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Weak-anchoring effects in a thin pinned ridge of nematic liquid crystal
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A theoretical investigation of weak-anchoring effects in a thin two-dimensional pinned static ridge of nematic
liquid crystal resting on a flat solid substrate in an atmosphere of passive gas is performed. Specifically,
we solve a reduced version of the general system of governing equations recently derived by Cousins et al.
[Proc. R. Soc. A 478, 20210849 (2022)] valid for a symmetric thin ridge under the one-constant approximation
of the Frank-Oseen bulk elastic energy with pinned contact lines to determine the shape of the ridge and the
behavior of the director within it. Numerical investigations covering a wide range of parameter values indicate
that the energetically preferred solutions can be classified in terms of the Jenkins-Barratt-Barbero-Barberi critical
thickness into five qualitatively different types of solution. In particular, the theoretical results suggest that
anchoring breaking occurs close to the contact lines. The theoretical predictions are supported by the results
of physical experiments for a ridge of the nematic 4′-pentyl-4-biphenylcarbonitrile (5CB). In particular, these
experiments show that the homeotropic anchoring at the gas-nematic interface is broken close to the contact
lines by the stronger rubbed planar anchoring at the nematic-substrate interface. A comparison between the
experimental values of and the theoretical predictions for the effective refractive index of the ridge gives a first
estimate of the anchoring strength of an interface between air and 5CB to be (9.80 ± 1.12)×10−6 N m−1 at a
temperature of (22 ± 1.5) ◦C.

DOI: 10.1103/PhysRevE.107.034702

I. INTRODUCTION

A. Background

Since the late 1960s, technological interest in nematic
liquid crystals (nematics) has largely been focused on their
use in liquid crystal displays (LCDs) [1–3]. However, more
recently, applications of nematics have taken advantage of
their intrinsically viscoelastic nature, which has led to the
development of novel microfluidic devices with applications
in particle transport [4–6], molecule sensing [7], and medicine
[8]. In addition, their optoelectrical properties make them well
suited for new adaptive-lens technologies [9,10], microelec-
tronic components [11,12], and diffraction gratings [13,14].
Many of these emerging technologies are complicated multi-
phase systems that involve interfaces between the nematic, a
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solid substrate, and an atmosphere of gas (or another isotropic
fluid).

Much of the recent theoretical interest in situations that
involve nematic interfaces has focused on spontaneous dewet-
ting transitions, such as spinodal dewetting and nucleation
events, in which a thin film of nematic ruptures and forms
droplets or ridges [15–23]. These spontaneous dewetting
transitions have been studied with a range of theoretical
approaches, from continuum theory [22,24,25] to statisti-
cal mechanics [26–28], that often fail to account accurately
for the nematic molecular alignment forces on the ne-
matic interfaces (commonly called anchoring). An accurate
characterization of anchoring on the nematic interfaces is
particularly important in situations that involve a three-phase
contact line at which the nematic-substrate interface, the gas-
nematic interface, and the gas-substrate interface meet. In
particular, assuming that there are infinitely strong anchoring
forces on both of the nematic, interfaces will, in general, lead
to inconsistent predictions for the nematic molecular orienta-
tion at the contact line. One way to avoid such difficulties is to
assume that the nematic molecular orientation approaches the
appropriate uniform state dictated by the (typically stronger)
anchoring force on the nematic-substrate interface as the con-
tact line is approached (see, for example, Lam et al. [24,25]).
Another way is to assume the presence of a thin precursor
film on the substrate, which has the effect of removing the
contact line entirely (see, for example, Lin et al. [29]). In
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what follows, we instead allow the competition between the
anchoring forces on the nematic interfaces to determine the
molecular orientation close to the contact line.

In the present work, we perform a theoretical investigation
of weak-anchoring effects in a thin two-dimensional pinned
static ridge of nematic resting on a flat solid substrate in an
atmosphere of passive gas. The ridge has a nematic-substrate
interface and a gas-nematic interface (i.e., the nematic free
surface), and pinned nematic-substrate-gas three-phase con-
tact lines (i.e., the contact lines are at fixed locations on the
substrate) at its left-hand and right-hand edges. As well as
being of fundamental scientific interest in their own right,
pinned ridges of liquid crystal occur in the self-organization
of columnar discotic liquid crystals into ridges [12,30,31],
nematic diffraction gratings [13,14], and ridges of nematic
mixtures [32]. The behavior of a two-dimensional static ridge
of nematic which is not necessarily thin and may have either
pinned or unpinned contact lines is described by the general
system of governing equations (including both nematic Young
and nematic Young-Laplace equations) recently derived by
Cousins et al. [33]. However, these authors did not attempt
to solve the full system of equations, but instead used the
nematic Young equations they derived to determine the con-
tinuous and discontinuous transitions that occur between the
equilibrium states of complete wetting, partial wetting, and
complete dewetting. In the present work, we take a somewhat
different approach and solve a reduced version of the general
system of governing equations valid for a symmetric thin ridge
under the one-constant approximation of the Frank-Oseen
bulk elastic energy with pinned contact lines to determine
the shape of the ridge and the behavior of the director within
it. The theoretical predictions are supported by the results of
physical experiments for a ridge of the nematic 4′-pentyl-4-
biphenylcarbonitrile (5CB). The results obtained give insight
into the behavior of nematic systems with interfaces and con-
tact lines, and in particular, they give a first estimate of the
anchoring strength of an interface between air and 5CB.

B. Nematic anchoring

In the present work, we assume that the bulk energy of the
nematic ridge is described by the Frank-Oseen elastic energy
density, which depends on the average nematic molecular
orientation, represented by a unit vector n called the director,
and its spatial gradients [34]. We also assume that the energy
densities of the nematic-substrate and the gas-nematic inter-
faces are described by the Rapini-Papoular interface energy
density [35], which describes the energetic preference of the
nematic molecular alignment forces on the interfaces to align
the director, and is commonly called weak anchoring.

We consider two types of weak anchoring, namely
homeotropic weak anchoring, where there is an energetic pref-
erence for the director to align normally to the interface, and
homogeneous planar weak anchoring (henceforth referred to
as simply planar weak anchoring), where there is an energetic
preference for the director to align in a particular preferred
tangential direction to the interface. Planar weak anchoring at
a nematic-substrate interface is often called rubbed planar an-
choring, and the preferred tangential direction is often called
the rubbing direction [34]. Planar weak anchoring with no

preferred tangential direction is known as planar degenerate
anchoring. In reality, the director may prefer to align at a small
angle to a normal or a tangential alignment, a phenomenon
commonly known as pretilt [36]. Since a close-to-zero pretilt
is obtainable in physical experiments [37], we assume that
there is no pretilt in the present work. The strength of the en-
ergetic preference for a particular alignment of the director on
an interface is measured by a parameter called the anchoring
strength. In the limit in which the anchoring strength becomes
infinitely large, the energetic preference for homeotropic or
planar alignment fixes the director on the interface to align ex-
actly normally or tangentially, respectively, to it. This situation
is often called strong anchoring or, more accurately, infinite
anchoring. When the anchoring strength is zero there is no
energetic preference for homeotropic or planar alignment on
the interface, and the director on the interface is determined
by bulk forces. This situation is called zero anchoring. In the
present work, we will consider weak zenithal anchoring (i.e.,
allow in-plane rotation of the director towards or away from
the interface normal) but infinite azimuthal anchoring (i.e., not
allow rotation of the director around the interface normal), so
that the director remains in plane.

Systems with a gas-nematic interface can involve opposing
anchoring preferences on the nematic-substrate and the gas-
nematic interfaces [36], e.g., when homeotropic alignment is
preferred on the gas-nematic interface and planar alignment
is preferred on the nematic-substrate interface, or vice versa.
This situation is called antagonistic anchoring, while nonan-
tagonistic anchoring refers to the opposite situation in which
the same alignment is preferred on the two interfaces. Note
that, since the preferred alignments are measured relative to
the interfaces, which are, in general, not parallel, even situa-
tions with nonantagonistic anchoring can involve competing
anchoring forces.

