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Bent-Core banana-shaped molecules exhibit tilted polar smectic phases with macroscopically chiral layer
order even though the constituent molecules are achiral in nature. Here, we show that the excluded volume
interactions between the bent-core molecules account for this spontaneous breaking of chiral symmetry in the
layer. We have numerically computed excluded volume between two rigid bent-core molecules in a layer using
two types of model structures of them and explored the different possible symmetries of the layer that are favored
by the excluded volume effect. For both model structures of the molecule, the C2 symmetric layer structure is
favored for most values of tilt and bending angle. However, the Cs and C1 point symmetries of the layer are also
possible for one of the model structures of the molecules. We have also developed a coupled XY -Ising model
and performed Monte Carlo simulation to explain the statistical origin of spontaneous chiral symmetry breaking
in this system. The coupled XY -Ising model accounts for the experimentally observed phase transitions as a
function of temperature and electric field.
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I. INTRODUCTION

Chirality is associated with many natural phenomena
occurring in microscopic as well as in macroscopic sys-
tems. According to Lord Kelvin, an object is chiral when
it is not superimposable with its mirror image. Chiral-
ity is manifested in various liquid crystalline phases such
as cholesteric phase, blue phases, chiral smectic phases,
twist-bend nematic phases, etc. [1,2]. In general, a macro-
scopic phase shows chirality when its constituent molecules
are chiral. But, achiral molecules can sometimes exhibit
macroscopic chiral phases leading to spontaneous break-
ing of chiral symmetry. The bent-core (BC) banana-shaped
molecules are now known to exhibit such chiral symmetry
breaking in some of their liquid crystalline phases [3–5].
The underlying microscopic molecular mechanism respon-
sible for this chiral symmetry breaking is still not well
understood.

The BC molecule consists of two rigid rodlike arms joined
end to end at an angle of about 120 degrees between them. In
addition, flexible aliphatic chains are usually attached at both
the free ends of the molecule. The line joining the ends of the
molecule is defined as the long axis. Because of the bent shape
of the molecule, it has a transverse shape polarity giving rise to
the C2v point symmetry and the BC banana-shaped molecules
are achiral in nature. In their tilted polar smectic phases, the
BC molecules arrange themselves in fluid layers and their
long axes on average tilted with respect to the layer normal
in a given layer as shown in Fig. 1. The average orientation
direction of the long axis l̂ of the molecules in a layer is
denoted by the apolar unit vector n̂ known as the director. In
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addition, the transverse bending direction p̂ of the molecules
also align on average giving the polar order �P in the the
layer. The chirality of a layer arises depending on the mutual
orientations of three directions namely the layer normal (k̂),
the director (n̂), and the polar order ( �P). The chirality of a layer
can be defined in terms of the sign of the vector triple product
(k̂ · n̂)[(k̂ × n̂) · �P] consistent with the apolar nature of both
the director and the layer normal. The chirality of a layer can
then be quantified by cos ψ = P̂ · (k̂ × n̂)/ sin θ , where θ and
ψ are the tilt angle and roll angle of the molecules in the layer,
respectively. The roll angle ψ defines the rotation of the tilted
BC molecule about its long axis. When the roll angle ψ is
equal to 0 or π , the polar axis P̂, projection of n̂ on the layer
plane and layer normal are mutually orthogonal describing a
right or left handed coordinate system, respectively. There is
only a twofold rotation axis parallel to the polar axis P̂ with
no mirror plane symmetry giving rise to the chiral C2 point
symmetry of a layer. When ψ is equal to π/2 or 3π/2, the
unit vectors P̂, n̂, and k̂ all lie in the same plane which itself
becomes a mirror plane symmetry of the layer. So, the layer
has an achiral Cs point symmetry. For intermediate values of
ψ , the layer has the lowest C1 point symmetry giving rise to
the most general chiral tilted polar smectic (SmCPG) order in
a layer.

