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Surface diffusion in narrow channels on curved domains
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We study the transport properties of diffusing particles restricted to confined regions on curved surfaces. We
relate particle mobility to the curvature of the surface where they diffuse and the constraint due to confinement.
Applying the Fick-Jacobs procedure to diffusion in curved manifolds shows that the local diffusion coefficient is
related to average geometric quantities such as constriction and tortuosity. Macroscopic experiments can record
such quantities through an average surface diffusion coefficient. We test the accuracy of our theoretical predic-
tions of the effective diffusion coefficient through finite-element numerical solutions of the Laplace-Beltrami
diffusion equation. We discuss how this work contributes to understanding the link between particle trajectories
and the mean-square displacement.

DOI: 10.1103/PhysRevE.107.034801

I. INTRODUCTION

Surface diffusion is the process of particle migration in the
adsorbed state. This process generally increases mass transfer
rates since adsorbed particles can migrate along the surface,
producing a new flux besides that of bulk transport [1–5]. It is
believed that surface diffusion is responsible for most of the
mass transport of some fluids through porous media in some
materials [6,7].

Nowadays, several experimental techniques deal with the
influence of surface diffusion in chemical reactors [8–15].
Those experiments show that temperature and fractional cov-
erage generally increase the surface diffusion coefficient.
However, in such measurements, the differences between
mass and surface fluxes are often not well defined since the
results differ depending on the model or experiment used
[6]. The problem is partly due to the lack of an appropriate
definition of an effective diffusion coefficient that can relate
the mesoscopic-level Fick diffusion laws, valid locally in
each surface region, with the experimentally measured macro-
scopic flux at the reactor ends [16,17]. This should reflect how
the irregular structure of the trajectories, due to the decrease
in available surface area (characterized, for example, by its
concavity, tortuosity, and degree of constriction) affects the
reactor-scale flow; therefore, it should capture the differences
with the transport over a perfectly flat unbounded surface
where a diffusion coefficient of D0 is measured [18–20].

In this work, we study the relationship between the local
surface diffusion coefficient D0 with a surface diffusion co-
efficient D∗ that would be obtained on a surface where the

*aldo_ledesma@xanum.uam.mx
†dleon@cua.uam.mx
‡gchacon@cua.uam.mx
§hect@xanum.uam.mx

restriction in the trajectories reduces the mean-square dis-
placement (MSD) of the adsorbed particles. To understand
the distinction between the two coefficients, we can consider
their differences in analogy to bulk transport in the reactor.
For volumetric diffusion occurring within a porous medium,
we know that the effective diffusion coefficient D∗

b (i.e., the
one that measures the relation between flux and concentration
difference at the two ends of the reactor) is reduced compared
to the molecular diffusion coefficient Db due to the reduction
of the available space. The influence of the solid matrix in
this reduction can be classified as follows: (1) the empty or
available space is reduced, (2) the particles do not travel in a
straight line but in winding paths through the pores, and (3) the
pore openings and bottlenecks change the local velocity of the
fluid. The mathematical form of these three coefficients was
recently obtained using the so-called Fick-Jacobs approach
[21] and proved efficient for describing bulk flow in exper-
iments and numerical simulations over a range of regimes
[22–24].

We will show that similar ideas of entropic constraints
applied to curved manifolds lead to similar expressions
for reducing the diffusion coefficient by redefining these
three factors in terms of surface-related geometric quantities.
Therefore, our approach allows us to model cases of surface
diffusion under confinement due to barriers or obstacles as it
occurs in many examples [25–27]. This leads to an expression
for the effective surface diffusion coefficient D∗ close to that
of Lifson-Jackson in Refs. [28,29].

For this purpose, we will determine how the spatial con-
figuration of the boundaries on a confined surface affects the
effective particle displacement along the spatial coordinate
determined by the characteristic direction of the reactor. The
Fick-Jacobs (FJ) approach allows linking the pores’ local
geometric structure with a longitudinal effective diffusion co-
efficient that explicitly incorporates the shape of the available
domain boundary [21,30,31]. This approximation has been
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used to study bulk diffusion in confined media such as pores
and channel-like regions, where one coordinate is consider-
ably larger than the other. Under this assumption, it is possible
to obtain an effective diffusion equation along just the longitu-
dinal direction, containing a diffusion coefficient DFJ(x) that
depends on the channel geometry and serves as a bridge to
link the former two diffusion coefficients [32,33]. There are
different methods to obtain this position-dependent diffusion
coefficient under various circumstances. The Kalinay-Percus
method is a rigorous projection method based on series in-
version that has been applied for symmetric and asymmetric
channels in two or three dimensions [34–37]. Through a geo-
metrical method that describes the channel boundaries from
the reference system of its centerline, it is also possible to
approximately get this kind of spatial-dependent coefficient
for channels with nonzero curvature and torsion midlines
[38–40]. Using a similar approach, we study surface diffusion
in constrained domains. Just as solid pores in the solid matrix
of a porous material constitute a constraint to mass diffusion,
we show that constrained regions can be modeled as a patch
that restricts the available surface area and, consequently, the
surface diffusion coefficient measured through MSD measure-
ments.

