with a height smaller than h0 in-
creased until its height was h0. In the RSOS model, an incident
particle may stick at the top of the column of incidence if the
difference in height between the incidence column and each
of the neighboring columns does not exceed one lattice unit.
Otherwise, deposition is rejected. The SS model [25,27–29]
(for a more recent work, see Ref. [37]) is defined as follows: at
any time t , if the column height of a randomly selected site is
a local minimum, then it is increased by two lattice parameters
with probability p. Otherwise, if we have a maximum, the
column height is decreased by two lattice parameters with
probability 1 − p. In this work we present the results for the
SS model considering p = 1.

Next, we describe the method used in this work for calcu-
lation of the fractal dimension. The method used here was the
three-point sinuosity (TPS) method, which was introduced in
Ref. [38]. This method can be described as follows: at a given
time t , a discrete irregular interface with height hi, where
i = 1, . . . , L, is considered. Given a height hi, two heights
hi+τ and hi+2τ are determined, with 1 � τ < L/2 being the
horizontal scale length. The local TPS, ρτ

i , with i and τ fixed
is defined by [38]

ρτ
i = |2hi+τ − hi − hi+2τ |. (6)

Equation (6) is related to discretization of the Laplacian oper-
ator in one dimension. Therefore, ρτ

i represents the sinuosity
of the curve formed by heights hi, hi+τ , and hi+2τ in the range
[i, i + 2τ ]. In this range, a peak, a valley, and a downward or
a upward slope can be observed. For the whole interface, a
series of ρτ

i was achieved and a measure M was defined as:

M = 1

L − 2τ

L−2τ∑
i=1

(
ρτ

i

)2
. (7)

The measure M scales with τ as [38]

M ∼ τ 4−2dTPS
f , (8)

where dTPS
f is the surface fractal dimension extracted with the

TPS method. With this method, a fractal dimension with an
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FIG. 1. Global roughness, w(L, t ), as a function of time, t , con-
sidering the etching, SS and RSOS models. (a) Results for d = 1
with lateral size L = 215 for an average over 103 independent real-
izations. Dashed (red) lines indicate slopes equal to 1/3. (b) Results
for d = 2 considering the lateral sizes L = 211 for etching model and
L = 210 for the SS and RSOS models. Dashed (red) lines indicate
slopes equal to 7/29 (e.g., see Ref. [43]).

irregular discrete surface can be numerically evaluated at each
time t . Indeed, under conditions in which a power-law depen-
dence between M and τ is observed, i.e., the profile is scale
invariant, the exponent C ≡ 4 − 2dTPS

f can be determined
by using a least-squares procedure [39] and dTPS

f = 2 − C/2
[38]. In this work, instead, an effective fractal dimension,
dTPS

feff
, was computed and defined as in Eq. (8):

dTPS
feff

≡ 2 − 1

2

d[ln (M )]

d[ln (τ )]
. (9)

III. RESULTS AND DISCUSSION

Figure 1(a) shows the time evolution of the global rough-
ness, w(L, t ), for L = 215, as determined by considering the
etching, RSOS and SS models for d = 1. The results are
presented as averages over 103 independent realizations. Fig-
ure 1(b) shows the time evolution of w(L, t ) for the same
models in Fig. 1(a), but with d = 2. In this case L = 211

for the etching model whereas L = 210 for the RSOS and
SS models. The results for d = 2 are shown by considering
an average over 103 independent realizations for the SS and
RSOS models. For the etching model, the results are presented
for 400 independent realizations. Clearly, for short times after
an initial transient, w(t ) ∼ tβ for all models, with β ≈ 1/3
for d = 1 and, for d = 2, β was close to those reported in the
literature for the KPZ models (e.g., see Refs. [11,40–43] and
β = 7/29 in Ref. [43]).

A characteristic surface length can be extracted for the
simulated interfaces from the autocorrelation function, which
is defined as

�(r, t ) = 〈h̃(r0 + r, t )h̃(r, t )〉, (10)

where h̃ = h − h̄, h̄ is the mean height of the profile, and
averages in Eq. (10) were performed over different reference
positions r0, different orientations, and independent samples.