The most commonly observed tilted polar smectic (SmCP)
phase of these BC molecules is the B2 phase [3,6–10]. In the
B2 phase, the roll angle ψ is equal to 0 or π and the layer is
chiral with C2 symmetry. The stacking of these chiral SmCP
layers with synclinic or anticlinic tilt order and ferro or anti-
ferro polar order between successive layers has been observed
in the B2 phase. Depending on the relative orientations of
tilt and polar directions in successive layers, there are four
possible configurations of B2 phase with same free energy and
all of them generally found to coexist in this phase. Recently,
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some colloidal systems have also been found to exhibit these
kind of phases [11].

The possibility of most general smectic (SmCG) phase
with Ci point symmetric of the layers was first predicted by
de Gennes in the first edition of his classic book [1]. Brand
et al. theoretically discussed properties and applications of
the general SmCPG phase [12]. The experimental evidence
of the existence of this general SmCPG phase has also been
reported [13–18]. Assuming a simple triangular shape of the
BC molecules, Bailey et al. calculated the excluded volume
between the molecules and predicted undulated layer structure
with local C1 symmetry [19]. The smectic phase denoted
as SmT P phase with Cs point symmetry of the layers has
been reported experimentally [20,21], where T denotes the
‘Tipping’ angle analogous to the ‘Leaning’ angle of the BC
molecules in the layer.

To better understand the complex phase behavior of BC
molecules, a large number of studies using phenomenologi-
cal theory, molecular theory, molecular dynamics, and Monte
Carlo (MC) simulations have been performed [11,22–28].
But few of these studies addressed or resolved the micro-
scopic origin of chiral symmetry breaking in the layer. Roy
et al. has shown using a phenomenological theory that BC
molecules can exhibit layer structure with C2, C1, and Cs point
symmetries depending upon phenomenological constants and
discussed the stability of polar smectic A (SmAP) phase using
uniaxial nematic interaction between the rodlike arms of the
BC molecules [22]. But they did not consider the molecular
interactions which could lead to tilted polar smectic phases.
Xu et al. addressed the excluded volume effect as the pos-
sible reason for the origin of chiral behavior in the bent-core
molecular systems using Monte Carlo simulation [24]. In their
simulation, a BC molecule was made of seven spherical beads
and the soft repulsive Weeks-Chandler-Andersen (WCA) in-
teraction potential between two spherical beads of different
molecules was used. They did not observe any tilted polar
smectic phase but found chiral crystal phases. So, the role
of excluded volume effect in the chiral symmetry breaking
of a tilted polar smectic layer was not clear. Lansac et al.
considered the BC molecule consisting of two connected
spherocylinders and performed MC simulation taking hard
body interaction between two BC molecules. But, they did
not find any tilted smectic phase. Emelyanenko et al. have
shown the stability of SmCP layer by considering steric, dis-
persion and dipole-dipole interactions between two molecules
made of interconnected rigid rods [28]. They did not find C1

symmetric SmCPG chiral layer. Yang et al. have shown the
stability of SmCP phase using Brownian dynamics simula-
tion. The molecular model and interaction potential employed
in their simulation are similar to Xu et al.[24]. So, it is clear
that the molecular origin of the spontaneous breaking of chiral
symmetry has not been resolved.

We consider here the role of hard body interaction or
excluded volume effects on the chiral symmetry breaking in
a layer of the tilted polar smectic phase of BC molecules.
We directly compute the excluded volume between two BC
molecules in a tilted smectic layer and our approach is dif-
ferent from previous molecular dynamics and Monte Carlo
simulation studies. It is well known that the excluded volume
effect plays an important role in phase ordering and properties

FIG. 1. Schematic representation of the orientation of a BC
molecule in a perfectly ordered tilted polar smectic layer where
θ , φ and ψ are the Euler angles. The layer normal k̂ is parallel
to z axis and the XY plane is the layer plane. The double-headed
arrow represents the projection of the long axis on the layer plane.
For a perfectly ordered layer, the director n̂ and polar order �P are
parallel to l̂ and p̂ of the molecules, respectively. The unit vector
ξ̂ = (k̂ · l̂ )(k̂ × l̂ )/|(k̂ · l̂ )(k̂ × l̂ )| represents the tilt direction of a
molecule which is perpendicular to the (l̂, k̂) plane.

of soft matter systems such as van der Waals correction to
Ideal gas law, Onsager’s theory of nematic to isotropic tran-
sition [29]. Two types of models for the BC molecules are
considered in our numerical calculation of excluded volume
between two molecules in a layer. We show that the excluded
volume effect favours the chiral symmetry breaking in the
SmCP layer of BC molecules. We have also constructed a
coupled XY -Ising model to describe the statistical origin of
chiral symmetry breaking. Monte Carlo simulation studies
using our XY -Ising model were performed to find the possible
phases with temperature as well as under applied electric field.