The organization of work is as follows. In Sec. II A, we
use Fick’s diffusion equation on parametric surfaces using the
Laplace-Beltrami operator in the diffusion equation to include
the metric of the surface. Then, to unravel the role of geomet-
rical constraints set by surface boundaries, in Sec. II B, we use
the Fick-Jacobs projection approach, which explicitly incor-
porates the patch geometry into a local diffusion coefficient.
In Sec. II C, we will then explain how local properties of sur-
face geometry can be averaged in terms of more general and
intuitive parameters commonly used to describe macroscopic
porous media, such as tortuosity and constriction of the trajec-
tories. In Sec. III, we corroborate our theoretical predictions
with numerical simulations using a finite-element approxi-
mation of the Laplace-Beltrami diffusion equation [41] for
various pores in different regular surfaces and discuss how
these approximations are reflected in macroscopic flux mea-
surements of MSD. Finally, Sec. IV is dedicated to discussing
our conclusions.

II. THEORETICAL APPROACHES TO THE DIFFUSION
ON A SURFACES

A. Surface diffusion using the Laplace-Beltrami operator

The diffusion equation for the concentration of particles on
a surface is ∂C

∂t = D0∇2
s C, where ∇2

s is the Laplace-Beltrami
operator. In this equation, D0 is the surface diffusion coeffi-
cient that measures the ratio between the local concentration
gradient and the flux along the surface, and C is the surface
concentration of particles [42]. This equation assumes no in-
teraction among particles and that the only influence of the
surface on the particles is to attach them to it. The diffusion
coefficient D0 measures the local displacements and, hence,
is independent of the boundaries or curvature of the surface;
besides, assuming low coverage, pressure, and temperature, it
can be considered constant.

The surface where diffusion occurs is parameterized with
X = (x(ξ, η), y(ξ, η), z(ξ, η)), where ξ and η are the local
coordinates. If such a surface is regular (like the spheres and
cylinders of revolution we consider in this work), then the
tangent vectors to each coordinate define the metric com-
ponents, namely gξξ = X 2

ξ = |Xξ |2, gηη = X 2
η = |Xη|2, and

gξη = gηξ = Xξ · Xη = 0. Although the regularity require-
ment for the parametrization may seem very restrictive, many
surfaces admit coordinates with zero off-diagonal metric com-
ponents. For these coordinates, the diffusion equation for the
surface concentration C(ξ, η, t ) reduces to

∂C

∂t
= D0√

gξξ gηη

{
∂

∂ξ

[√
gηη

gξξ

∂C

∂ξ

]
+ ∂

∂η

[√
gξξ

gηη

∂C

∂η

]}
, (1)

where gab are the components of the metric tensor. This
equation quantifies how the local domain metric influences
the diffusion of particles compared to the case of a planar
surface where gξξ = gηη = 1 and gξη = 0. If the metric does
not depend on one of the coordinates, say, on η, then the above
equation simplifies to

∂C

∂t
= D0

Xξ Xη

{
∂

∂ξ

[
Xη

Xξ

∂C

∂ξ

]
+ Xξ

Xη

(
∂2C

∂η2

)}
. (2)

This equation describes the evolution of the concentration
and, using appropriate boundary conditions, can be solved
on confined surfaces. However, this form of diffusion equa-
tion does not explicitly establish how the domain geometry
affects the transport. Such effects will be studied from two
different perspectives in the following subsections.

B. Confined surface diffusion using the Fick-Jacobs
approximation

Consider that the adsorbed particles do not move over an
infinite region (such as an infinite cylinder) or a closed surface
(such as a sphere or a torus) but over a subset bounded by
physical or chemical boundaries. Additionally, let us assume
that this diffusion domain consists of an elongated zone where
the direction defined by the local ξ coordinate is much longer
than the other.

We can then identify the irregular form of our do-
main as that formed by the points (ξ, η) ∈ �0 = [ξi, ξ f ] ×
[η1(ξ ), η2(ξ )], where η1(ξ ) and η2(ξ ) are the long boundaries
whose irregular shape changes with ξ , see Fig. 1(a). We will
assume that zero flux conditions in these two boundaries
confine the trajectories; therefore, there is no material entry
through the patch’s lateral walls.

In this situation, where one of the characteristic dimensions
of the patch is larger than the other, we can assume that the
concentration equilibrates at a slower rate in the longitudinal
direction ξ . Then, it is possible to average the diffusion equa-
tion in (1) in the shorter direction η using the FJ procedure
[30]. By this, we obtain an equation for the marginal surface
concentration c(ξ, t ) yielding the following:

Xξ Xη

∂c

∂t
= ∂

∂ξ

[
Dsw(ξ )

Xη

Xξ

∂

∂ξ

( c

w

)]
. (3)

The function w(ξ ) ≡ η2(ξ ) − η1(ξ ) is the local width of the
patch and y(ξ ) = [η1(ξ ) + η2(ξ )]/2 describes its midline.
These two geometrical quantities are sketched in Fig. 1(a) and
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FIG. 1. Representative patch in a sphere. (a) Parameters in the
Fick-Jacobs description of surface diffusion. (b) Parameters in the
macroscopic description of surface diffusion.

determine the influence of the confinement in the description
of the diffusion. The relation between the joint concentration
C in Eq. (2) and the marginal concentration c in (3) is

c(ξ, t ) =
∫ η2(ξ )

η1(ξ )
C(ξ, η, t )dη. (4)

When Ds in Eq. (3) is taken directly to be D0, we have
the zero-order approximation of (1) and the FJ procedure has
the advantage of including the form of the lateral boundaries
explicitly in the equation on the term w(ξ ). However, obtain-
ing higher-order approximation terms in the description of
longitudinal transport is possible using recursive methodolo-
gies. In this case, Eq. (3) is adjusted to include the geometric
features of the patch through a coordinate-dependent diffusion
coefficient FJ, Ds → DFJ

s (ξ ). For example, using the Kalinay-
Percus scheme [30,31], the Fick-Jacobs diffusion coefficient
DFJ

s in first-order approximation is

DFJ
s (ξ ) ≈ D0

{
1 + X 2

η

X 2
ξ

[
y′2(ξ ) + 1

12
w′2(ξ )

]}−1

. (5)

It accounts for how the constriction of the stripped patch,
measured by w′2(ξ ), and its tortuosity, measured by y′2(ξ ),
cause a reduction in the motion of particles along the main
direction of transport.