The correlation length, ξ , is often estimated as the position
of the first zero or minimum of �(r, t ) [32,44]. However, in
such cases, �(r, t ) may oscillate with r before crossing the
value � = 0 [45,46]. For this reason, we define ξ here as
�(ξ, t )/�(0) = 0.3 [45], where �(0) ≡ �(0, t ). The reliabil-
ity of this approach has been demonstrated for KPZ lattice
models [45] and confirmed for the models studied here. In the

FIG. 2. �(r, t )/�(0) as a function of r, for different times, for
(left panels) d = 1 and (right panels) d = 2. (a) and (b), (c) and
(d), and (e) and (f) correspond to the results for the SS, etching, and
RSOS models, respectively.

growth regime (t � tx), ξ scales as ξ (t ) ∼ t n, where n ≡ 1/z
is the coarsening exponent, which is usually the inverse of
the dynamic exponent, as defined previously. The calculated
(normalized) correlation functions �(r, t )/�(0) are shown in
Fig. 2. The time evolution of ξ and its values are shown in
Fig. 3 and Table I, respectively. Our results show that ξ scales
approximately as ξ ∼ t1/z for t � 104 and d = 1, 2, which

FIG. 3. Evolution of the correlation length, ξ (see Table I) for
the etching, SS and RSOS models. (a) Results for d = 1 are shown
for the lateral size L = 215 and were averaged over 103 independent
experiments. The dashed (blue) line shows a slope equal to 1/z with
z = 3/2. (b) Results for d = 2 using the lateral sizes L = 211 for the
etching model (4 × 102 independent experiments) and L = 210 for
the SS and RSOS models, averaged over 103 independent experi-
ments. The dashed (blue) line indicates a slope equal to 1/z, where
z = 29/18 (e.g., see Ref. [43]).
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TABLE I. Values of ξ , for different values of t , for the models SS,
etching and RSOS. Results are shown for d = 1, 2 and were obtained
from Fig. 2 considering �(ξ, t )/�(0) = 0.3 [45].

d t ξEtching ξSS ξRSOS

102 26 17 13
103 128 79 61

1 104 571 358 274
105 1975 1369 1126
106 3500 3170 2918

5 × 106 3388 3467 3599
101 4 1 1
102 22 7 6

2 103 93 28 25
104 247 94 85

is consistent with the results in Ref. [45]. For sufficiently
large times (i.e., t � 104, where finite-size effects become
important, see Fig. 1), the effective ξ grows more slowly than
t1/z, as we will show next (see the arrows in the left and right
panels of Figs. 4 and 5). Figures 4(a), 4(c) and 4(e) show
the measured M, which was computed by using Eq. (7), as
a function of the spatial horizontal scale length, τ , for the
etching, SS, and RSOS models in d = 1, respectively. Various
times t , encompassing the growth and the steady-state region
were considered, as observed in Fig. 1. These results showed
that, for 1 � τ � ξ , M scales as in Eq. (8). Furthermore, for
t � tx, the scale invariance of the irregular profiles does not
extend to all length scales exhibiting an upper limit length,
� ∼ ξ . For τ � ξ , scale invariance of the profile was no longer
observed and M was converted to a constant value. For times
corresponding to the steady state, t 	 tx, Eq. (8) holds for the
whole range of τ .

The insets of Figs. 4(a), 4(c) and 4(e) show the excellent
collapse achieved by replacing the variables M → Mt−δ and
τ → � ≡ τ t−1/z, where, for d = 1, δ = 2β = 1/z, and z =
1.5, the latter corresponds to the KPZ dynamic exponent for
d = 1. Therefore, we propose scaling as M = t δg[�], where
� ≡ τ t−1/z. Using Eq. (8), the function g[�] is expected to
scale as:

g[�] ∼
{

�4−2dTPS
f , if � � 1;

cte, if � 	 1.
(11)

Indeed, for � � 1, 4 − 2dTPS
f is expected to be exactly unity.

This was confirmed by the slopes shown in the insets of
Figs. 4(a), 4(c) and 4(e), where the dashed lines have slopes
equal to unity. Of course, for � 	 1, M ∼ t1/z.