C. Nematic contact lines

As mentioned in Sec. I A, careful analysis of the anchoring
forces at the nematic interfaces is fundamental to understand-
ing the behavior of the director close to a contact line. Two
special scenarios for the behavior of the director close to a
contact line were considered by Rey [38,39], namely infinite
planar anchoring on both interfaces and equal (finite) planar
weak anchoring on the two interfaces. In these studies, Rey
highlighted the possibility of anchoring breaking occurring
close to the contact line. Anchoring breaking occurs when
the torque on the director at an interface due to the weak
anchoring on that interface is overcome by the torque due to
other effects (in the present case, by the torque due to the weak
anchoring on the other interface), and the resulting director
orientation is significantly different from that preferred by
the anchoring. Cousins et al. [33] assumed that anchoring
breaking occurs close to the contact line and used the nematic
Young equations they derived to determine the continuous and
discontinuous transitions between the equilibrium states of
complete wetting, partial wetting, and complete dewetting that
can occur. In the present work, we instead allow the behavior
of the director to be determined by the competition between
the anchoring forces on the nematic interfaces, and we find
that anchoring breaking does indeed occur close to the contact
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FIG. 1. A schematic of a two-dimensional pinned static ridge of nematic (N) with prescribed cross-sectional area Ã resting on a flat solid
substrate (S) in an atmosphere of passive gas (G), bounded by a gas-nematic interface at z̃ = h̃(x̃) and a nematic-substrate interface at z̃ = 0,
with pinned contact lines at x̃ = ±d̃ . The Cartesian coordinates x̃ and z̃ (with the ỹ-axis out of the page), the contact angles β̃− and β̃+, and the
outward unit normals of the nematic-substrate interface and gas-nematic interface νNS and νGN, respectively, are indicated. A typical director
n with director angle θ (x̃, z̃) and the height at the middle of the ridge h̃m are also shown.

lines, validating the analysis of [33] in the present situation.
Rey [38,39] also discussed the possibility of the occurrence
of defects, or disclination lines in the two-dimensional situa-
tion we consider, at the contact line. At disclination lines, a
description of the nematic only in terms of the director is no
longer valid, and large elastic distortions give rise to a local
increase in the elastic energy density and a reduction in the
orientational order about the director [40]. In the present work,
we assume that anchoring breaking is always energetically
preferred to the formation of a disclination line at the contact
line. This assumption is valid provided that the nematic co-
herence length [41] is smaller than the surface extrapolation
length [36] of either the nematic-substrate interface or the
gas-nematic interface (see Sec. II B for details).

D. The Jenkins-Barratt-Barbero-Barberi critical thickness

Of particular importance to the present work is a pioneer-
ing but perhaps overlooked theoretical contribution published
in 1974 by Jenkins and Barratt [42], who, after detailing
the theoretical description of a gas-nematic interface and a
nematic contact line, investigated a static layer of nematic of
uniform thickness with antagonistic anchoring due to weak
anchoring on the gas-nematic interface and infinite anchoring
on the nematic-substrate interface. They showed that when
the bulk elastic energy density for the nematic layer takes the
Frank-Oseen form, there is a critical thickness of the layer
below which a uniform director field (oriented according to
the preferred alignment on the interface with the stronger
anchoring, i.e., the nematic-substrate interface) is energeti-
cally preferred, and above which a distorted director field is
energetically preferred. In 1983, Barbero and Barberi [43]
independently obtained the corresponding result for antago-
nistic anchoring due to weak anchoring on both interfaces.
The critical thickness of the layer is often referred to as
the Barbero-Barberi critical thickness [43], but, to give due
credit to the work of Jenkins and Barratt [42], we refer to
it as the Jenkins-Barratt-Barbero-Barberi critical thickness
or, for brevity, simply the critical thickness [42,43]. This
critical thickness is of particular importance for a ridge of
nematic because the height of the ridge is, by definition, zero
at the contact lines, but it may exceed the critical thickness
elsewhere. Understanding the behavior of the director in any

regions of the ridge in which its height is greater than this
critical thickness, and hence a distorted director field is en-
ergetically favorable, and regions of the ridge in which the
height is less than the critical thickness, and hence a uniform
director field is energetically favorable, is a key aspect of the
present work.

E. Outline of the present work

In Sec. II we derive a reduced version of the general
system of governing equations for a two-dimensional static
ridge of nematic valid for a symmetric thin ridge under the
one-constant approximation of the Frank-Oseen bulk elastic
energy with pinned contact lines. We obtain analytical solu-
tions for situations with a uniform director field in Sec. III
and numerical solutions for situations with a distorted direc-
tor field in Sec. IV, showing that five qualitatively different
types of solution occur. In Sec. V we determine the regions
of parameter space in which the different types of solution
introduced in Secs. III and IV are energetically preferred.
Finally, in Sec. VI the theoretical predictions are compared
with the results of physical experiments for a ridge of 5CB.

II. MODEL FORMULATION

A. Geometry of the problem

We consider a two-dimensional pinned static ridge of ne-
matic (N) with prescribed cross-sectional area Ã resting on a
flat solid substrate (S) in an atmosphere of passive gas (G),
as shown in Fig. 1. The nematic ridge is bounded by the
gas-nematic interface at z̃ = h̃(x̃), where h̃ is the height of the
ridge, and the nematic-substrate interface at z̃ = 0, where x̃,
ỹ, and z̃ are the Cartesian coordinates indicated in Fig. 1. The
nematic-substrate and gas-nematic interfaces meet at pinned
contact lines at x̃ = ±d̃ , where d̃ is the prescribed constant
semiwidth of the ridge, so that

h̃ = 0 at x̃ = ±d̃ . (1)

As the nematic ridge is two-dimensional, the height of the
ridge h̃ and the positions of the pinned contact lines do not
vary in the ỹ-direction, and so the contact lines form two
infinitely long parallel lines in the ỹ-direction. The unknown
height at the middle of the ridge is denoted h̃m, i.e., h̃m = h̃(0).
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The unknown contact angles formed between the nematic-
substrate and gas-nematic interfaces are denoted by β̃− and
β̃+, and they satisfy tan β̃± = ∓h̃x̃ at x̃ = ±d̃ , where the sub-
script denotes differentiation. Following Cousins et al. [33],
we assume that the director n is confined to the (x̃, z̃)-plane,
and thus can be expressed in terms of the angle between the
director and the x̃-axis, denoted by θ = θ (x̃, z̃), as n = n(θ )
given by

n = cos θ x̂ + sin θ ẑ, (2)

where x̂ and ẑ are unit vectors in the x̃- and z̃-direction,
respectively. Note that while the cross-sectional area Ã and
semiwidth d̃ of the ridge are prescribed, the shape of the
gas-nematic interface h̃ (and, in particular, the height at the
middle of the ridge h̃m and the contact angles β̃− and β̃+) and
the director field n are determined as part of the solution to
the problem.

B. Governing equations for a pinned nematic ridge

The general system of governing equations and bound-
ary conditions for a static ridge of nematic were derived by
Cousins et al. [33] by minimization of the free energy, which
includes contributions from the Frank-Oseen bulk elastic
energy density W̃ = W̃ (θ, θx̃, θz̃ ) [34], gravitational poten-
tial energy density ψ̃g = ψ̃g(x̃, z̃), and the Rapini-Papoular
interface energy densities for the nematic-substrate inter-
face ω̃NS = ω̃NS(θ ) and the gas-nematic interface ω̃GN =
ω̃GN(θ, h̃x̃ ) [35], subject to an area constraint.

In the present work, unlike in Ref. [33], we make the
one-constant approximation to the Frank-Oseen bulk elastic
energy density (obtained by setting K̃1 = K̃3 = K̃ in [33])
to obtain a mathematically tractable system of equations in
which W̃ is given by

W̃ = K̃

2

[
(∇̃ · n)2 + (∇̃ × n)2 + ∇̃ · ((n · ∇̃)n − (∇̃ · n)n)

]

= K̃

2

(
θ2

x̃ + θ2
z̃

)
, (3)

where ∇̃ = x̂∂/∂ x̃ + ŷ∂/∂ ỹ + ẑ∂/∂ z̃. Following Cousins et al.
[33], we take the Rapini-Papoular interface energy densities
ω̃NS and ω̃GN to be

ω̃NS = γ̃NS + C̃NS

4
(1 − 2(n · νNS)2)

= γ̃NS + C̃NS

4
cos 2θ, (4)

ω̃GN = γ̃GN + C̃GN

4
(1 − 2(n · νGN)2)

= γ̃GN + C̃GN

4
(
1 + h̃2

x̃

)[(
1 − h̃2

x̃

)
cos 2θ + 2h̃x̃ sin 2θ

]
, (5)

respectively, where νNS and νGN are the outward unit normals
of the nematic-substrate and gas-nematic interfaces, respec-
tively, as shown in Fig. 1. The constant material parameters
K̃ (> 0), γ̃NS (> 0), γ̃GN (> 0), C̃NS, and C̃GN appearing in
Eqs. (3)–(5) are the one-constant elastic constant, the interfa-
cial tension of the nematic-substrate interface, the interfacial

tension of the gas-nematic interface, the anchoring strength
of the nematic-substrate interface, and the anchoring strength
of the gas-nematic interface, respectively. If C̃i > 0, then a
director normal to the interface (i.e., a homeotropic alignment)
is preferred on the nematic-substrate interface (i = NS) or
the gas-nematic interface (i = GN), whereas if C̃i < 0, then
a director tangent to the interface (i.e., a planar alignment)
is preferred. Experimental techniques for the measurement
of C̃NS are well established, and hence values of C̃NS are
readily available [44–46]; however, measurements of C̃GN

are more difficult, and hence values of C̃GN are less read-
ily available [36]. Specifically, the anchoring strength of a
planar or homeotropic nematic-substrate interface has been
measured for a variety of nematic materials and substrates in
the range |C̃NS| = 10−6–10−3 Nm−1 [36,44–46], whereas, to
the best of our knowledge, the only experimental measure-
ments of the anchoring strength of a gas-nematic interface
are C̃GN > 10−5 N m−1 for the interface between air and the
nematic mixture ZLI 2860 [47], and C̃GN > 4×10−4 N m−1

for the interface between air and the nematic p-methoxy-
benzylidene-p-n-butyl aniline (MBBA) [48]. Given these
anchoring strengths and a typical one-constant elastic constant
of K̃ = 10−11 [49], we find that the surface extrapolation
lengths of the nematic-substrate and the gas-nematic inter-
faces, which are given by K̃/|C̃NS| and K̃/|C̃GN|, respectively,
are in the range 10 nm–10 µm. The nematic coherence length
of typical nematic materials is 4 nm [50] for a wide range
of temperatures away from the nematic-isotropic transition
temperature [41], and we therefore expect that our assumption
that anchoring breaking is always energetically preferred to
the formation of a disclination line at the contact line is valid,
except possibly close to the nematic-isotropic transition tem-
perature. Gas-nematic interfaces are often assumed to exhibit
homeotropic weak anchoring [36]. We note, however, that the
experimental studies of Feng et al. [51] and Bao et al. [32]
indicate that planar degenerate anchoring can also occur on
such interfaces. We therefore allow the gas-nematic interface
to have either homeotropic (C̃GN > 0) or planar (C̃GN < 0)
weak anchoring.