The solution of the FJ equation (3) using the diffusion coef-
ficient (5) has been tested against numerical simulations of the
original transport equation (2) using finite-element and Brow-
nian motion simulations in planar surfaces with successful
results [16,17,43–45]. This justifies its use as a link between
the molecular and macroscopic diffusion coefficients.

C. Effective surface diffusion coefficient in long reactors

Now consider the case where surface diffusion occurs in
a large reactor. The particles do not necessarily occupy the
entire internal surface or travel along the shortest surface
path. These entropic restrictions limit the motility of the parti-
cles by lowering the measured diffusion coefficient. However,
measuring this reduction by solving the diffusion equa-
tion for each internal patch covered by the trajectories is not

practical. It is, therefore, necessary to obtain an effective
diffusion coefficient, D∗, that measures the proportionality
between the inlet and outlet flows and the concentration dif-
ferences at both ends of the reactor. For this procedure to
be practical, this coefficient should not refer to the internal
detail of the actual trajectories used by the particles but only
consider the reduction of the diffusive flux through average
quantities. To estimate this decrease, we will compare the
reduced flow rate due to the confinement of the trajectories,
deduced from the Fick-Jacobs approach, with a macroscopic
flux that only considers the length of the reactor and the
concentration difference between its outermost boundaries.

For estimating the local flux within the patch from the Fick-
Jacobs approach, we can reformulate Eq. (3) as a function
defined on the coordinates measured from the midline, i.e.,
as a function of its arc length s:

s(ξ ) =
∫ ξ

ξi

γ (ξ ′)Xξ (ξ ′)dξ ′, (6)

where the scale factor

γ (ξ ) =
√√√√1 + X 2

η

X 2
ξ

(
dy

dξ ′

)2

, (7)

measures the change in length of the trajectories due to the
tortuosity of the midline. The interval of this coordinate starts
at the input position of the reactor at s(ξi ) = 0 and ends at its
output position at s(ξ f ) = Ls. Note that the midline coincides
with a geodesic of the surface for symmetric channels, and the
square root in the above expression becomes 1. By taking the
arc length s as the transport coordinate, Eq. (3) becomes

∂c(s, t )

∂t
= γ (s)

Xη(s)

∂

∂s

[
DFJ

s (s)w(s)Xη(s)γ (s)
∂

∂s

c(s, t )

w(s)

]
. (8)

This expression is similar to the one obtained in Ref. [38],
where the channel is built from its midline, from where the
diffusion is described. The surface effect is encoded in the
additional factor Xη, which equals 1 for the flat case. In fact,
s and ξ are proportional to each other for the specific situa-
tion of using polar geodesic coordinates [46]. In Eq. (8), the
longitudinal coordinate has been replaced by the arc length
(6) in all the related functions since we will assume that
the arc length s is a one-to-one function of ξ or, in geo-
metrical terms, that the middle line has no loops and no
returns.

To compare with the macroscopic flux, from Eq. (8) we
define the averaged longitudinal concentration as:

C(ξ, t ) ≡ c(ξ, t )

w(ξ, t )
= 1

η2(ξ ) − η1(ξ )

∫ η2(ξ )

η1(ξ )
C(ξ, η, t )dη.

(9)

This concentration has the same units as C and, as its
mathematical structure suggests, it reflects the longitudinal
concentration when variations in the transverse coordinate are
averaged. Indeed, it reduces to the joint concentration when
the latter does not depend on the transverse coordinate. By
defining the pore width as ω(s) = w(s)Xη(s), we can rewrite
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the Fick-Jacobs equation in (8) as

ω(s)

γ (s)

∂C
∂t

= ∂

∂s

[
DFJ

s (s)ω(s)γ (s)
∂C
∂s

]
. (10)

From this equation, it is clear that the stationary flow along
the midline coordinate, H (s), is achieved when

H (s) = −DFJ
s (s)ω(s)γ (s)

∂C
∂s

(11)

is constant. This flux H (s) represents the number of particles
traveling along the arc length s; in this sense, it is local (de-
pends on s). To consider the flux throughout the entire patch,
from s = 0 to s = Ls, we can follow the procedure for a flat
surface described in Ref. [21]. Consider a local concentration
difference over a distance segment of arc length �s, i.e.,
�Cs = C(s + �s) − C(s). The particle flux along this segment
can be estimated from (11) as

H (s) = −DFJ
s (ŝ)ω(ŝ)γ (ŝ)

�Cs

�s
, (12)

where ŝ is a point between s and s + �s. The inverse of the
factor that multiplies �Cs is the flow resistance due to that
segment. Therefore, considering the resistance to flow of the
entire domain as the sum of all the resistances in parallel, the
flow between both ends of the reactor, with external concen-
trations C(s = 0) = Cin and C(s = Ls) = Cout, is

H = −�C

[∫ Ls

0

ds

DFJ
s (s)ω(s)γ (s)

]−1

. (13)

Here �C = Cout − Cin is the concentration difference at both
ends of the reactor, see Fig. 1(b).