II. MODEL

For the computation of the excluded volume, we have con-
sidered two types of structural models for the BC molecules.
In one model, hard spherical beads are joined together to form
the BC molecule as shown in Fig. 2(a). The molecular param-
eters in this model are bending angle β, radius of the spherical
beads R, and the total number of beads N . In the other model,
the BC molecule consists of two spherocylindrical arms of
radius R and length (N − 1)R joined end to end with an angle
β between their long axes as shown in Fig. 2(b).

The analytical calculation of excluded volume even for
simple rodlike molecules is a formidable task. Onsagar first
derived an approximate analytical expression for the excluded
volume between hard spherocylindrical rods in the limit of
large length to diameter ratio of the rods. Based on these
results, he accounted for the isotropic to nematic transition
for this hard rod system at sufficiently high concentrations
[29]. We have used numerical tools to compute the excluded
volume of bent-core molecules in a layer of their tilted polar
smectic phase. To reduce the complexity of the problem, we
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FIG. 2. The model structures (a) bead model (b) hard sphero-
cylinder (HSC) model of a BC molecule used in the computation
of excluded volume. The unit vectors l̂, p̂, and m̂ are body fixed axes.
The unit vectors û and d̂ represent the orientation of upper and lower
arms, respectively.

assume that all molecules in a layer have their centers in the
plane of the layer and also they have the same orientation. A
molecular frame (l̂, p̂, m̂) as shown in Fig. 2 can be used to
specify the orientation of a BC molecule in a layer. Then the
orientation of a BC molecule with respect to the layer frame
coordinate system is represented by the Euler angles (tilt angle
θ , azimuthal angle φ, roll angle ψ) [30] as shown in Fig. 1.

We compute the excluded volume between the molecules
by finding the closest approach of a molecule around a fixed
molecule in a layer. Consider two BC molecules with the bead
type structure which are initially juxtaposed with each other
in a layer with a given orientation. Now keeping one of the
molecules fixed, the other molecule is moved on the layer
plane in a particular direction with an azimuthal angle α with-
out changing its orientation. At each position of the second
molecule, the distance between each bead of one molecule is
calculated with respect to the beads of the other molecule. The
second molecule is moved in that direction until the minimum
of these interbead distances exceeds 2R. This position �rα gives
the vectorial distance of the closest approach of the second
molecule with respect to the first molecule in that direction α.
At this position, the coordinates of all the beads of the second
molecule are stored for this particular value of α. Then by
repeating the above procedure by varying α from 0 to 2π , a
three-dimensional excluded volume region around the fixed
molecule can be constructed. This excluded volume region
consists of two parts divided by the midplane of the layer.

The infinitesimal excluded area between the direction α

and α + δα is given by δ �Aex = 1
2 �rα × �rα+δα . The area vector

direction is parallel to the layer normal or z axis. Then the
infinitesimal excluded volume of the upper half part between
α and α + δα is N−1

2 R(û · �rα × �rα+δα ), where the unit vector û
denotes the orientation of the upper arms of the BC molecules
in the layer. Similarly, the infinitesimal excluded volume of
the lower half part is given by N−1

2 R(−d̂ · �rα × �rα+δα ), where
the unit vector d̂ denotes the orientation of the lower arms of
the BC molecules in the layer. So, the total infinitesimal ex-
cluded volume between the direction α and α + δα is δVex =
N−1

2 R(û − d̂ ) · (�rα × �rα+δα ). The total excluded volume Vex is
obtained by integrating δVex over the angle α from 0 to 2π .