The isotropic components of the Rapini-Papoular interface
energy densities Eqs. (4) and (5) (i.e., the interfacial tensions
γ̃NS and γ̃GN, also commonly known as surface tensions)
are more readily measured than the anchoring strengths. For
instance, the interfacial tension between air and the nematic
5CB has been measured as γ̃GN = 4.0×10−2 N m−1 [23],
and the interfacial tension between the solid poly(methyl
methacrylate) (PMMA) and 5CB has been measured as γ̃NS =
4.051×10−2 N m−1 [23].

In the present work, we assume that gravitational effects
can be neglected compared to surface-tension effects, and
therefore we require that the semiwidth of the ridge d̃ is much
smaller than the capillary length l̃ = [γ̃GN/(ρ̃g̃)]1/2, where ρ̃

is the constant density of the nematic and g̃ is the magnitude
of acceleration due to gravity [52]. This assumption is ap-
propriate for the physical experiments presented in Sec. VI,
where l̃ = 2×10−3 m and d̃ = 6×10−4 m, and for many other
applications, including ridges of discotic liquid crystals used
in new semiconductor applications [12], nematic diffraction
gratings [13,14], ridges of nematic mixtures [32], and possibly
for nematic droplets used in LCD manufacturing [53,54].
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In the absence of gravitational effects, and with the one-
constant approximation, the general system of governing
equations and boundary conditions derived by Cousins et al.
[33] consists of the bulk elastic equation given by

0 = θx̃x̃ + θz̃z̃, (6)

and three interfacial equations, namely the weak anchoring
(i.e., balance-of-couple) conditions on the nematic-substrate
interface and the gas-nematic interface, and the nematic
Young-Laplace equation on the gas-nematic interface, which
are given by

0 = −K̃θz̃ − C̃NS

2
sin 2θ on z̃ = 0, (7)

0 = K̃ (θz̃ − h̃x̃θx̃ )

+ C̃GN

2
√

1+h̃2
x̃

[(
h̃2

x̃ − 1
)

sin 2θ+2h̃x̃ cos 2θ
]

on z̃ = h̃,

(8)

0 = p̃0 − K̃

2

(
θ2

x̃ + θ2
z̃

) + γ̃GNh̃x̃x̃(
1 + h̃2

x̃

)3/2

+ C̃GN

4
(
1 + h̃2

x̃

)5/2

[
3h̃x̃x̃

{(
h̃2

x̃ − 1
)

cos 2θ − 2h̃x̃ sin 2θ
}

+ (
1 + h̃2

x̃

){
4 cos 2θ

[
θx̃ − h̃x̃

(
1 + h̃2

x̃

)
θz̃

]

+ 2 sin 2θ
[(

1 − h̃4
x̃

)
θz̃ + h̃x̃

(
3 + h̃2

x̃

)
θx̃

]}]
on z̃ = h̃,

(9)

respectively, where p̃0 is a Lagrange multiplier with the di-
mensions of pressure associated with the area constraint.

The total energy of the pinned ridge, denoted by Ẽtot, is
given by

Ẽtot =
∫ d̃

−d̃

∫ h̃

0
W̃ dz̃ dx̃+

∫ d̃

−d̃
ω̃NS dx̃+

∫ d̃

−d̃
ω̃GN

√
1 + h̃2

x̃ dx̃.

(10)

The general system of governing equations and boundary
conditions derived by Cousins et al. [33] also includes ne-
matic Young equations which describe the balance of stress
at unpinned contact lines. However, since the present work
concerns pinned contact lines, these equations are not relevant
here. The corresponding analysis of a thin ridge with unpinned
contact lines will be considered in future work.

C. Governing equations for a thin pinned nematic ridge

Since in many of the practical applications described in
Sec. I A the nematic ridges and droplets are thin, and in
order to enable us to make analytical progress, we henceforth
consider the situation in which the ridge is thin. Specifically,
adopting the well-known thin-film (or lubrication) approxima-
tion, we define an appropriate small nondimensional aspect
ratio ε in terms of the semiwidth d̃ and the cross-sectional
area Ã as

ε = Ã

d̃2
� 1, (11)

and we assume that the variables scale according to

x̃ = d̃ x, z̃ = εd̃ z, h̃ = εd̃ h, h̃m = εd̃ hm,

β̃− = ε β−, β̃+ = ε β+, p̃0 = εγ̃GN

d̃
p0,

Ẽtot = d̃ γ̃GN Etot, W̃ = εγ̃GN

d̃
W,

ω̃NS = γ̃GN ωNS, ω̃GN = γ̃GN ωGN,

K̃ = ε3d̃ γ̃GN K, γ̃NS = γ̃GN γNS,

C̃NS = ε2γ̃GN CNS, C̃GN = ε2γ̃GN CGN, (12)

where quantities with a superposed tilde (˜) are dimensional
and quantities without a superposed tilde are nondimensional.
Note that we have nondimensionalized lengths in the x̃-
direction with d̃ and lengths in the z̃-direction with εd̃ , and
hence the contact angles are scaled with ε. The interfacial
tension γ̃NS and the anchoring strengths C̃NS and C̃GN are
nondimensionalized with the interfacial tension γ̃GN. To study
the most interesting regime in which surface tension, an-
choring, and bulk elasticity effects are all comparable, we
have nondimensionalized the elastic constant K̃ and anchoring
strengths C̃NS and C̃GN such that contributions of surface ten-
sion, anchoring, and bulk elasticity appear at leading order in
the reduced equations. Less interesting regimes for which bulk
elasticity effects are either much stronger or much weaker
than anchoring effects will be discussed in Sec. II E.

At leading order in the limit ε → 0, the nondimensional
form of the bulk elastic equation Eq. (6) reduces to

θzz = 0, (13)

and hence the director angle θ is given by

θ = θNS + (θGN − θNS)
z

h
, (14)

where θNS = θNS(x) = θ (x, 0) and θGN = θGN(x) =
θ (x, h(x)) denote the (as yet unknown) values of θ on
the nematic-substrate interface z = 0 and on the gas-nematic
interface z = h, respectively.

The nondimensional forms of Eqs. (7)–(9) reduce to

K (θGN − θNS) + CNSh sin θNS cos θNS = 0, (15)

K (θGN − θNS) − CGNh sin θGN cos θGN = 0, (16)

p0 + hxx + K

2

(
θGN − θNS

h

)2

= 0, (17)

respectively. Note that, unlike the full anchoring condition on
the gas-nematic interface Eq. (8), the leading-order anchoring
condition Eq. (16) depends only on the local height of the
ridge h and not on its derivatives. In particular, as expected
in the present thin-film limit, Eq. (16) is identical to the
anchoring condition on a flat gas-nematic interface (i.e., when
h is constant); therefore, θGN behaves as if the gas-nematic
interface were locally flat. A consequence of this, combined
with the rotational symmetry of the director, is that if θ = θ̂

is a solution of Eqs. (15)–(17), then so is θ = qπ ± θ̂ for
any integer q. In the leading-order nematic Young-Laplace
equation Eq. (17), the leading-order approximation of the
curvature of the gas-nematic interface, namely hxx, is coupled
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to a term that depends on both anchoring and bulk elasticity
effects, namely K (θGN − θNS)2/(2h2).

The nondimensional form of the contact-line conditions
Eq. (1) is

h = 0 at x = ±1, (18)

and hence it follows from the anchoring conditions Eqs. (15)
and (16) that θ = θNS = θGN at x = ±1.

The nondimensional form of the prescribed cross-sectional
area constraint is

1 =
∫ 1

−1
h dx, (19)

and the leading-order contact angles are given by β− = hx at
x = −1 and β+ = −hx at x = 1.