Now let us compare this flow with the one obtained by
assuming that the patch is the inside of a large reactor of
which we only know its end-to-end length, Lξ , and its total
internal surface area Atot = W Lξ . In this definition, W is a
characteristic width of the entire surface along the cross-
sectional coordinate. The confined region S0 = {X(ξ, η) ∈
R3|(ξ, η) ∈ �0} is embedded within the total surface S =
{X(ξ, η) ∈ R3|(ξ, η) ∈ �}; as we will see in the examples of
the next section, it can be the complete sphere or the cylinder
of revolution, as long as the ends of the reactor coincide, see
Fig. 1.

For the chemical reactor, where information on internal
trajectories is not known, the total steady flux of particles, H ,
is

H = −D∗W
�C

Lξ

, (14)

where �C = �C is the concentration difference between
the two ends of the pore and Lξ = ∫ ξ f

ξ0
Xξ dξ is the shortest

distance along the surface. Given expression (14) as the def-
inition of D∗, this effective diffusion coefficient measures the
proportionality between the stationary flux and the difference
in concentrations divided by the geodesic length along the
longitudinal coordinate, Lξ . Comparing Eqs. (13) and (14),
we get:

1

D∗ = W

Lξ

∫ Ls

0

ds

DFJ
s (s)ω(s)γ (s)

. (15)

Since it is not always possible to analytically integrate (6)
to find all quantities in terms of s, we rewrite (15) in terms of
the longitudinal coordinate ξ as

1

D∗ = W

Lξ

∫ ξ f

ξ0

Xξ (ξ )dξ

DFJ
s (ξ )ω(ξ )

. (16)

This equation describes the effective diffusion coefficient in
terms of macroscopic quantities (geometry of the reactor) and
internal or local properties (such as the form of the patches
or subdomains). For this reason, it is convenient to write it in
terms of geometrical averages. Let us define the average of
any function f (ξ ) along the longitudinal coordinate as 〈 f 〉 =
L−1

ξ

∫ ξ f

ξ0
f (ξ )Xξ (ξ )dξ . This average is weighted by the metric

factor that defines the arc along the longitudinal coordinate
σ (ξ ) = ∫ ξ

ξ0
Xξ (ξ ′)dξ ′.

In these terms, the reduction of the effective diffusion co-
efficient D∗ in Eq. (15) depends on the following geometrical
considerations. First, the average patch area, A = Lξ 〈ω(ξ )〉,
i.e., the actual area covered by the paths, is less than the total
area of the reactor Atot; from here, we can define the ratio ϕ =
[Lξ 〈ω(ξ )〉]/Atot � 1 as a measure of surface availability (play-
ing a similar role to porosity in the case of bulk diffusion).
Second, trajectories along the surface can follow winding
paths that are not necessarily geodesic. The ratio between the
square lengths, one along the midline over the longitudinal
coordinate (aligned with the geodesics), τ = (Ls/Lξ )2, can
be understood as a tortuosity coefficient and has the same
interpretation as for bulk transport, except that in this case,
we are dealing with surface trajectories. In terms of these two
factors, the surface diffusion coefficient in (15), after some
rearrangements, is

D∗ = ϕ

τ

[
〈ω(ξ )〉

〈
1

DFJ
s (ξ )ω(ξ )

〉]−1

. (17)

In Eq. (17), we separate the transport reduction due to
purely geometric factors (the coefficient ϕ/τ ) from the con-
tribution that depends on the local decrease in the diffusion
coefficient due to confinement DFJ

s , i.e., by the reduction in
the flow due to the irregular shape of the patch. This term in
parentheses of (17) is, therefore, a constriction factor δ and
takes the form:

1

δ
= 〈ω(ξ )〉

〈
D0

DFJ
s (ξ )ω(ξ )

〉
. (18)

As discussed in Ref. [21], unlike the factors τ and ϕ, that can
be measured by direct observation of the internal domains of
the reactor, the constriction factor is a property of the diffusive
flux. It depends on the geometry of the patch and is deduced,
in our case, from the FJ approach. This way of writing the
diffusion coefficient reduction in Eq. (18) is similar to that
used to study the diffusion within symmetric, periodic, two-
dimensional (2D) pores found in the classic references [28,29]
when Xξ → 1.

In terms of these quantities, the effective diffusion coeffi-
cient from (17) is

D∗ = D0
ϕ

τ
δ, (19)
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and can be used as an approximation in one-dimensional
diffusion equations along the arc length coordinate, where the
diffusion equation is

ω(σ )
∂Ĉ

∂t
(σ, t ) ≈ D∗ ∂2Ĉ

∂σ 2
. (20)

This equation expresses the mobility reduction along trans-
port’s main direction, σ . It follows directly from the mass
conservation considering that the surface flux of Fick’s first
law in (14) is −D∗∂Ĉ/∂σ . Here we have written the longi-
tudinal concentration as Ĉ(σ, t ) to distinguish the different
approaches. As we will see in our numerical examples, this
coefficient D∗ allows us to estimate and compare the MSD in
different bounded domains in a straightforward way.

The normalized geodesic MSD in an elongated surface
patch, where the coordinated ξ determines the long direction,
can be estimated as

MSDξ =
∫∫

A
σ 2(ξ )P(ξ, t )dA

/ ∫∫
A

P(ξ, t )dA, (21)

where dA is the differential area and P any of the longitudinal
concentrations used in this work as we will illustrate in the
following study cases.