We numerically compute the excluded volume by discretiz-
ing α between 0 to 2π into M small intervals. Then summing
over these discrete values of α, the total excluded volume can
be written as

Vex = 2(N − 1)RAex sin
β

2
cos θ,

where the magnitude of the total excluded area is given by

Aex = 1

2

M∑
i=1

|�ri × �ri+1|

and �ri is the closest approach of the second molecule in the
αi-th direction. A dimensionless form of the excluded volume
can be obtained by dividing the computed excluded volume by
the volume 4πR3/3. Henceforth, this dimensionless excluded
volume is denoted as Vex in the rest of the article. The results
presented in this article have been computed using N = 9. For
other values of N , the excluded volume just scales with N
without changing the conclusions.

Similarly, the excluded volume between two BC molecules
with spherocylindrical arms can be calculated. The algorithms
as discussed in the articles [31,32] for finding the shortest
distance between two straight rods are utilised to find the clos-
est approach between two molecules. The consistency of our
algorithm was checked by computing the excluded volume for
β = π which can be calculated analytically.

We have also computed the excluded volume for nontilted
molecules in the layer with θ = 0. In this case, the azimuthal
angle φ can be chosen arbitrarily as φ = 0. We calculate the
excluded volume between two molecules for different relative
orientations of their polar directions p̂. From the symmetry
of the problem, the excluded volume depends only on the
difference in the azimuthal angles δψ between the polar direc-
tions. Without any loss of generality, we fixed ψ = 0 for the
first molecule and computed the excluded volume for different
values of ψ of the second molecule between 0 to 2π using the
algorithm discussed above.

The excluded volume between the molecules makes a
purely entropic contribution to the free energy. The free en-
ergy density is proportional to the excluded volume as can be
shown analytically for a dilute hard sphere system. So, the
molecular configuration associated with the minimum Vex is
favored energetically.

III. RESULTS AND DISCUSSIONS

In the SmA and SmAP phase, the long axes of the BC
molecules are on average parallel to the layer normal. In the
SmA phase, the layers do not possess any polarization whereas
in the SmAP phase, the layers have an in-plane polar order.
The excluded volume of two such nontilted BC molecules in
a smectic layer is computed for various relative orientations
δψ between their bending directions as shown in Fig. 3. Ex-
cluded volume is minimum for δψ = 0◦ or 360◦ and shows
a symmetric maximum at 180◦ as expected from the pack-
ing considerations. The excluded volume interaction therefore
tends to align the bending directions of the BC banana-shaped
molecules in the nontilted smectic layers giving rise to the po-
lar SmAP order. This result is similar to that found assuming
dispersion interaction between the BC molecules [28]. The
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FIG. 3. The variation of the excluded volume Vex with the relative
azimuthal angle δψ between two molecules for an orthogonal smec-
tic layer. Inset shows the difference in Vex corresponding to δψ = π

and 0 for different values of β.

inset of Fig. 3 depicts the variation of the excluded volume
difference between the parallel and antiparallel configuration
of the bending direction of the molecules as a function of
the bending angle β. This excluded volume difference 
Vex

can be associated with the free energy barrier between the
parallel and antiparallel configuration of the bending direction
of the molecules. Hence, it contributes to the stability of the
SmA or SmAP phases. For nearly rodlike molecules with
β ∼ 180◦, the barrier height is quite low stabilising the SmA
phase as expected. These results agree with the observation of
SmAP and SmA phases for lower and higher bending angles,
respectively, in the MC simulation of HSC model of the BC
molecules [26]. The 
Vex is always higher for the bead model
favoring the SmAP phase compared to the HSC model of the
BC molecules.