The nondimensional form of the total energy Eq. (10) is

Etot = 2(1 + γNS) + 1
2ε2�E + O(ε3), (20)

showing that Etot takes the constant value of 2(1 + γNS) at
leading order in ε, and that variations in Etot appear at second
order in ε via the term �E = �E (h, θNS, θGN), which can be
decomposed as

�E = Esurf + Eelas + ENS + EGN, (21)

where

Esurf =
∫ 1

−1
h2

x dx, Eelas = K
∫ 1

−1

(θGN − θNS)2

h
dx,

ENS = CNS

2

∫ 1

−1
cos 2θNS dx, EGN = CGN

2

∫ 1

−1
cos 2θGN dx

(22)

are the second-order surface energy Esurf , elastic energy Eelas,
nematic-substrate interface anchoring energy ENS, and gas-
nematic interface anchoring energy EGN, respectively. The
special case of an isotropic fluid is recovered by setting K =
CNS = CGN = 0, so that the second-order energy reduces to
�E = Esurf . The second-order surface energy Esurf is mini-
mized subject to the contact-line conditions Eq. (18) and the
area constraint Eq. (19) by the solution for the height and the
Lagrange multiplier for an isotropic ridge in the absence of
gravity, denoted hI = hI(x) and p0I, respectively, namely

hI = 3
4 (1 − x2) and p0I = 3

2 . (23)

Inspection of Eq. (22) with Eq. (23) shows that Esurf � 3/2,
Eelas � 0, −|CNS| � ENS � |CNS|, and −|CGN| � EGN �
|CGN|.

In summary, the equations and boundary conditions for a
thin pinned ridge given by the system (15)–(19) involve the
unknowns θNS(x), θGN(x), h(x), and p0 and the parameters K ,
CNS, and CGN. Once the solutions for θNS, θGN, h, and p0 have
been determined, the contact angles β+ = −hx(1) and β− =
hx(−1), the director angle given by Eq. (14), and the second-
order energy �E given by Eqs. (21) and (22) can be readily
determined.

Note that the intrinsic symmetries of the system Eqs. (15)–
(19) mean that if θNS = θ̂NS and θGN = θ̂GN are solutions for

CNS = ĈNS and CGN = ĈGN, then so are

θNS = θ̂GN, θGN = θ̂NS

for CNS = ĈGN, CGN = ĈNS, (24)

θNS = π

2
− θ̂NS, θGN = π

2
− θ̂GN

for CNS = −ĈNS, CGN = −ĈGN, (25)

θNS = π

2
− θ̂GN, θGN = π

2
− θ̂NS

for CNS = −ĈGN, CGN = −ĈNS. (26)

In Eq. (24), exchanging CNS and CGN leads to an exchange of
the θNS and θGN solutions. In Eq. (25), changing CNS and CGN

from planar to homeotropic alignment, or vice versa, leads to
a rotation of θNS and θGN by π/2. In Eq. (26), exchanging CNS

and CGN [as in Eq. (24)] and changing them from planar to
homeotropic alignment, or vice versa [as in Eq. (25)], leads
to an exchange of the θNS and θGN solutions and a rotation of
π/2.

D. Discontinuous solutions for θ

Since there are no x-derivatives of θ in the system
Eqs. (15)–(19), the solution for the director angle θ can have
discontinuities at any number of positions x, provided that
Eqs. (15)–(17) are satisfied through each discontinuity and,
in particular, since we anticipate on physical grounds that the
solutions for the height of the ridge h will be continuous,
provided that θGN − θNS is continuous. Specifically, at any
position x there may be discontinuous jumps between a so-
lution h = ĥ, p0 = p̂0, and θ = θ̂ and another solution h = ĥ,
p0 = p̂0, and θ = qπ ± θ̂ for any integer q. Discontinuities
in θ correspond to disclination lines, at which, as described
in Sec. I C, a description of the nematic only in terms of the
director is no longer valid, and large elastic distortions give
rise to a local increase in the elastic energy density and a
reduction in the orientational order about the director [40].
Although the system Eqs. (15)–(19) allows for the occurrence
of discontinuities in θ , we assume that solutions with discli-
nation lines always have higher energy than those without
disclination lines and are therefore always energetically un-
favorable [55–57]. The exception is for situations in which
the symmetry of the system necessitates the occurrence of a
disclination line at the centerline of the ridge (i.e., at x = 0).
Indeed, previous work on nematic droplets by Kleman [58],
nematic flow in confined microfluidic channels by Sungupta
et al. [59], nematics in a sinusoidal groove by Ohzono and
Fukuda [60], and nematic mixtures in ridges by Bao et al. [32]
show that disclination lines are often found experimentally
at or near to the center of grooves, channels, ridges, and
droplets, respectively. Furthermore, the physical experiments
for a pinned static ridge of 5CB described in Sec. VI also
reveal the presence of a disclination line near to the centerline
of the ridge. In the present work, we therefore allow for the
occurrence of a discontinuity in θ at the centerline of the ridge.

Numerical investigations of the system (15)–(19) (see Ap-
pendix A for details) suggest that (i) all solutions for the
height of the ridge h decrease monotonically from a maximum
value at x = 0, and have even symmetry about x = 0, (ii)
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all continuous solutions for the director angle θ also have
even symmetry about x = 0, and (iii) solutions for θ with a
discontinuity only at x = 0 have odd symmetry about x = 0.

In light of these numerical results, we henceforth restrict
our attention to continuous solutions for θ and h in the right-
hand half of the ridge (i.e., in 0 � x � 1). Thus the contact-
line conditions Eq. (18) are replaced by a single contact-line
condition at the right-hand contact line, namely

h = 0 at x = 1, (27)

and a symmetry and regularity condition at the centerline of
the ridge, namely

hx = 0 at x = 0. (28)

Also, the area constraint Eq. (19) may be expressed as

1 = 2
∫ 1

0
h dx, (29)

and, for simplicity, the right-hand contact angle is hereafter
denoted by β = β+. Once obtained, these solutions in the
right-hand half of the ridge can be used to construct solutions
for the entire ridge.

E. The limits of strong and weak elasticity

Although, as mentioned in Sec. II C, in what follows we
focus on the most interesting regime in which surface-tension,
anchoring, and bulk elasticity effects are all comparable, it is
useful to discuss briefly the behavior in the limits in which
bulk elastic effects are either much stronger than or much
weaker than anchoring effects. The appropriate parameters
for comparing these effects are ratios of the bulk elasticity
and the anchoring strength of each interface in the form
K/|CNS|3/2 and K/|CGN|3/2. When elastic effects are much
stronger than anchoring effects, i.e., in the limit K/|CNS|3/2 →
∞ and K/|CGN|3/2 → ∞, the system Eqs. (15)–(17) and
Eqs. (27)–(29) has a solution for the director angle that is
uniform everywhere with θ ≡ θNS = θGN = const, which will
be discussed in Sec. III. When elastic effects are much weaker
than anchoring effects, i.e., in the limit K/|CNS|3/2 → 0 and
K/|CGN|3/2 → 0, θNS and θGN are constants that are deter-
mined by the preferred orientation of the director on the
nematic-substrate interface and gas-nematic interface, respec-
tively. For nonantagonistic anchoring, this again leads to a
solution for the director angle that is uniform everywhere
with θ ≡ θNS = θGN. However, for antagonistic anchoring,
this leads to a solution for the director angle that is distorted
with θNS 
= θGN, except close to the contact line (i.e., near to
x = 1), where it can be shown that there are narrow reorienta-
tional boundary layers in θNS and θGN of width O(K/|CNS|3/2)
and O(K/|CGN|3/2), respectively, in which elastic effects be-
come significant and θNS and θGN approach the same constant
value determined by the interface with the stronger anchoring.

III. UNIFORM DIRECTOR SOLUTIONS

We now consider uniform director solutions to the system
Eqs. (15)–(17) and Eqs. (27)–(29). This system has uniform
director solutions valid for all values of K , CNS, and CGN given

by

θNS = θGN ≡ mπ

2
, h = hI(x), and p0 = p0I, (30)

so that θ ≡ mπ/2, where m = 0 or 1, and hI and p0I are the
solutions for the height and the Lagrange multiplier for an
isotropic ridge given by Eq. (23), respectively. In particular,
the maximum height at the middle of the ridge and the contact
angle are given by hm = 3/4 and β = 3/2, respectively. We
note that these solutions are independent of K , CNS, and CGN;
however, the second-order energy given by Eqs. (21) and (22)
of these solutions does depend on CNS and CGN and is given
by

�E = 3
2 + (CNS + CGN) cos mπ. (31)

Inspection of Eq. (31) shows that a uniform solution aligned
everywhere with the homeotropic anchoring, which we term
an H solution, with θ ≡ θNS = θGN ≡ π/2 (i.e., m = 1) and
hence n ≡ ẑ, is energetically preferred when CNS + CGN > 0,
and a uniform solution aligned everywhere with the planar
anchoring, which we term a P solution, with θ ≡ θNS =
θGN ≡ 0 (i.e., m = 0) and hence n ≡ x̂, is energetically pre-
ferred when CNS + CGN < 0. When CNS + CGN > 0, either
the anchoring is nonantagonistic with homeotropic anchoring
on both interfaces, or the anchoring is antagonistic with the
homeotropic anchoring of one interface being stronger than
the planar anchoring of the other interface. Similarly, when
CNS + CGN < 0, either the anchoring is nonantagonistic with
planar anchoring on both interfaces, or the anchoring is an-
tagonistic with the planar anchoring of one interface being
stronger than the homeotropic anchoring of the other inter-
face. For future reference, we note that from Eq. (31) the H
and P solutions have second-order energies �EH and �EP
given by

�EH = 3
2 − CNS − CGN and �EP = 3

2 + CNS + CGN,

(32)

respectively.
Figure 2 shows sketches of an H solution (in which the di-

rector is aligned everywhere with the homeotropic anchoring)
and a P solution (in which the director is aligned everywhere
with the planar anchoring).