III. ILLUSTRATIVE CASES

Our study of surface diffusion has so far covered multiple
spatial scales: the solution directly in the two-dimensional
patch on the curved surface (Sec. II A), the one-dimensional
description by projecting along the longitudinal coordinate if
the patch is long enough (Sec. II B), and, finally, an average
over the entire domain, knowing only the concentration at the
ends of the reactor (Sec. II C). In this section, we will consider
the following cases of bounded subdomains on a sphere and
on a cylinder of revolution to illustrate the relevance and
accuracy of our approach.

A. Patches on the sphere

Let us first consider a sphere of radius R, parameterized
as X = R(sin θ cos φ, sin θ sin φ, cos θ ) with (θ, φ) into � =
[0, π ] × [0, 2π ). The parametrization is regular and the met-
ric given by Xθ = R and Xφ = R sin θ depends only on θ .
Therefore, in our formalism, we can consider this coordinate
as the longitudinal one and identify ξ → θ and η → φ. We
will consider patches whose lateral edges have the form

φ j (θ ) = φ0
j + a j cos(k jθ ), (22)

with j = 1, 2 and where parameters aj and k j characterize the
channel shape and symmetry. We assume no flux across these
boundaries. The other two boundaries (the ends of the rector)
will be θi = ε and θ f = π − ε. According to Eq. (2), the
two-dimensional concentration C(θ, φ, t ) obeys the following
equation:

∂C

∂t
= D0

R2

[
1

sin θ

∂

∂θ

(
sin2 θ

∂C

∂θ

)
+ 1

sin2 θ

∂2C

∂φ2

]
, (23)

FIG. 2. Diffusion in a patch on the sphere at four different
times: t1 = tmax/240, t2 = tmax/10, t3 = tmax/4, and t4 = tmax = 12.
We solve Eq. (23) with zero flux boundary conditions on the large
boundary and a flux crossing the domain according to C(θi ) = Cin =
1 and C(θ f ) = Cout = 0. The shape of the symmetric patch uses ε =
0.2, φ0

1 = π/4, φ0
2 = π/2, a1 = −1/5 = −a2, and k1 = k2 = 2π in

(22), and the parameters of the initial condition (24) are Cn = 8.3052,
v = 0.2, θ0 = π/2, and φ0 = y(θ0 ). The diffusion coefficient and
radius of the sphere are D0 = 1 and R = 1 and are the same for
subsequent simulations.

which is solved with a pseudo-Gaussian initial condition cen-
tered on (θ, φ) = (θ0, φ0):

C(θ, φ, t ) = Cn exp

{
−R2

v2
[(θ − θ0)2 + sin2 θ0(φ − φ0)2]

}
,

(24)

where Cn is the normalization constant and v2 its variance.
Equation (23) is solved directly on the sphere using finite-
element method (FEM) simulations that we detail at the end
of the section. To make this initial condition compatible with
the boundary conditions, to (24) we add a Gaussian centered
at θi of height Ci. The results are represented in Fig. 2 at
four different times, where for the discretization time step we
considered �t = 0.01, and for the spatial discretization we
used a triangular mesh with 10 000 elements, 5151 nodes,
and h = 5.9523 × 10−4 as the maximum diameter of the
elements.

These two-dimensional results are compared with those for
the projected concentration obtained from the Fick-Jacobs ap-
proach. Accordingly, from Eq. (3), the marginal concentration
obeys

R2 sin θ
∂c

∂t
= ∂

∂θ

[
DFJ

sphw(θ ) sin θ
∂

∂θ

( c

w

)]
. (25)

To solve this equation, the values of the coefficients w(θ ) =
φ2(θ ) − φ1(θ ) and y(θ ) = [φ1(θ ) + φ2(θ )]/2 are readily
computed from (22), and the Fick-Jacobs surface diffusion
coefficients in (5) is

DFJ
sph(θ ) = D0

{
1 + sin2 θ

[
y′2(θ ) + 1

12w′2(θ )
]}−1

. (26)

Equation (25) is solved for c with the initial and boundary
conditions derived from those for C via the integration on
Eq. (4), c(θ, t ) = ∫ φ2

φ1
C(θ, φ, t )dφ. Once Eq. (25) is solved,

we calculate the average concentration from Eq. (9) as C =
c/w to compare with the two-dimensional results.

The concentration in a symmetric patch obtained from both
schemes is compared in Fig. 3 (left) at four different times.
The figure corroborates that the Fick-Jacobs scheme (dashed
lines), based on average along the transverse direction, cor-
rectly encodes the flow reduction in the patch for the studied
cases compared to the two-dimensional numerical solution
(solid lines). We can indeed quantify this claim by estimating
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FIG. 3. Comparison of the numerical 2D solution with the FJ
scheme and the effective medium approach. Left: Comparison be-
tween the averaged concentration derived from the direct solution
of the 2D problem in Eq. (23) (solid line), the obtained from the
FJ procedure by solving (25) and computing c/w (dashed line), and
that of the effective medium approach by solving Eq. (31) (dotted
line). The same four times of Fig. 2 are shown in blue, green, orange,
and red, respectively. Right: Geodesic MSD derived from the three
approaches using Eq. (32). Inset: MSD at short times showing a small
slope preceding the plateau.

the major relative error between the FJ solution and the FEM
one, computed with L∞ norm. The largest percentage error is
6.5% at short times (t = 0.05) and decreases as the system
evolve to 0.7% at tmax. These numerical results are significant
as they confirm the adequacy of our hypothesis C ≈ C, used
to estimate the macroscopic flow.