Figures 4(b), 4(d) and 4(f) show the effective fractal di-
mensions computed using Eq. (9) as a function of � ≡ τ t−1/z,
for the etching, SS and RSOS models in d = 1, respectively.
The results are presented for the same times represented in
the left panels. Importantly, good collapse of the curves for
all models studied here indicated that an effective fractal
dimension consistent with that for KPZ could be achieved
for � = τ t−1/z � 0.3. This result established the limits of τ

to be used in the TPS method for a given time t in order
to observe an effective fractal dimension consistent with the
KPZ class. It is interesting to note that, for the steady state,

FIG. 4. Results for d = 1. (Left panels) M as a function of τ .
Vertical arrows indicate, for each time, the position τ = ξ (see
Table I). (Right panels) dTPS

feff
as a function of � ≡ τ t−1/z. Vertical

arrows indicate, for each time, the position at � = ξ t−1/z. We note
that ξ t−1/z is nearly constant for t � 104 (the arrows overlap at
these times). (a) and (b) for etching model; (c) and (d) for the SS
model; (e) and (f) for the RSOS model. The results are presented for
lateral size L = 215, with averages calculated for 103 independent
realizations. In (a), (c), and (e), the insets show collapse achieved
by replacing the variables M → Mt−δ and τ → � ≡ τ t−1/z, where,
for d = 1, δ = 2β = 1/z, with z = 1.5. Dashed lines have slope 1.
In (b), (d), and (f), the results are presented for τ � 3 and dashed
horizontal bottom and top lines represent the values of the KPZ
fractal dimension, for d = 1, using Eq. (5) [df = 2 − α = 1.5], and
the value 2, respectively. The pink area shows a limit for the variable
� ≡ τ t−1/z, where the KPZ fractal dimension could be achieved.

all values 1 � τ < L/2 could be used to provide the correct
fractal dimension. However, the steady-state regime is not
experimentally accessible in the context of film growth.

Indeed, in the limit of thin film growth, i.e., t � tx, dTPS
feff

crosses over and subsequently converges to 2 for almost all
values of τ , since M rapidly reaches a constant value. This
suggested that an effective fractal dimension close to 2, as
determined with the TPS technique, represented an uncor-
related profile inconsistent with that expected for the KPZ
universality class in d = 1 (i.e., d f = 1.5). Therefore, within
the limit of thin film growth, a narrow range of τ , consistent
with � = τ t−1/z � 0.3, should allow one to obtain the KPZ
fractal dimension.

The results discussed above were also confirmed for
the case d = 2, where realistic applications can be found.
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FIG. 5. Results for d = 2. (Left panels) M as a function of
τ . Vertical arrows indicate, for each time, the position τ = ξ (see
Table I). (Right panels) dTPS

feff
as a function of � ≡ τ t−1/z. Vertical ar-

rows indicate, for each time, the position at � = ξ t−1/z. We note that
ξ t−1/z is nearly constant for t � 104 (striking is the overlapping of the
arrows at times 102 � t � 103). (a) and (b) for the etching model;
(c) and (d) for the SS model; (e) and (f) for the RSOS model. The
results are presented for lateral sizes L = 211 for etching with 400
independent realizations and L = 210 for the SS and RSOS models
with 103 independent realizations. In (a), (c), and (e), the insets show
the collapse achieved by replacing the variables M → Mt−δ and
τ → τ t−1/z, where z = 29/18 (e.g., Ref. [43]). In (a), (c), and (e), the
dashed lines have slopes 2α = 7/9 and the values of the exponent δ

used were δ = 2β = 14/29 [43]. In (b), (d), and (f), the results are
presented for τ � 3 and the dashed horizontal top and bottom lines
represent the value of the KPZ fractal dimension, that, for d = 2,
using Eq. (5), is df = 29/18 (using α reported in Ref. [43]), and
the value 2, respectively. The pink area shows an approximate limit
for the variable � ≡ τ t−1/z, from which the KPZ fractal dimension
could be achieved.

Accordingly, Figs. 5(a), 5(c) and 5(e) show the measured M
as a function of τ for the etching, SS, and RSOS models,
respectively. These results confirmed again that M scales as
in Eq. (8) for τ � ξ . For τ � ξ , M is constant, similar to the
result found for d = 1.