Finally, we note that although the uniform director solu-
tions are always solutions of the system Eqs. (15)–(17) and
Eqs. (27)–(29), as we shall see later, they are not always the
energetically preferred solutions of the system.

IV. DISTORTED DIRECTOR SOLUTIONS

We now consider distorted director solutions to the system
Eqs. (15)–(17) and Eqs. (27)–(29). In addition to the uniform
director solutions with θNS = θGN valid for all values of K ,
CNS and CGN described in Sec. III, for certain values of K , CNS,
and CGN this system also has distorted director solutions. For
these distorted director solutions, the anchoring conditions
Eqs. (15) and (16) can be combined and rearranged into the
form

hc

h
= sin 2θNS − sin 2θGN

2(θNS − θGN)
for θNS 
= θGN, (33)
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FIG. 2. Sketches of (a) an H solution and (b) a P solution. The director field n is indicated by the dark gray rods, with n ≡ ẑ in (a) and
n ≡ x̂ in (b).

where

hc = K

(
1

CNS
+ 1

CGN

)
(34)

is the Jenkins-Barratt-Barbero-Barberi critical thickness
[42,43] discussed in Sec. I D nondimensionalized with εd̃ . We
note that although hc is referred to as a thickness, it can be
positive, negative, or zero. Table I summarizes how the sign
of hc depends on the values of CNS and CGN, together with the
corresponding type of anchoring and the nature of the stronger
anchoring.

Equations (33) and (34) give information about the range
of values of hc, and therefore the ranges of values of K , CNS,
and CGN, for which distorted director solutions are possible.
In particular, using the mean value theorem shows that the
magnitude of the right-hand side of Eq. (33) is less than unity,
and therefore that h > |hc| when θNS 
= θGN. Thus, the director
can be distorted in the z-direction, i.e., it can have a solution
with θNS 
= θGN, only at positions x for which h > |hc|. On the
other hand, at positions x for which h � |hc| the director can
only be uniform and hence is given by Eq. (30). Consequently,
when h � |hc| for all 0 � x � 1, the solution is either an H
or a P solution. On the other hand, when h > |hc| at x = 0,
either the director is uniform with θNS = θGN in a uniform
region xc � x � 1 in which h � |hc|, where x = xc is the
position at which h(xc) = |hc|, and distorted with θNS 
= θGN

in a distorted region 0 � x < xc in which h > |hc|, or it is
uniform everywhere, i.e., an H or a P solution given by
Eq. (30). We term a distorted director solution with a uniform

region in which the director is aligned with the homeotropic
anchoring aDH solution and a distorted director solution with
a uniform region in which the director is aligned with the
planar anchoring a DP solution. In summary, DH and DP
solutions are given by

θ =
⎧⎨
⎩

θNS + (θGN − θNS)
z

h
for 0 � x < xc,

mπ

2
for xc � x � 1,

(35)

with m = 1 for a DH solution and m = 0 for a DP solution.
In the uniform region, the nematic Young-Laplace equa-

tion (17) reduces to hxx = −p0, which may be integrated with
respect to x subject to the contact-line condition Eq. (27) and
h(xc) = |hc| to yield the height of the ridge h in terms of the
two as-yet-unknown quantities p0 and xc, namely

h = (1 − x)

[
p0

2
(x − xc) + |hc|

1 − xc

]
for xc � x � 1.

(36)

In the limit xc → 0+, the solution Eq. (36) must satisfy the
symmetry and regularity condition Eq. (28) and the area con-
straint Eq. (29), which yield |hc| = p0/2 and p0 = p0I = 3/2,
respectively, and hence h → hI and |hc| → 3/4, where hI is
given by Eq. (23). In particular, in this limit the uniform region
occupies the entire ridge, and the DH and DP solutions reduce
to the H and P solutions, respectively.

In the special case in which the anchoring strengths of the
nematic-substrate interface and the gas-nematic interface are

TABLE I. A summary of how the sign of hc depends on the values of CNS and CGN, together with the corresponding type of anchoring and
the nature of the stronger anchoring.

CNS and CGN Sign of hc Type of anchoring Stronger anchoring

CNS � CGN > 0
hc > 0 nonantagonistic homeotropic

CGN > CNS > 0

CNS � CGN < 0
hc < 0 nonantagonistic planar

CGN < CNS < 0

CNS = −CGN hc = 0 antagonistic equal

CNS > −CGN > 0
hc < 0 antagonistic homeotropic

CGN > −CNS > 0

CNS < −CGN < 0
hc > 0 antagonistic planar

CGN < −CNS < 0
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FIG. 3. Sketches of (a) a DH solution, (b) a D solution, and (c) a DP solution. The director field n is indicated by the dark gray rods,
the critical thickness z = h(xc ) = |hc| is shown by a dashed line [note that z = h(xc ) = |hc| = 0 is not visible in (b)], the disclination line at
x = 0 is shown with a dotted line, the uniform regions xc � |x| � 1 in which h � |hc| are indicated in white, and the distorted region |x| < xc

in which h > |hc| is indicated in gray.

equal and opposite (i.e., when CGN = −CNS), then hc = 0 and
|xc| = 1 so that the distorted region occupies the entire ridge
and the director is distorted everywhere, i.e., θNS 
= θGN for
0 � x < 1. We term such a solution a D solution. Note that
in this special case (and only in this special case) anchoring
breaking occurs on both interfaces close to the contact line,
and the director angle at the contact line is the mean of the
preferred values on the two interfaces, i.e., θNS = θGN = π/4
at x = 1. Further analytical progress can be made for the
D solution in the asymptotic limits CGN = −CNS → 0 and
CGN = −CNS → ∞ (see Ref. [61] for details), but, for brevity,
we do not describe this analysis here.

Figure 3 shows sketches of a DH solution, a D solution
(in which the director is distorted everywhere), and a DP
solution.

V. ENERGETICALLY PREFERRED SOLUTIONS

We now solve the system Eqs. (15)–(17) and Eqs. (27)–
(29) and determine the regions of parameter space in which
the five qualitatively different types of solution, namely the
H, P , DH, DP , and D solutions, introduced in Secs. III and
IV and sketched in Figs. 2 and 3, are energetically preferred.
Specifically, in order to determine which of these solutions
has the lowest energy, and which is therefore the energetically
preferred solution, we compare the second-order energy of the
distorted director solution, namely �E given by Eqs. (21) and
(22), with the second-order energies of the H and P solutions,
namely �EH and �EP given by Eq. (32). In general, the
director angles θNS and θGN and the height of the ridge h
must be determined numerically [62]. The numerical proce-
dure used employed the MATLAB stiff differential-algebraic
equation solver ode15s [63] (see Appendix A for details).

A. Antagonistic anchoring (i.e., CNSCGN < 0)

Figures 4 and 5 show the director angles on the nematic-
substrate interface θNS and the gas-nematic interface θGN, and
the height of the ridge z = h and the director field n, respec-
tively, for representative numerically calculated energetically
preferred solutions when K = 1 in the case of antagonistic
anchoring with homeotropic anchoring on the gas-nematic
interface (i.e., CGN > 0) and planar anchoring on the nematic-
substrate interface (i.e., CNS < 0). In particular, Figs. 4 and 5
illustrate that, depending on the values of CNS and CGN, any
one of the five qualitatively different types of solution can
be energetically preferred. Note that some of the solutions
presented in Figs. 4 and 5 are related to each other via the
relations (24)–(26). In particular, applying Eq. (26) to the
solutions shown in Figs. 4(i), 4(h) 4(g), and 4(f) yields the
solutions shown in Figs. 4(a), 4(b) 4(c), and 4(d), respec-
tively. Also note that for the one-constant elastic constant and
anchoring strengths used in Figs. 4 and 5, h does not differ
very much from h = hI. Specifically, h shows at most a 1%
difference from h = hI for the solutions shown in Fig. 5. Al-
though there is little change in h over this range of parameter
values, there is a greater difference between h and hI for larger
anchoring strengths (see Ref. [61] for details).