In the tilted polar smectic phase, the long axes of the BC
molecules in a layer are tilted with respect to the layer nor-
mal. The excluded volume between the molecules in a layer
depends on the tilt angle θ , roll angle ψ , and bending angle
β of the molecules. The excluded volume as a function of ψ

varies with a periodicity of π and is symmetric about π/2 as
expected from the symmetry of the system. Figure 4 shows
the variation of excluded volume with ψ for different fixed
values of θ and β assuming the HSC model structure of the
BC molecules. The excluded volume is minimum at ψ = 0
and π indicating that it favours chiral symmetry breaking with
the C2 point symmetry of the layer. The profile of the excluded
volume as a function of ψ remains qualitatively same for dif-
ferent values of θ and β. However, for bead model of the BC
molecule, the variation of excluded volume with ψ strongly
depends on θ and β of the molecules as shown in Fig. 5.
The profile of excluded volume with ψ can be classified into
four types based on the position of extrema at different values
of ψ . In the first type, the excluded volume remains almost
constant for different values of ψ as shown in plot I. Hence,
the layers with C1, C2, and Cs symmetries have the same ex-
cluded volume and are equally probable. This behavior occurs

FIG. 4. The variation of excluded volume Vex as a function of roll
angle ψ for the HSC model.

for high and low values of β and θ of the BC molecules,
respectively. In the second case (plot II), the excluded volume
has degenerate minima for a range of values of ψ about zero in
addition to the maximum at ψ = 90◦. The degenerate minima
of the excluded volume favour both C1 and C2 symmetric layer
structures with chiral symmetry breaking. This behavior was
found only for β > 120◦ and moderate values of θ . In the
third case (plot III), the excluded volume is minimum only at
ψ = 0 favoring the C2 symmetric SmCP layer structure with

FIG. 5. The variation of Vex as a function of roll angle ψ for the
bead model. Inset shows the magnified view of the indicated region
demonstrating the maximum at ψ = 180◦ for higher values of θ .
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FIG. 6. The stability diagram in the θ−β plane representing the
regions of stability of the different symmetries of the layers ob-
tained from the excluded volume interactions for bead model of the
molecules.

spontaneous breaking of chiral symmetry. For the fourth type,
the excluded volume has a minimum only at an intermediate
value of ψ between 0 and π/2 as shown in plot IV. It should
be noted that the excluded volume is maximum at ψ = 0 and
π in this case as shown in the inset of Fig. 5. Hence, the most
general SmCPG layer structure with C1 point symmetry is
favoured. This case was found for large θ and values of β

near 120◦ of the molecules. Based on these excluded volume
analyses, a stability diagram in the the θ -β parameter plane for
the different possible symmetries of the layer is constructed
as shown in Fig. 6. The figure displays four separate regions
corresponding to different possible symmetries of the layer.
In region I, the C1, C2, and Cs symmetries of the layers are
possible due to excluded volume interaction. In region II, C1

and C2 symmetries are favored. In regions III and IV, only the
C2 and C1 symmetries of the layer are found, respectively. The
layers can have Cs symmetry only in the region I with high
values of bending angle and low values of tilt angle. Whereas,
the layers with C1 symmetry are possible in regions I, II, and
IV. However, the C2 symmetric layer structure can be found
for most values of β and θ studied in our model as shown in
Fig. 6.

Therefore the excluded volume interaction for both HSC
and bead models of the BC molecules predicts C2 symmetric
layer structure with chiral symmetry breaking as found in the
B2 phase experimentally. Depending on the tilt and bending
angle, the bead model also predicts the possibility of the
existence of the C1 and Cs symmetric layer structures. As
the excluded volume has equal minima both at ψ = 0 and
π , the right and left handed structures are equally proba-
ble. This equality arises due to the achiral nature of the BC
molecules.

The variation of excluded volume with tilt angle θ for both
HSC and bead model of the BC molecules is presented in
Fig. 7 for a fixed value of ψ = 0◦ and for different values
of β. The excluded volume increases monotonically with θ

for all values of β for the HSC model as shown in Fig. 7(a).

FIG. 7. The variation of Vex with tilt angle θ at ψ = 0 or π for
(a) HSC model and (b) bead model of the molecules.