In the last stage, we average the resistance to flow in the
longitudinal direction along the midline of the patch. For
the sphere, the coordinate describing the length along this
coordinate, from Eq. (6), is

s(θ ) = R
∫ θ

θi

dθ ′
√

1 + sin2(θ ′)y′2(θ ′), (27)

which reduces to s(θ ) = R(θ − θi ) for symmetric patches, i.e.,
the geodesic distance along parallels. The width of the pore
is ω(θ ) = R sin(θ )w(θ ), which is the geodesic distance along
meridians.

The available area ratio ϕ is

ϕ = 1

W L

∫ θ f

θi

R2 sin(θ )w(θ )dθ = 1

Atot

[∫ θ f

θi

∫ φ2(θ )

φ1(θ )
dA

]
,

(28)

where dA = R2 sin(θ )dθdφ is the differential of surface area.
In this equation, it is clear that ϕ represents the ratio among the
patch area (the term inside square brackets) and the total area
of the spherical reactor Atot = W Lθ . The tortuosity coefficient
is

τ =
[

s(θ f )

Lθ

]2

=
[

1

θ f − θi

∫ θ f

θi

dθ ′
√

1 + sin2(θ ′)y′2(θ ′)

]2

,

(29)

which represents how the trajectories deviate from the par-
allels, with minimum geodesic distance between ends Lθ =

R(θ f − θi ). The constriction factor δ from Eq. (18) is given by

1

δ
= 1

(θ f − θi )2

∫ θ f

θi

sin(θ )w(θ )dθ ·
∫ θ f

θi

D0 dθ

DFJ
sph(θ ) sin θ w(θ )

.

(30)

From the three previous expressions, it is possible to obtain
the effective diffusion coefficient in (19). By this means, the
diffusion equation in the sphere along the longitudinal coordi-
nate σ = Rθ is approximated by Eq. (20) as follows:

sin(θ )w(θ )
∂Ĉ

∂t
(θ, t ) ≈ D∗

R2

∂2Ĉ

∂θ2
, (31)

and can be solved in the domain σ ∈ [0, Lθ ] with the same ini-
tial and boundary conditions used for C. The results are plotted
in Fig. 3 (dotted line in the left panel) and compared with
the two-dimensional solution (solid line) and the FJ scheme
(dashed line) for the symmetric channel. As can be seen,
the Eq. (31) closely reproduces the results of the numerical
simulations for the mean concentration. For the nonstationary
case, this equation contains the minimum shape and curvature
factors for the description in the term sin(θ )w(θ ). More im-
portantly, for large reactors in the steady state, it establishes
that the average flux in the reactor is −D∗�C/�s, where the
effective diffusion coefficient only depends on averaged quan-
tities: constriction, tortuosity, and available surface factors.

Figure 4 shows three channels on the sphere with differ-
ent averaged properties. The diffusion coefficients DFJ

sph are
different in each case. Moreover, although qualitatively, the
concentrations and MSD are similar for each channel, slight
differences in their evolution toward the steady state for dif-
ferent values of the tortuosity, constriction, and available area
can be appreciated. However, when calculating the relative
percentage errors for long times, the tortuous channel has
the highest error of around 3%, and the straight channel has
the slightest error of around 0.01%, indicating an excellent
estimation.

As shown in this section, our approach allows us to es-
timate approximate solutions for the average concentration
under different detail degrees. In all the cases, the concen-
tration along the longitudinal direction is approximately the
same, and the normalized geodesic MSD in (21) for the sphere
is expected to be the same:

MSDθ (t ) =
∫ θ f

θi

(Rθ )2P sin(θ )w dθ

/ ∫ θ f

θi

P sin(θ )w dθ.

(32)

In this equation, the concentration can be deduced from any
of our approaches by choosing P = {C, c/w, Ĉ}. To test this
idea, in Fig. 3 (right), we compare the results for the MSD
when using (1) the two-dimensional simulations for C in (23)
and (9), (2) the Fick-Jacobs approach for c/w with (25), and
(3) the macroscopic equation for Ĉ in (31), showing a general
concordance of the geodesic MSD in all cases. Remarkably,
the behavior of the FJ projection and the full solution are
very comparable, and although the averaged approximation
deviates a bit at short times, for longer times it also reaches
the plateau. However, from the three approaches something
interesting can be seen, namely there is a transient regime

034801-6



SURFACE DIFFUSION IN NARROW CHANNELS ON … PHYSICAL REVIEW E 107, 034801 (2023)

FIG. 4. Diffusion and MSD for three different patches on the sphere. Upper row: We plot the FJ diffusion coefficient and each patch on the
sphere in the inset. On the left is an asymmetrical channel, in the center a straight symmetrical channel, and on the right a symmetrical channel
with periodical boundaries. Parameters of Eq. (22) are the same that for Fig. 2 in last plot, and we change to a2 = a1 = 1/5, h = 4.3079 × 104

in the first plot and (c) a1 = a2 = 0, h = 4.3063 × 104 for the central figure. Lower row: We plot the longitudinal MSD defined in Eq. (32) for
each patch using two-dimensional simulations (solid line), FJ approach (dashed line) and effective model (dotted line). In the inset we plot the
averaged concentration for four different times. All other parameters of these simulations are the same as in Fig. 3.

just before the beginning of the plateau that can be fitted
to a straight line with a reduced but nonzero slope. This is
precisely the kind of behavior exhibited at long times for very
long narrow channels with the Fick-Jacobs projection.