As mentioned in Sec. IV, analytical progress can be made
for the D solution in the asymptotic limit CGN = −CNS → 0.
In particular, in this limit, the second-order energy of D solu-
tions, given by �E = 3/2 − C2

GN/(4K ) + O(C4
GN), is always

less than the second-order energy of the H and P solutions
given by Eq. (32) with CGN = −CNS, namely �EH = �EP =
3/2, and therefore in this limit the D solution is always ener-
getically preferred to the H and P solutions. In fact, numerical
investigations covering a wide range of parameter values
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FIG. 4. The director angles on the nematic-substrate interface θNS (solid line) and the gas-nematic interface θGN (dashed line) for
representative numerically calculated energetically preferred solutions when K = 1 in the case of antagonistic anchoring with homeotropic
anchoring on the gas-nematic interface and planar anchoring on the nematic-substrate interface with a constant difference between CNS and
CGN = CNS + 5.5 > 0 (chosen to show a full range of behaviors in which elasticity and the anchoring of both interfaces are all comparable)
for (a) CNS = −4.5, (b) CNS = −4.25, (c) CNS = −3.5, (d) CNS = −3, (e) CNS = −2.75, (f) CNS = −2.5, (g) CNS = −2, (h) CNS = −1.25, and
(i) CNS = −1.

including 10−4 � K � 104, |CNS| � 102, |CGN| � 102 sug-
gest that for antagonistic anchoring, distorted director so-
lutions always have lower energy than uniform director
solutions when |hc| < 3/4. As a consequence, the energeti-
cally preferred solutions (with corresponding sketches) and
the director angle at the contact line for antagonistic anchoring
can be classified in terms of hc as shown in Table II.

B. Nonantagonistic anchoring (i.e., CNSCGN > 0)

In contrast to the case of antagonistic anchoring described
in Sec. V A, for nonantagonistic anchoring the energetically
preferred solution is always a uniform solution. The classifi-
cation of the energetically preferred solution in terms of hc

is therefore very straightforward: for hc < 0 a P solution is
preferred, and for hc > 0 an H solution is preferred.
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FIG. 5. The height of the ridge z = h (solid line) and the director field n (dark gray rods) for representative numerically calculated
energetically preferred solutions when K = 1 in the case of antagonistic anchoring with homeotropic anchoring on the gas-nematic interface
and planar anchoring on the nematic-substrate interface with a constant difference between CNS and CGN = CNS + 5.5 > 0 for the same
parameter values as those used in Fig. 4, i.e., for (a) CNS = −4.5, (b) CNS = −4.25, (c) CNS = −3.5, (d) CNS = −3, (e) CNS = −2.75, (f)
CNS = −2.5, (g) CNS = −2, (h) CNS = −1.25, and (i) CNS = −1. The critical thickness z = h(xc ) = |hc| is shown by a dashed line [note that
z = h(xc ) = |hc| = 0 is not visible in (e)], the uniform region xc � x � 1 in which h � |hc| is indicated in white, and the distorted region
0 � x < xc in which h > |hc| is indicated in gray.

Note that distorted director solutions are possible when
|hc| < 3/4. Inspection of Eq. (22) with Eq. (23) for a distorted
director solution with nonantagonistic anchoring shows that
Esurf � 3/2, Eelas > 0, −|CNS| � ENS � |CNS|, and −|CGN| �
EGN � |CGN|, and therefore that either �E > �EH or �E >

�EP . Hence these distorted director solutions are never
energetically preferred, and so we do not need to discuss
them further. However, we note that similar high-energy
distorted director solutions in a static layer of nematic of

uniform thickness bounded between two parallel substrates
with nonantagonistic anchoring have been studied previously
[64].

C. CNS-CGN parameter plane

The classification obtained in Secs. V A and V B can be
used to determine the regions of parameter space in which the
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TABLE II. Classification of the energetically preferred solutions (with corresponding sketches), the director angle at the contact line, and
the effective refractive index at the contact line for antagonistic anchoring in terms of the critical thickness hc.

Energetically preferred Corresponding Director angle Effective refractive index
Range of hc solution sketch at the contact line at the contact line

hc � −3/4 H Fig. 2(a) π/2 no

−3/4 < hc < 0 DH Fig. 3(a) π/2 no

hc = 0 D Fig. 3(b) π/4
√

2 neno√
ne2+no2

0 < hc < 3/4 DP Fig. 3(c) 0 ne

hc � 3/4 P Fig. 2(b) 0 ne

five qualitatively different types of solution are energetically
preferred.

Figure 6 shows the regions of the CNS-CGN parameter plane
for the representative value K = 1 in which each of the five
qualitatively different types of solution is the energetically
preferred solution. In particular, the top left and bottom right
quadrants of the parameter plane (corresponding to the case

of antagonistic anchoring) contain three curves that separate
the regions of energetically preferred solutions: the solid line
on which hc = 0 corresponds to the only line on which D
solutions are energetically preferred, the dashed line on which
hc = −3/4 separates the region in which the H solution is
energetically preferred from the region in which the DH solu-
tions are energetically preferred, and the dotted line on which

FIG. 6. The CNS-CGN parameter plane for the representative value K = 1. The regions of the parameter plane in which an H solution
(shown in dark red), a DH solution (shown in light red), a DP solution (shown in light blue), and a P solution (shown in dark blue) is the
energetically preferred solution are indicated. The D solutions are energetically preferred along the solid line corresponding to hc = 0. The
dashed lines correspond to hc = −3/4, the dotted lines correspond to hc = 3/4, and the points corresponding to the representative solutions
shown in Figs. 4 and 5 are indicated by dots (•) and labeled (a)–(i).
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hc = 3/4 separates the region in which the P solution is ener-
getically preferred from the region in which the DP solutions
are energetically preferred. The points corresponding to the
representative solutions shown in Figs. 4 and 5 are indicated
by dots (•) and labeled (a)–(i). Using Eq. (34), the curves on
which hc = −3/4 and 3/4 can be expressed in terms of the
parameters K , CNS, and CGN by

CGN = − 4KCNS

3CNS + 4K
(37)

and

CGN = 4KCNS

3CNS − 4K
, (38)

respectively. In the limit CNS → ∞ the curves Eqs. (37) and
(38) approach CGN = −4K/3 and CGN = 4K/3, respectively,
from above, and in the limit CNS → −∞ they approach the
same values from below. In particular, Fig. 6 shows that for
CNS < −4K/3 and CGN < −4K/3 the H solution is never
energetically preferred and, similarly, for CNS > 4K/3 and
CGN > 4K/3 the P solution is never energetically preferred.
This conclusion may be important for industrial applications
involving pinned nematic ridges, where uniform homeotropic
or planar director alignment (i.e., the H or P solutions) could
be eliminated by selecting the anchoring strengths of the
nematic-substrate (i = NS) and/or the gas-nematic (i = GN)
interfaces to satisfy |Ci| > 4K/3.

As K is varied, the curves on which hc = −3/4 and 3/4
given by Eqs. (37) and (38) vary; however, the qualitative
behavior shown in Fig. 6 remains the same. In the limit
K → 0, the curves on which hc = ±3/4 approach the axes
CNS = 0 and CGN = 0, indicating that DH and DP solutions
are energetically preferred for all situations with antagonistic
anchoring when elastic effects are weak. Similarly, in the
limit K → ∞, the curves on which hc = ±3/4 approach the
diagonal straight line CNS = −CGN, indicating that the H and
P solutions are energetically preferred for all situations with
antagonistic anchoring when elastic effects are strong.

D. The effective refractive index of the ridge

To compare the theoretical predictions with the results
of the physical experiments described in Sec. VI, we now
consider an experimentally measurable quantity, namely the
effective refractive index of the ridge for x-polarized light
transmitted through the ridge in the z-direction, denoted by
neff = neff (x) and defined by

neff = 1

h

∫ h

0

neno√
ne

2 sin2 θ + no
2 cos2 θ

dz, (39)

where ne and no are the extraordinary and ordinary refractive
indices of the nematic [37]. We note that Eq. (39) can be
expressed in terms of the director angles θNS and θGN as

neff =

⎧⎪⎨
⎪⎩

ne for θNS = θGN ≡ 0,
F (θGN,k)−F (θNS,k)

θGN−θNS
ne for θNS 
= θGN,

no for θNS = θGN ≡ π/2,

(40)

FIG. 7. The effective refractive index neff given by (39) for
the representative solutions labeled (a)–(i) shown in Figs. 4–6 for
ne = 1.71 and no = 1.52.

where F (θi, k) with i = NS or i = GN are elliptic integrals of
the first kind, defined by

F (θi, k) =
∫ θi

0

du√
1 − k sin2 u

, (41)

and k = 1 − (ne/no)2. For the nematic 5CB used in the exper-
iments discussed in Sec. VI, ne = 1.71, no = 1.52, and hence
k = −0.27 [49].