The insets of the Figs. 5(a), 5(c) and 5(e) show excel-
lent collapse achieved by replacing the variables M → Mt−δ

and τ → τ t−1/z, for which we used z = 29/18 as the KPZ
dynamic exponent, as reported in Ref. [43], for d = 2. There-
fore, the scaling model M = t δg[�] is proposed, where δ =
2β = 14/29 (for d = 2) [43] and � ≡ τ t−1/z, as previously
defined.

Figures 5(b), 5(d) and 5(f) show the effective fractal di-
mensions as a function of � ≡ τ t−1/z for the etching, SS,
and RSOS models with d = 2, respectively. The same trends
were observed, so that, for t � tx, dTPS

feff
rapidly converged

to 2, when M converged rapidly to a constant value. The
effective fractal dimensions are consistent with those expected
for the KPZ model at steady state, where a clear plateau is ob-
served for 1 � τ < L/2. (For d = 2, two recent works found
d f = (1 + √

5)/2 ≈ 1.618, see Ref. [11], or d f = 29/18, see
Ref. [43]. Note that our numerical results are not accurate
enough to distinguish between these fractal dimensions.) Fur-
thermore, the good collapse of the curves, similar to that
achieved for d = 1, indicated that an effective fractal dimen-
sion consistent with that for KPZ could be achieved, even
in a thin film growth, for � = τ t−1/z � 0.3. We emphasise
that the good collapses from Fig. 5 were also observed when
the KPZ exponents reported in Ref. [42] are considered [i.e.,
α = 0.390(4) and β = 0.241(1)]. Of course, the KPZ scaling
exponents in d > 1 are a source of intense research (e.g.,
Refs. [11,42,43,47]).

IV. RESULTS FOR HIGUCHI METHOD

The agreement of the effective fractal dimensions defined
by Eq. (9) with those of the KPZ class for d = 1, 2 observed
by the TPS method was also observed by the well-known
Higuchi method [48,49], but in a more limited range of scale
lengths, even at steady state.

To show these results, we first present the Higuchi method
(HM) [48,49] and our results for computing the effective frac-
tal dimension. In the following, the effective fractal dimension
numerically calculated by this method will be referred to
as dHM

feff
. The method HM can be described as follows: for

a given discrete boundary surface with height hi associated
with the ith site and lateral dimension L, one can construct a
new interface represented by hk

m, where m and k are integers
representing the denotation of an initial site and the interval
in which a new height is reached, respectively. It is possible
to define the floor function of (L − m)/k, M ≡ �(L − m)/k�.
For each new profile with height {hk

m}, an average length Lk
m

can be defined as:

Lk
m ≡ 1

k

{
L − 1

Mk

M∑
i=1

(|hm+ik − hm+(i−1)k|)
}

. (12)

The term (L − 1)/Mk corresponds to the normalization
factor for the curve lengths of the subprofiles. The length Lk

of the curve for each interval k is then estimated as:

Lk = 1

k

k∑
m=1

Lk
m. (13)

Since Lk scales as (k)−dHM
f , then:

log10 (Lk ) ∼ −dHM
f log10 (k). (14)

The prefactor −dHM
f can be calculated numerically using a

least-squares method [39]. As with the TPS method, we can
also define an effective fractal dimension dHM

feff
. In this section,

we present the results only for the RSOS model in d = 1, 2.
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FIG. 6. Results for d = 1 in (a) and (b) [d = 2 in (c) and (d)].
(Left panels) Lk as a function of k. Vertical arrows indicate, for
each time, the position τ = ξ (see Table I). (Right panels) dHM

feff
as

a function of kt−1/z. Vertical arrows indicate, for each time, the
position at ξ t−1/z. The results are presented for the RSOS model
with lateral size L = 215 (L = 210) for d = 1 (d = 2), with averages
calculated for 103 independent realizations. In (b) and (d), dashed
horizontal bottom and top lines represent the values of the KPZ
fractal dimension for d = 1, 2, using Eq. (5) [df = 2 − α], and the
value 2, respectively. The green area shows a limit for the variable
kt−1/z, where the KPZ fractal dimension could be achieved.