B. Patches on cylinders

The sphere provides a simple archetypical system for
testing our ideas and applies primarily to closed membrane
surfaces. However, transport in most reactors of practical in-
terest occurs along interstitial pathways along a cylinder, as in
zeolites.

Let us now consider the surface of a cylinder of variable
radius R(z) parameterized as X = (R(z) cos φ, R(z) sin φ, z).
The entire surface of revolution is given by (z, φ) ∈ � =
[0, L] × [0, 2π ], where L is the height of the cylinder. The
parametrization is regular and is defined by the factors Xz =√

1 + R′2(z) and Xφ = R(z) that depend only on the vertical
coordinate z. Therefore, we can consider in our formalism
ξ → z, and η → φ. This implies that the longitudinal paths
can be taken along z with the long edges defined as in (22)
for the angular coordinate. The top and bottom borders are
defined by zi = 0 and z f = L. In this geometry, the local
surface diffusion coefficient in Eq. (5) is as follows:

DFJ
cyl(z) = D0

{
1 +

[
R2(z)

1 + R′2(z)

][
y′2(z) + 1

12
w′2(z)

]}
.

(33)

The complete derivation to obtain all the diffusion equa-
tions and the different geometric factors to determine the
diffusion in a patch in a cylinder are done similarly as for the
sphere and therefore are omitted from this presentation. We
simply establish that the geodesic MSD measured along the
vertical in a cylinder, from Eq. (21), is given by

MSDz =
∫∫

A
σ 2(z)P(z, t )dA

/ ∫∫
A

P(z, t )dA, (34)

where we have used that the longitudinal arc length is

σ (z) =
∫ z

0

√
1 + R′2(ẑ)dẑ, (35)

and the differential area of the cylinder is dA =
R(z)

√
1 + R′2dzdφ = R(z)w(z)

√
1 + R′2dz.

Figure 5 shows our simulations’ results for three different
patches; to get those results we used �t = 0.01 for the time,
and for the spatial discretization, as in the sphere case, we used
a triangular mesh with 10 000 elements, 5151 nodes, but with
h = 0.0018 for channels (a) and (b) and h = 0.0027 for the
case (c). As we can see, there is general agreement in all cases
for the spatiotemporal concentration profiles and the geodesic
MSD. The approximation for the effective medium scheme is
even better than for spheres since the patches in a cylinder are
larger, improving the approximation. In this case, the relative
error for FJ at large times was 4% for the tortuous channel and
0.02% for the straight one, yielding excellent results again.
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FIG. 5. Diffusion over three patches on a cylinder. The upper row shows the FJ diffusion coefficient in each case and the corresponding
patch on the cylinder surface. Patch pathways generated by Eq. (22) using (a) a1 = −a2 = 1/5, (b) a1 = a2 = 1/5, and (c) a1 = a2 = 0.
In all cases, we take k1 = k2 = π , φ0

1 = π/2 and φ0
1 = 3π/2, D0 = 1, and tmax = 25. The variable radius of the cylinder is R(z) =

1 − (1/4) cos(6πz/L) where L = 9.

Finally, we use the backward Euler scheme for the dis-
cretization in time and a linear Lagrangian finite-element
method for the solution of the Laplace-Beltrami operator in
space, to obtain the numerical solution. This approximation
is obtained directly by employing Cartesian coordinates in-
stead of the given parametrization. From a numerical and
computational point of view, it is convenient to discretize
the Laplace-Beltrami operator after projecting the gradient to
the corresponding target direction on the surface. Also, this
is done as the corresponding discretization of the Laplace-
Beltrami operator yields a discrete time-dependent linear
system (first-order linear ordinary differential equation). This
approach is also very convenient when there is no explicit
parametrization of the surface. For the details about this im-
plementation we refer to Ref. [41].

IV. SUMMARY AND DISCUSSION

In this work, we present a proposal to study diffusion in
finite subdomains on curved surfaces. This proposal is moti-
vated by the need for an adequate definition of the diffusion
coefficient that can be experimentally measured for surface
diffusion in chemical reactors, where the individual trajecto-
ries are not of interest but quantities reflecting the average
flow rate. Since the space available in the reactor is narrow
due to the confined trajectories of the adsorbed particles, it
is possible to use entropic and reduction arguments to find
two different coefficients that reflect different averages. First,

we compute a position-dependent diffusion coefficient, the
so-called Fick-Jacobs coefficient, which contains information
about the surface’s variations and the boundary’s internal
geometry. Then, from this one, it was possible to obtain an
effective diffusion coefficient D∗ in terms of quantities com-
monly used in the description of pores, such as concavity,
tortuosity, and degree of constriction [47]. The main result of
this paper is precisely this effective diffusion coefficient that
considers the curvature of the surface, the shape of the phys-
ical boundaries that restrict motion, and the way the diffusive
flux averages through constrictions and tortuosities of narrow
paths over the main transport direction. This coefficient allows
using a 1D diffusion equation along an effective longitudinal
coordinate, whose solution closely approximates the numeri-
cally calculated surface diffusion with constrictions. Indeed,
when calculating the relative percentage errors at long times,
it was found that the highest value occurs in tortuous channels
and the smallest in straight ones, ranging from 4.0% to 0.01%
on both surfaces. Remarkably, the coefficient in Eq. (17) has
a similar form to the effective diffusion coefficient obtained
by Lifson-Jackson [28], and Festa-d’Agliano [29] and reduces
to it for symmetric patches on flat surfaces. However, our
deduction is more general and does not require the periodicity
constraint on the channel walls as in those traditional schemes.