Figure 7 shows the effective refractive index neff for the
representative solutions labeled (a)–(i) in Figs. 4–6 for ne =
1.71 and no = 1.52. In particular, Fig. 7 shows that for P
and H solutions, illustrated by the curves labeled (a) and
(i), the effective refractive index takes the constant values
neff = ne and neff = no, respectively. For DP solutions, la-
beled (b)–(d), neff increases monotonically in the distorted
region to a constant value of neff = ne in the uniform region.
For D solutions, labeled (e), neff is constant. The value of this
constant can be determined by recalling that for a D solution
θNS = θGN = π/4 at x = 1 and taking the limits θNS → π/4±

and θGN → π/4∓ in Eq. (40) to obtain

neff =
√

2 neno√
ne

2 + no
2
. (42)

In particular, (42) with ne = 1.71 and no = 1.52 gives the
value neff = 1.61 shown in Fig. 7. For DH solutions, labeled
(f)–(h), neff decreases monotonically in the distorted region
to a constant value of neff = no in the uniform region. A
classification of the effective refractive index at the contact
line for antagonistic anchoring in terms of hc is included in
Table II.

VI. EXPERIMENTAL INVESTIGATION
OF A RIDGE OF 5CB

Physical experiments were performed for a pinned static
ridge of the nematic 5CB, the results of which support the
theoretical predictions presented in Secs. II–V.
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FIG. 8. Schematic diagrams showing a plan view of (a) a transparent glass slide coated with a layer of PVA unidirectionally rubbed in the
x̃-direction (shown by the gray arrows), (b) a unidirectionally rubbed PVA-glass substrate (the white rectangular region with the gray arrows)
of length L̃ in the ỹ-direction and width 2d̃ in the x̃-direction with a Teflon surround (the dark gray region), and (c) a pinned static ridge of
5CB (the light gray rectangle). The Cartesian coordinates x̃ and ỹ (with the z̃-axis out of the page) are also indicated.

A. Experimental setup

A transparent glass slide was coated with a layer of the
polymer poly(vinyl alcohol) (PVA) (CAS 9002-89-5, molecu-
lar weight 9000–10000, Sigma-Aldrich/Merck KGaA, Darm-
stadt, Germany), which was unidirectionally rubbed in the
x̃-direction, as shown in Fig. 8(a), creating a homogeneous
planar director alignment in the x̃-direction with a low pretilt
[37]. The glass slide coated with the layer of PVA was then
partially coated, using a masking process, with an amor-
phous fluorinated copolymer Teflon AF (CAS 37626-13-4,
Sigma-Aldrich/Merck KGaA, Darmstadt, Germany), creating
a unidirectionally rubbed PVA-glass substrate of length L̃ =
6×10−2 m in the ỹ-direction and width 2d̃ = 1.2×10−3 m in
the x̃-direction with a Teflon surround, as shown in Fig. 8(b).
The experiments were conducted in an atmosphere of air at an
ambient temperature of (22 ± 1.5) ◦C.

A sample of the nematic 5CB (CAS 40817-08-1, Sigma-
Aldrich/Merck KGaA, Darmstadt, Germany) with an esti-
mated volume of 1×10−9 m3 was then prepared in a solution
(10% by weight) with toluene (CAS 108-88-3, Sigma-
Aldrich/Merck KGaA, Darmstadt, Germany) and deposited
onto the substrate. A pinned static ridge of 5CB, as shown
in Fig. 8(c), was then created by thermally annealing the
deposited 5CB-toluene solution at 50 ◦C. After the annealing
process was finished, the nematic-to-isotropic phase transi-
tion of the deposited 5CB was observed to occur at 35.2 ◦C
[65,66], indicating complete evaporation of the toluene. The
Teflon surround provided pinning of the contact line, so that
the ridge had length L̃ in the ỹ-direction and width 2d̃ in the
x̃-direction with contact lines along the length of the ridge
at x̃ = ±d̃ = ±600 μm and centerline at x̃ = 0. The entire
process was then repeated for a second sample of 5CB with
an estimated volume of 3×10−9 m3 to create a second pinned
static ridge of 5CB with a larger volume. As we shall see

shortly in Sec. VI B, the ridge with an estimated volume of
1×10−9 m3, hereafter referred to as the small ridge, corre-
sponds to a smaller aspect ratio ε than the ridge with an
estimated volume of 3×10−9 m3, hereafter referred to as the
large ridge.

The preferred director alignment on the nematic-substrate
interface has previously been determined to be planar in ex-
periments involving an interface between glass coated with a
layer of PVA and 5CB, with a well-characterized anchoring
strength in the range |C̃NS| = 10−4–10−3 N m−1 [45,67–69].
The preferred director alignment on the gas-nematic interface
has previously been determined to be homeotropic [60]; this
was confirmed using a separate experiment on a free-standing
film of 5CB. To the best of our knowledge, there have been
no measurements of the anchoring strength of an interface
between 5CB and air; however, we anticipate that this anchor-
ing strength will be significantly weaker than the anchoring
strength of the nematic-substrate interface [36]. In particular,
we expect that −C̃NS > C̃GN > 0, and therefore from the re-
sults summarized in Table I we expect that hc > 0, and hence
from the classification summarized in Table II that either a P
solution or a DP solution will occur.

Figure 9 shows a polarizing optical micrograph of the
small ridge, taken using a polarizing optical microscope with
broadband polychromatic illumination. The orientations of
the polarizer and the analyzer are shown by the two crossed
white arrows enclosed within the white circle in Fig. 9. The
dark regions on the left-hand and right-hand sides of Fig. 9
correspond to the optically isotropic Teflon surround, whereas
the optically anisotropic nematic produces transmitted light
with a color that depends on the height of the ridge h̃, the
birefringence of 5CB, and the director configuration. In partic-
ular, Fig. 9 shows two regions of opposing director distortion
on either side of a disclination line (which is not straight as
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FIG. 9. Polarizing optical micrograph of the small ridge of 5CB.
The orientations of the polarizer and the analyzer are shown by
the two crossed white arrows enclosed within the white circle. The
Cartesian coordinates x̃ and ỹ (with the z̃-axis out of the page) and a
100 μm scale bar are also indicated.

a result of the influence of unavoidable inhomogeneities in
the system) near to the centreline of the ridge. In particular,
as mentioned in Sec. II D, the presence of a disclination line
motivates allowing for the occurrence of a discontinuity in θ

at the centerline of the ridge.

B. Interferometry measurements of a ridge of 5CB

To determine the structure of a pinned static ridge of 5CB
close to the contact lines, the right-hand edges (specifically,
the region 400 � x̃ � 600 µm) of the two ridges described
in Sec. VI A were analyzed using the displacement of tilt
fringes in a Mach-Zehnder interferometer [70] illuminated by
collimated monochromatic He-Ne laser light of wavelength
632.8 nm incident on the ridges in the z̃-direction. The laser
beam in the interferometer was expanded after the spatial light
filter, and direct in situ microscopic imaging of the sample was
permitted using a 4 f relay lens. First, the sample was imaged
in transmission mode by blocking the laser beam in one of the
arms of the interferometer. This provided an accurate determi-
nation of the position of the edge of the ridge (with an error
in the x̃-direction of ±4 µm), and hence there was little (if
any) overlap of the 5CB and the Teflon surround. Then the tilt
fringe interference pattern was created using light beams from
both arms of the interferometer with the sample in situ. The
fringe pattern produced by the interferometer depends on the
orientation of the linear polarization of the incident laser light.
An analysis of these fringe patterns enables the height of the
ridge h̃ = h̃(x̃) and the effective refractive index neff = neff (x̃)
to be calculated [71]. To perform this calculation, we assume
that the planar director alignment in the x̃-direction on the sub-
strate ensured that the director did not vary in the ỹ-direction,
allowing h̃ to be obtained from the fringe pattern when the
polarization of the incident laser light was in the ỹ-direction. A

FIG. 10. The experimental values of the height of the ridge h̃
plotted as a function of x̃ for the right-hand edge (specifically, the re-
gion 400 � x̃ � 600 µm) of the small ridge (shown by open circles)
and the large ridge (shown by closed squares). The fitted theoretical
predictions for a pinned static isotropic ridge h̃I = 3ε(d̃2 − x̃2)/(4d̃ )
as a function of x̃ with ε = 0.071 (dashed line) and ε = 0.124 (solid
line), and 2d̃ = 1.2×10−3 m are also plotted.

comparison of the fringe patterns when the polarization was in
the x̃-direction and the ỹ-direction was then used to determine
neff and an estimate of the associated error [71]. The uncer-
tainties in the values obtained for neff reflect the precision
with which the centers of the fringes can be measured, which
includes uncertainties due to nonuniformities in the intensity
of the fringe pattern, as well as uncertainties in the horizontal
resolution which affects the precision with which the edge of
the ridge can be located.

Figure 10 shows the experimental values of the height
of the ridge h̃ plotted as a function of x̃ for the right-hand
edge of the small ridge (shown by open circles) and the large
ridge (shown by closed squares). The experimental values of
h̃ for each ridge show a quadratic profile that is in qualitative
agreement with the corresponding theoretical prediction for a
pinned static isotropic ridge given by Eq. (23) with Eq. (12),
namely h̃I = 3ε(d̃2 − x̃2)/(4d̃ ). To make a quantitative com-
parison between the experimental values and the theoretical
prediction, the values of the aspect ratio ε given by Eq. (11)
must be determined for each ridge. We determined ε by using
a least-squares fit between h̃I for 2d̃ = 1.2×10−3 m and the
experimental values of h̃ using ε as a fitting parameter, which
gave the values ε = 0.071 for the small ridge and ε = 0.124
for the large ridge. Figure 10 shows that excellent agreement
is found between the experimental values and the fitted theo-
retical predictions for a pinned static isotropic ridge.