The results for the other KPZ models studied here lead to
similar conclusions, as explained below.

Figures 6(a) and 6(c) show Lk as a function of k, consid-
ering the RSOS model, for d = 1 and d = 2, respectively, for
different times. For d = 1 and d = 2, the results are presented
for lateral sizes L = 215 and L = 210, respectively. In both
cases, 103 independent experiments were considered. Vertical
arrows indicate, for each time, the position k = ξ .

Figures 6(c) and 6(d) show dHM
feff

as a function of kt−1/z.
Vertical arrows indicate, for each time, the position ξ t−1/z.

These results show that the scale interval in which the
Higuchi method achieves a nearly KPZ effective fractal di-
mension is narrower (i.e., kt−1/z � 0.1) than that of the TPS
method. This indicates an advantage of the scaling interval of
the TPS method over that of the Higuchi method. As for the
accuracy, our numerical results for the range of scale lengths
where the effective fractal dimensions are close to the KPZ
class show no significant difference between the two methods.
Therefore, it would be more appropriate to investigate this
issue for situations where analytical calculations are possible.
In this way, a more detailed discussion of accuracy due to
scaling corrections for the TPS method is presented below.

V. ANALYSIS FOR OTHER UNIVERSALITY CLASSES

A. Edwards-Wilkinson (EW) class

1. Scaling corrections for the measure M

The EW equation [4] corresponds to the linear counterpart
of the KPZ equation [λ = 0 in Eq. (3)]. This model belongs

to a class of Gaussian interface models in which the variance
of the Fourier amplitudes is an exact power law of the wave
number [50–52]. One could analytically derive the scaling
corrections of the measure M and compare its accuracy with
other measures commonly used to extract roughness expo-
nents. In this discussion, we restrict our analysis to d = 1.

For this purpose, we assume that the discretization has a
negligible effect for length scales of the same order of magni-
tude of the lattice parameter a, i.e., for L 	 a, as considered
in this work. The squared global roughness defined in Eq. (1)
can be written as [52]:

w2(L, t ) = AL

π

∫ 2π/a

2π/L

dq

Lqγ
, (15)

where q ≡ 2π (n/L), A is a constant, γ = 2 for EW equation,
and n = ±1, . . . ,±L/a.

For r0 = ma (m is an integer) [r0 was previously given
in Eq. (10)] as considered in lattice models, and neglecting
a correction of order (a/L)γ−1, the difference � ≡ �(r, t ) −
w2(L, t ) can be written [neglecting terms containing (a/r)p

(p � 3)] as [52]:

� ≈ A

[
−c1r2α + c2a2α + c3a2α

(a

r

)2
]
, (16)

where the coefficients cp (p = 1, 2, 3) are constants.
On the other hand, from Eqs. (6) and (7), one readily

obtains, for a given time t ,

M = 6�(0) − 8�(r) + 2�(2r). (17)

Of course, �(0) = w2. Using Eqs. (16) and (17), one gets

M ≈ KI
Mr2α + KII

M + KIII
M

(a

r

)2
, (18)

where KI
M = Ac1[8 − 2(2α+1)], KII

M = −6Ac2a2α , and KIII
M =

−(15/2)Ac3a2α . Therefore, Eq. (18) shows the scaling cor-
rections for the measure M.

To make a comparison with the corrections to other quanti-
ties, we obtain the ratios for the measure M as defined below:

RI,II,M ≡ KI
M

KII
M

= −c1[8 − 2(2α+1)]

6c2
a−2α; (19)

RI,III,M ≡ KI
M

KIII
M

= −2c1[8 − 2(2α+1)]

15c3
a−2α; (20)

and

RII,III,M ≡ KII
M

KIII
M

= 4c2

5c3
. (21)

2. Comparison with height difference correlation function

The height difference correlation function is defined as
[52,54]:

G(r, t ) ≡ 〈[h(r0 + r, t ) − h(r, t )]2〉 ≈ −2�. (22)

It is known that this quantity gives almost exact roughness ex-
ponents for r � ξ [52]. In Eq. (22), an average over different
reference positions r0, different orientations, and independent
samples are considered.
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Following the same principle as described before and using
Eq. (16), we obtain:

G(r, t ) ≈ KI
Gr2α + KII

G + KIII
G

(a

r

)2
, (23)

where KI
G = 2Ac1, KII

G = −2Ac2a2α , and KIII
M = −2Ac3a2α .