We have also shown that the Fick-Jacobs scheme and the
effective mean approach allow us to predict the geodesic
MSD successfully. It is known, from Brownian dynamics
simulations [48,49], that the mean-square angular displace-
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TABLE I. Summary of the data of the geometric coefficients involved in the reduction of the diffusion
coefficient for the patches studied in this work.

ment for free diffusion over the whole sphere starts linearly
in time, like free diffusion in the plane, then has a transient
and finally has a plateau for long times. Similar behavior for
the MSD, for both short and long times, is observed in our
simulations. However, in our case, just before the plateau,
a region with a nonzero slope but less than the initial one
appears. This behavior is similar to a narrow channel and
indicates an exploration process of the particles within the
confinement, [44,45,50].

It is worth stressing that, given the averaged nature of this
coefficient, its relation to the system squared length provides a
characteristic rate of the surface diffusion process that differs
for each patch shape, as shown in Table I, where the diffusion
coefficients for the tortuosity, constriction, and available area
values of the examples studied in this work are presented.
Therefore, for systems involving adsorption, heterogeneous
catalysis, or bulk diffusion, this D∗ coefficient allows compar-
ison with the rates of the other processes and, consequently,
measures the actual influence of surface diffusion in each
reactor [6]. The relevance of the effective diffusion coefficient
in finding the concentration profiles and the MSD is not re-
stricted to constant external flux conditions, such as those used
in this work. As demonstrated in both Ref. [21] for flat sur-
faces and in our numerical experiments for curved domains,
the D∗ coefficient is also suitable for periodic or zero-flux
conditions as long as the patch is large enough. As argued
in Ref. [21], this is because the flow resistance was derived
for infinitesimal intervals. Therefore, the approximation is
valid even for slight concentration differences, which makes
the approach valid for both equilibrium and nonequilibrium
conditions.

We also observe that, as for flat surfaces, the diffusion
coefficient of the Fick-Jacobs approximation used in this work
in Eq. (5) can be improved. To do so, higher-order terms
in the width-to-length aspect ratio must be included in the
expansion for DFJ

s , possibly by improving the fits to the data
[37]. However, these improvements do not affect the theory
we have constructed for D∗ and should be considered in future
works.

A potential application of the findings obtained in this
study is to directly quantify mass transport in various experi-
ments where surface diffusion is recorded through an effective
diffusion coefficient that implicitly accounts for surface shape,
and size [51,52]. Moreover, as already done for planar sur-
faces [53–55], the model can be immediately generalized

to consider ionic transport, also present in experiments and
models of electrodiffusion in confined curved domains.

Additionally, the surface diffusion process is intrinsically
linked to adsorption. For more general scenarios, when bulk
dynamics is considered, even anomalous behavior can be ob-
tained for surface motion [56]. However, as we said before,
in our approximation, the role of the surface is only to re-
strict the trajectories to a diffusive movement in the space
defined by it, which means that the particles are already ad-
sorbed on the surface and that the strength of this binding
is mainly reflected in their surface diffusion coefficient, Ds.
This coefficient determines the kind of adsorption between
the particle and surface through its motility in the mean-field
approximation. As a result, we have been able to find the
ratio between the coefficient measured on an irregular surface
D∗ and that of a flat surface Ds0. However, future work will
allow us to incorporate surface diffusion with other processes,
such as those occurring in heterogeneous catalysis involving
surface adsorption or desorption [57]. For this purpose, the
availability and chemical affinity between adsorbed particles
with concentration Cs and bulk particles with concentration
Cb are coupled, following Refs. [16,17]. Then, it was shown
that the decrease in the surface diffusion coefficient due to the
kind of adsorption could be quantified through the parameter
λ = ∂Cs/∂Cb that measures the exchange rate between bulk
and surface particles. In first approximation, the reduction is
given by Ds

λ
1+λ

, which means that if the adsorption is weak
(λ → 0), the effective superficial diffusion coefficient tends
to zero since there are no adsorbed particles. On the other
hand, if the adsorption is efficient (λ � 1), then the effective
diffusion increases to a saturation value Ds, limited since the
available slots for adsorption on the surface are finite.

Further extensions may be considered. For instance, parti-
cle motion is usually driven by an external potential producing
a force along the channel’s axis in channel transport pro-
cesses. In this case, the free energy contains the external
and entropic potentials, so the average particle current ex-
plicitly contains the external force. Indeed, the ratio between
the average particle current and the applied force, known as
nonlinear mobility, is one of the fundamental quantities in
these systems [58,59]. For periodic potentials and channels,
the mobility depends on the longitudinal variable, the ratio
between the potential energy and the thermal energy, and the
shape of the channel through the position-dependent diffu-
sion coefficient [58,59]. For the systems studied in this paper
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involving tortuous channels on curved surfaces, the mobil-
ity will be modified to consider beyond periodic boundaries
when using our approach, similar to what happens with the
Lifson-Jackson coefficient. This calculation will be discussed
elsewhere.

Accordingly, the present study’s results, especially the ef-
fective diffusion coefficient D∗, provide a valuable tool for
studying surface diffusion in tortuous and curved domains.
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