Hence, the excluded volume for SmAP layer corresponding to
θ = 0◦ is always lower than that for the tilted polar smectic
layer with θ �= 0◦. Therefore, the SmAP phase is favored
compared to the SmCP phase for the HSC model of the BC
molecules. This result is consistent with the observation of
not finding any tilted smectic phase in the earlier Monte Carlo
simulation study using the HSC model of the BC molecules
[26]. The bead model displays different behavior compared
to the HSC model as shown in Fig. 7(b). For the bead model,
the minimum of Vex with respect to θ strongly depends on
the bending angle of the molecules. The excluded volume Vex

is minimum at θ = 0◦ for β � 120◦ and the minimum shifts
to non zero value of θ for the higher bending angle. So, the
SmAP layer is always stable compared to the SmCP layer
order for bending angle β � 120◦. Whereas the excluded vol-
ume interaction favours the spontaneous tilt of the molecules
in the layer for β greater than 120◦ giving rise to the chiral
C2 symmetry. This can perhaps explain the observation of
tilted chiral crystal phases in the simulation results of BC
molecules with β = 140◦ in the article [24]. Our result also
agrees well with the molecular dynamics simulation studies
of BC molecules with β > 130◦ [11].
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FIG. 8. The favoured tilt angle θ for the bead model of the BC
molecules at different values of bending angle β.

Figure 8 depicts the variation of the favoured tilt angle as
a function of the bending angle obtained from the excluded
volume interaction. This tilt angle increases from zero beyond
β = 120◦ and saturates to a value of 30◦ for nearly rodlike
molecules with β ∼ 180◦. This tilting of the molecules in the
layer arises due to the close packing arrangements of the beads
in the rodlike molecules. Similar tilt angles were also found
in earlier simulation studies of BC molecules using the bead
model with the Lennard-Jones interaction potential between
the molecules [27]. The favored tilt angle is obtained on min-
imization of the excluded volume between two molecules in a
layer and it can be called the effective optimal molecular tilt
for each pair of molecules [33]. However, the average tilt of
molecules in a layer in their smectic phase can be obtained by
statistical averaging with this excluded volume interaction.

IV. MONTE CARLO SIMULATION

Excluded volume effects discussed above clearly favour
the chiral tilted polar smectic phase with C2 point symmetry
of the layers for both the bead and HSC model of the BC
molecules. However, excluded volume effects describe the
properties of an athermal system. We have therefore con-
structed a coupled XY -Ising model to describe the cooperative
development of chiral order in a layer as a function of tem-
perature and electric field. Similar types of XY -Ising models
have been employed over the past to describe superconduct-
ing Josephson-junction arrays in a transverse magnetic field
[34,35]. These models have also been used to describe the
ordered and disordered hexagonal columnar phases of discotic
liquid crystals [36,37]. To the best of our knowledge, there is
no report of the coupled XY -Ising model describing the phase
transition in bent-core liquid crystals.

In this model, we assume that the BC molecules in a layer
are tilted with respect to the layer normal with a fixed tilt angle
but with variable tilt directions. Hence, the tilt direction of
each molecule can be specified by a unit vector ξ̂ as shown in
Fig. 1. The tilt direction ξ̂ lies on the layer plane and can be
considered as an XY spin. Armed with our excluded volume

results, we assume that the roll angle ψ of a molecule can
randomly take a value of either 0 or π . Thus the bending
direction p̂ of a BC molecule can be parallel or antiparallel
to the tilt direction ξ̂ giving p̂ = σ ξ̂ where σ is an Ising
spin variable taking value ±1. Therefore, the Ising variable
σ represents the chirality in the orientation of a BC molecule
with respect to the layer.

We consider the orientational interaction potential between
the molecules in a layer as Ui j = −JkB(1 + Aσiσ j )(ξ̂i · ξ̂ j ),
where i, j denote the molecular indices and kB is the Boltz-
mann constant. The first term favors a synclinic interaction
between the molecules for the parameter J > 0 which has the
dimension of temperature. We assume that this term gives
the more dominant interaction between the molecules. The
second term with the dimensionless coefficient A takes into
account the synclinic homochiral or anticlinic recimic orien-
tations between the molecules. From the geometry of the BC
molecules, this term is expected to be lesser than the first term,
i.e., A < 1. The potential due to an externally applied electric
field is assumed as Ui( �E ) = −JkBσiξ̂i · �E , where �E repre-
sents the effective electric field. Hence, the Hamiltonian of
the system is defined as H = ∑