Similarly, the ratios for the measure G, as defined below, can
be obtained:

RI,II,G ≡ KI
G

KII
G

= −c1

c2
a−2α; (24)

RI,III,G ≡ KI
G

KIII
G

= −c1

c3
a−2α; (25)

and

RII,III,G ≡ KII
G

KIII
G

= c2

c3
. (26)

From Eqs. (19)–(21) and Eqs. (24)–(26), we obtain (for
d = 1 and the corresponding roughness exponent for the EW
class, α = 0.5):

RI,II,M

RI,II,G
= 2

3
; (27)

RI,III,M

RI,III,G
= 8

15
; (28)

and

RII,III,M

RII,III,G
= 4

5
. (29)

These results show that the TPS method is as accurate as de-
riving the exponents from G, at least for d = 1. We emphasise
that the TPS method has a comparatively large length interval
for such scaling for KPZ models (see Supplemental Mate-
rial [53] for results of G measurements for KPZ models in
d = 1, 2).

B. Villain-Lai-Das Sarma (VLDS) class

Next, we extend our analysis to the VLDS class. When
diffusion is the dominant mechanism during the film growth,
the space-time evolution of h(x, t ), if the incoming particle
flux is omitted, is described by the VLDS equation [also
called nonlinear molecular-beam-epitaxy (nMBE) equation]
[3,55,56]:

∂h(x, t )

∂t
= −ν4∇4h(x, t ) + λ4∇2[∇h(x, t )]2 + η(x, t ),

(30)

where ν4 and λ4 are constants and η(x, t ) is a nonconservative
Gaussian noise described by Eq. (4). The scaling exponents
β, α, and z for the VLDS equation were obtained by dynamic
renormalization group analysis (RG) as follows:

α = 4 − d

3
− ϕ(d ), (31)

z = (d + 8)/3 − 2ϕ(d ) and β = α/z. Here,

ϕ(d ) =
{

0 for one loop[56],
0.01361(2 − d/2)2 for two loops[57].

(32)

Note that there is no proof that one of them are exact, i.e.,
both solutions are within the perturbative approach of RG.
Local roughness exponents consistent with that ones where
numerically achieved for d = 1, 2 [58,59].

We have performed our analysis here for d = 2, which are
particularly relevant for applications, considering the conser-
vative restricted solid-on-solid (CRSOS) model [60,61]. This
model is connected with the nMBE universality class, since
the surface dynamic is ruled by adatom diffusion. Our results
are presented here for L = 512 (no significant differences
were found for L = 256) and considering an average over 200
different samples. In the CRSOS model, one site is randomly
selected for one adatom deposition. The height differences δh
between nearest neighbors obey the restriction δh � δHmax.
In this work, we present the results for the case δHmax = 1. If
this condition is satisfied for the randomly chosen incidence
site, the particle remains permanently stuck there. Otherwise,
it searches for the nearest position where the condition is
satisfied, which then becomes the location of deposition. In
the case of multiple options, one of them is randomly chosen.

Figure 7 shows a comparison of the results for the height
difference correlation function G(r, t ), the Higuchi method,
and the method TPS. Importantly, only the TPS method was
able to achieve an effective fractal dimension that (almost)
matches that of the VLDS. However, this was not verified in a
thin film regime. This result was limited to steady state (results
for t = 226) and to a narrow range of scale lengths compared
to the results for the KPZ class. Our results show that neither
plateaus nor values consistent with those for VLDS were
found for G(r, t ) and Lk .

These results show that the determination of the fractal
dimension for diffusion-dominated growth of thin films is
still very problematic, possibly because the VLDS interfaces
exhibit transient mounded behavior [58,59].