<i, j> Ui j + ∑
i Ui, where <>

denotes the sum over the nearest neighbor pairs of molecules.
We carried out Monte Carlo simulations on a square lattice

of dimension 40 × 40 with periodic boundary conditions. The
XY and Ising variables are updated by the standard Metropo-
lis algorithm. One of the following three update schemes is
chosen randomly: (i) selection of a new random direction
for the XY variable ξ̂ without flipping the Ising spin σ , (ii)
flipping of σ with unaffected ξ̂ , and (iii) selection of a new
random direction for ξ̂ and flipping of σ . Similar update
schemes were also used in MC simulation for the kinetics
study of the coupled XY -Ising model [38]. For simulation at
each temperature or electric field, 106 MC cycles were run
for equilibration and additional 106 MC steps were performed
to compute the statistical quantities. The tilt, polar, and chiral
order parameters are defined as

ξ = 1

L2

〈∣∣∣∣∣
L×L∑

i

ξ̂i

∣∣∣∣∣
〉
,

P = 1

L2

〈∣∣∣∣∣
L×L∑

i

p̂i

∣∣∣∣∣
〉
, and σ = 1

L2

〈∣∣∣∣∣
L×L∑

i

σi

∣∣∣∣∣
〉
,

respectively, where 〈 〉 denotes the ensemble average and the
sum runs over the total number of lattice points. The ex-
pression C = 〈H2〉−〈H〉2

L2k2
BT 2 was used for the calculation of the

dimensionless specific heat per molecule where T is the
absolute temperature. To study the equilibrium phases as a
function of temperature, the simulation was started at a high
temperature with an initial isotropic configuration. The initial
temperature was chosen such that the system remains in its
equilibrium isotropic state. In this isotropic configuration,
each molecule is tilted in the layer but their tilt and polar
directions are randomly oriented as shown in the leftmost
configuration in Fig. 9. This configuration represents an achi-
ral uniaxial smectic layer with no polar order. Therefore, the
long axes of the molecules are distributed on the surface of a
cone giving rise to the de Vries SmA layer structure with the

034704-6



SPONTANEOUS BREAKING OF CHIRAL SYMMETRY IN … PHYSICAL REVIEW E 107, 034704 (2023)

FIG. 9. The representative spin configurations corresponding to the different phases. The blue and red (light gray) arrows denote the
orientations of the unit vectors ξ̂ and p̂, respectively. The open circle and filled square symbols represent +1 and −1 values of the Ising spin,
respectively.

proposed diffused cone model [39]. The system was equi-
librated at each temperature and the stable phase sequence
was determined with decreasing temperature. The final equi-
librated state of the system at a given temperature was chosen
as the initial configuration for the MC simulation at the
next lower temperature. The same procedure was adopted
for studying the equilibrium phase sequence with increasing
electric field. The equilibrium values of the order parameters
as a function of temperature are shown in Fig. 10 for the model
parameter A = 0.5. The tilt order parameter ξ of the system
increases significantly from zero with decreasing temperature
below about T/J ∼ 1.25 while the other order parameters P
and σ remain zero till about T/J ∼ 1.0. Therefore, the system
in this temperature range exhibits the nonpolar SmC structure.
A typical configuration of the spins in the SmC structure is
shown in Fig. 9. A small peak in the specific heat corresponds
to this transition is also shown in the inset of Fig. 10. However,
the ordering of the XY spins is expected to be quasilong range

FIG. 10. The variation of order parameters with temperature for
A = 0.5 at zero electric field. Inset shows the corresponding specific
heat variation.

in two dimensions according to Mermin-Wagner theorem [40]
and the transition is of Kosterlitz-Thouless type [41]. Finite-
size scaling analysis is required to accurately determine the
transition temperature. On further cooling below about T/J ∼
1.0, the order parameters P and σ also become nonzero giving
rise to a chiral tilted polar SmCP structure. A representative
spin configuration in the SmCP structure is shown in Fig. 9.
The larger peak in the specific heat as shown in the inset of
Fig. 10 indicates this transition. Similar transitions are also
speculated in the earlier studies on superconducting systems
[34,35]. The chiral order parameter σ reaches the saturation
value rapidly compared to the other order parameters across
this transition. This is perhaps due to two possible states for
the Ising spin compared to the continuum of states for the
XY spin. The number of states of a spin variable increases
the disorderedness in the system and it is reflected in the
variation of order parameters with temperature. This type of
phase sequence has been observed experimentally in bent-
core liquid crystals [42]. Figure 11 displays the variation of
order parameters with the electric field at a fixed temperature

FIG. 11. The variation of order parameters with electric field for
T/J = 1.8 and A = 0.5. Inset shows the magnified view of the region
at low field.
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TABLE I. The observed phase sequences for different values of A.

A Phase sequences during cooling

0.0 de Vries SmA ({ξ, P, σ } = 0) → SmC
({P, σ } = 0, ξ �= 0)

0.5 de Vries SmA ({ξ, P, σ } = 0) → SmC
({P, σ } = 0, ξ �= 0) → SmCP ({ξ, P, σ } �= 0)

1.0 de Vries SmA ({ξ, P, σ } = 0) → SmCP
({ξ, P, σ } �= 0)

T/J = 1.8 corresponding to the de Vries SmA state. All the
order parameters are zero at the low field region as expected
in the de Vries SmA layer structure. Above a certain threshold
field, the polar order P in the layer increases monotonically
with the electric field whereas the other order parameters ξ

and σ remain close to zero. Hence, the layer goes into the
de Vries SmAP phase. In this phase, the bending direction p̂
of the molecules align on average along the field but the tilt
direction ξ̂ is equally likely oriented parallel or antiparallel
to p̂. Thus the long axes of the tilted molecules have a bi-
modal distribution around the diffused cone giving rise to an
achiral biaxial polar layer structure. Above a higher threshold
field, all the order parameters become nonzero and the chiral
SmCP layer structure is stabilized. Therefore the layer ex-
hibits spontaneous breaking of chiral symmetry. The electric
field-induced breaking of chiral symmetry in bent-core liquid
crystals has been reported [43].

The possible sequences of phases for different values of the
model parameter A are given in Table I. For A = 0, there is
no chiral or polar interaction between the molecules and only
de Vries SmA and achiral SmC structures can be stabilized.
For intermediate values of A, the de Vries SmA, SmC, and
chiral SmCP structures are stable as discussed above. The
tilt and polar interactions being comparable for A = 1, the
de Vries SmA directly going to the chiral SmCP structure
is favored. Therefore, achiral uniaxial nonpolar (de Vries

SmA), achiral biaxial nonpolar (SmC), achiral biaxial polar
(de Vries SmAP), and chiral biaxial polar (SmCP) structures
can be stabilized in our model depending on the parameter
A, temperature and electric field. Analogous polar biaxial,
nonpolar biaxial, and uniaxial phases have been found for
nontilted bent-core molecules in a layer using molecular sta-
tistical theory with a different type of interaction potential
[44]. All the results discussed above are obtained for a sin-
gle layer in the smectic phase. In actual three-dimensional
smectic liquid crystals, the interlayer interactions also play
a significant role in the phase behavior and can lead to rich
varieties of self-assembled structures (see for example [45]). It
is therefore worthwhile to include these interlayer interactions
along with the intralayer interactions in the simulation. We
intend to study this model in three dimensions in the future.

V. CONCLUSIONS

We have computed the excluded volume between bent-core
molecules in a layer of their smectic phases. Two molec-
ular models namely the spherocylinder and bead model of
the bent-core molecules were used in the computation of
the excluded volume. The excluded volume results for both
models of the BC molecules predict chiral symmetry breaking
in their tilted smectic phase. This is the first report on the
numerical studies of excluded volume between BC banana-
shaped molecules in a layer of their smectic phase which
accounts for the experimentally observed chiral symmetry
breaking. Depending on the tilt and bending angle of the
molecules, the bead model predicts the possibility of C2, Cs,
and C1 point symmetries of the layers. We have also developed
a coupled XY -Ising model based on the excluded volume
results to investigate the layer structure using Monte Carlo
simulations as a function of temperature and electric field. The
model predicts different types of phase sequences depending
on the interaction parameter and also accounts for electric
field-induced chiral symmetry breaking.
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