VI. CONCLUSION

Summarizing, in this work we analyzed the conditions for
which the true fractal dimension could be extracted in the
context of KPZ lattice models for d = 1, 2, which represent
film growth. Our results revealed that, using the TPS method,
the measure M, as defined in Eq. (7), scaled as M = t δg[�],
where δ = 2β, � ≡ τ t−1/z, and β and z are the growth and
dynamic KPZ exponents. We showed that, in the steady state,
which is not accessible experimentally, the effective fractal
dimensions were consistent with those for KPZ for d = 1, 2,
with all scale lengths up to the lateral size of the system. While
this consistency has been observed by using the TPS method,
the Higuchi method proved to be of more limited use, even in
the steady state.

Importantly, in the growth of thin films, the true fractal di-
mensions obtained by the TPS method can be observed within
a narrow range of spatial scale lengths, with the upper limit
being of the same order of magnitude as the correlation length
of the interface. If a thin film is considered for the measure-
ment of a fractal dimension, a high resolution of the surface
topography, such as that obtained from probe microscopy, is
required to determine the surface fluctuations for small-scale
lengths.
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FIG. 7. Results for d = 2 and L = 512, considering the CRSOS
model and an average over 200 different samples. (a) and (b) cor-
respond to the results for the height difference correlation function,
G(r, t ), and the effective fractal dimension dG

feff
, respectively. (c) and

(d) correspond to the results for the measure Lk (Higuchi method),
and the effective fractal dimension, dHM

feff
, respectively. (e) and (f)

correspond to the results for the measure M (TPS method), and
the effective fractal dimension, dTPS

feff
, respectively. The inset of (e)

shows the collapse obtained by replacing the variables M → Mt−δ

and τ → τ t−1/z, where z is the dynamic exponent and δ = 2β for the
VLDS class (for a two-loop RG approximation). The slope shown
in the inset has slope 2α, where α is given by Eqs. (31) and (32),
considering a two loop RG approximation (see the text). In (b), (d),
and (f), dashed horizontal bottom and top lines represent the values of
the VLDS fractal dimension for d = 2, using Eq. (5) [df = 2 − α],
and the value 2, respectively.

When using the TPS method in this limit, our results
showed that the true KPZ fractal dimensions were formally
achieved if the condition τ t−1/z � 0.3 was satisfied. This
range encompasses a very clear plateau region that include
a thin film regime for the extraction of the fractal dimension.
Such a feature has not been verified from the local roughness
measurements, which have the same scaling properties of√

G, using lattice models in order to extract the roughness

exponents (e.g., Ref. [62]). Indeed, the effective roughness
exponents found in Ref. [62] showed inflection points at the
corresponding universality class exponents, which will ulti-
mately turn into plateaus with α equal to the asymptotic one.
However, the deposition times will have to increase many
orders of magnitude and, consequently, the deposit will not
have the features of a thin structure anymore [62].

For a discussion of the limits of the inequality τ t−1/z �
0.3, let us consider the situation for d = 2. If we consider
times 10 � t � 104, the corresponding upper limits for the
scale lengths are in the range 1 � τmax � 102. Indeed, the
lattice parameter of a crystal is usually on the order of a
few Å units. Thus, if we assume a ≈ 0.3 nm, then for a film
made up to t = 104 we would have τmax ≈ 30 nm. This ex-
ample illustrates the difficulty of achieving a wide range of
scale lengths to measure an effective fractal dimension using
the methods studied in this work. Using the TPS method for
an experimental KPZ growth would certainly be interesting
to investigate the above limitations. For some recent atomic
force microscopy (AFM) experiments showing KPZ growth,
see Refs. [30,32,63,64].

Scaling corrections for the measure M and the height dif-
ference correlation function were analytically examined and
compared for the class EW in d = 1, yielding similar accu-
racy for both methods. Importantly, we extend our discussion
to a model representing diffusion-dominated growth of thin
films for d = 2. We have found that the method TPS is the
only method studied here that can theoretically achieve an
effective fractal dimension consistent with that of the VLDS
class. However, this was found at steady state and within
a narrow range of the length scale, compared to the results
for the KPZ class. These results suggest that determining the
fractal dimension for diffusion-dominated growth of thin films
is problematic, at least theoretically and with the methods
discussed here. Therefore, the investigation and development
of new methods to achieve an effective fractal dimension
consistent with that of the VLDS class in a thin film regime is
certainly desirable.
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