Figure 11 shows the experimental values of the effective
refractive index neff plotted as a function of x̃ for the right-
hand edge of the small ridge (shown by open circles) and
the large ridge (shown by closed squares). The experimental
values of neff for each ridge show that close to the contact lines
neff increases as x̃ increases for both ridges, which indicates
that the director approaches a planar alignment as the contact
line is approached. Specifically, the experimental values of
neff show that the homeotropic anchoring at the gas-nematic
interface is broken close to the contact lines of both ridges,
and thus that the anchoring strength of the nematic-substrate
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FIG. 11. The experimental values of the effective refractive index
neff plotted as a function of x̃ for the right-hand edge (specifically,
the region 400 � x̃ � 600 µm) of the small ridge (open circles)
and the large ridge (closed squares). The theoretical predictions for
neff as a function of x̃ with ε = 0.071 (dashed line) and ε = 0.124
(solid line), C̃NS = −5.0×10−4 N m−1, C̃GN = 9.80×10−6 N m−1,
K̃ = 7.2×10−12 N, ne = 1.71, and no = 1.52 are also plotted. The
extraordinary and ordinary refractive indices of the nematic neff = ne

(dashed gray line) and neff = no (dashed gray line), respectively, are
also plotted. For clarity, the error of ±4 µm in the x̃-direction is
omitted from the above plots.

interface is greater than that of the gas-nematic interface.
Away from the contact line (specifically, in the region
x̃ � 550 µm), neff is approximately constant with the aver-
age values neff = 1.62 and 1.61 for the small and the large
ridge, respectively. Note that for a distorted director solution
with a π/2 rotation of the director between z̃ = 0 and z̃ = h̃,
i.e., θNS = 0, θGN = π/2, and hence θ = π z̃/(2h̃), Eq. (40)
reduces to neff = 2noF (π/2, k)/π = 1.61. The experimental
values of neff shown in Fig. 11 therefore indicate that the
director is distorted away from the contact line and tends
towards a planar alignment as the contact line is approached,
in qualitative agreement with the behavior of the DP solution
predicted theoretically and shown by the curves labeled (b)–
(d) in Fig. 7.

C. Anchoring strength of the gas-nematic interface

Before making any further quantitative comparisons be-
tween the experimental results, shown in Fig. 11, and the
theoretical predictions for neff , it is useful to review which
of the parameter values are known and which are unknown.
The anchoring strength of the nematic-substrate interface for
5CB, the elastic constants of 5CB, and the extraordinary and
ordinary refractive indices of 5CB are well characterized,
and hence values are readily available for these parameters.
However, as discussed in Sec. II B, the anchoring strength
of the gas-nematic interface for 5CB is unknown. We will
therefore compare the experimental values and the theoretical
predictions for neff to give a first estimate of C̃GN for this
system. Specifically, we use a least-squares fit between the
experimental values and theoretical predictions to estimate
C̃GN using |C̃NS| = 10−4–10−3 N m−1 [45,67–69], values of K̃
lying between the splay elastic constant K̃1 = 6.2×10−12 N
and the bend elastic constant K̃3 = 8.2×10−12 N for 5CB

[34], ε = 0.071 for the small ridge, and ε = 0.124 for the
large ridge, which gives an estimate of the anchoring strength
of an interface between air and the nematic 5CB to be

C̃GN = (9.80 ± 1.12)×10−6 N m−1. (43)

Note that the uncertainty of ±1.12×10−6 N m−1 is calcu-
lated using the upper and lower bounds on C̃NS and K̃ . The
spatial variation in the x̃-direction of the optical path length
that is experienced by light traveling through the ridge in
the z̃-direction leads to lensing effects. The calculated lens-
ing effects in the experiments are of a similar magnitude
to those found in similar experiments using interferome-
try, and, as suggested in Ottevaere and Thienpont [72], we
do not expect that lensing effects introduce any significant
error. Figure 11 shows good agreement between the predic-
tion of the theory for neff with ε = 0.071 (dashed line) and
ε = 0.124 (solid line), C̃NS = −5.0×10−4 N m−1 and C̃GN =
9.80×10−6 N m−1, and the experimental values of neff for the
small and the large ridge, respectively. This estimate of the
anchoring strength of the gas-nematic interface is consistent
with the experimental measurements of the anchoring strength
of the gas-nematic interface for ZLI 2860 [47] and MBBA
[48] mentioned in Sec. II B.

VII. CONCLUSIONS

In the present work, we performed a theoretical investi-
gation of weak-anchoring effects in a thin two-dimensional
pinned static ridge of nematic liquid crystal resting on a flat
solid substrate in an atmosphere of passive gas. Specifically,
we solved a reduced version of the general system of gov-
erning equations recently derived by Cousins et al. [33] valid
for a symmetric thin ridge under the one-constant approxi-
mation of the Frank-Oseen bulk elastic energy with pinned
contact lines to determine the shape of the ridge and the
behavior of the director within it. Numerical investigations
covering a wide range of parameter values indicated that the
energetically preferred solutions can be classified in terms of
the critical thickness hc given by Eq. (34). Specifically, for
antagonistic anchoring the energetically preferred solution is
an H solution, a DH solution, a D solution, a DP solution,
and a P solution for hc � −3/4, −3/4 < hc < 0, hc = 0,
0 < hc < 3/4, and hc � 3/4, respectively, while for nonan-
tagonistic anchoring the energetically preferred solution is a P
solution for hc < 0 and an H solution for hc > 0. In particular,
the theoretical results suggest that anchoring breaking occurs
close to the contact lines, validating the analysis of [33] in the
present situation. The theoretical predictions were supported
by the results of physical experiments for a ridge of the ne-
matic 5CB. In particular, these experiments showed that the
homeotropic anchoring at the gas-nematic interface is broken
close to the contact lines by the stronger planar anchoring
at the nematic-substrate interface. A comparison between the
experimental values of and the theoretical predictions for neff

gave a first estimate of the anchoring strength of an interface
between air and 5CB to be (9.80 ± 1.12)×10−6 N m−1 at a
temperature of (22 ± 1.5) ◦C.
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APPENDIX: NUMERICAL PROCEDURE FOR SOLVING
THE SYSTEM EQS. (15)–(17) and EQS. (27)–(29)

The numerical solutions presented in the current work
were obtained with the programming and numerical com-
puting platform MATLAB [63]. Specifically, MATLAB’s stiff
differential-algebraic equation solver ode15s was used to
be obtain numerical solutions to the system Eqs. (15)–(17)
and Eqs. (27)–(29). We added pseudo-time derivatives and
pseudo-time coefficients, denoted by ξ1, ξ2, ξ3, and ξ4 to
the system so that the anchoring condition on the nematic-
substrate interface Eq. (15), the anchoring condition on the
gas-nematic interface Eq. (16), and the nematic Young-
Laplace equation (17) take the forms

ξ1
dθNS

dt
= K (θGN − θNS) + CNSh sin θNS cos θNS, (A1)

ξ2
dθGN

dt
= K (θGN − θNS) − CGNh sin θGN cos θGN, (A2)

ξ3
dh

dt
= p0 + hxx + K

2

(
θGN − θNS

h

)2

, (A3)

respectively, and the area constraint Eq. (29) takes the form

ξ4
d p0

dt
= 1

2
−

∫ 1

0
h dx. (A4)

The contact-line condition Eq. (27) and the symmetry and
regularity condition Eq. (28) are unchanged. We numerically
solved the pseudo-time-dependent equations (27), (28), and
(A1)–(A4), and then we allowed the pseudo-time-dependent
numerical solutions to approach a steady state, so that the
solution of the system Eqs. (27), (28) and (A1)–(A4) ap-
proaches the solution of the system Eqs. (15)–(17) and
Eqs. (27)–(29).

All of the numerical solutions presented
in the present work used the initial condition
θNS = θGN = π ( sin(2πx) + 1)/4, h = hI = 3(1 − x2)/4,
and p0 = p0I = 3/4, and pseudo-time coefficient values of
ξ1 = 0.01, ξ2 = 0.01, ξ3 = 1, and ξ4 = 0.01. Solutions for
θ with a discontinuity at x = x̄ (0 < |x̄| < 1) can readily
be generated by using the initial condition θNS = θGN

= π (tanh (4(x − x̄)))/2. As described in Sec. II D, numerical
investigations of the system suggest that (i) all solutions
for the height of the ridge h decrease monotonically from
a maximum value at x = 0, and have even symmetry about
x = 0, (ii) all continuous solutions for the director angle θ

also have even symmetry about x = 0, and (iii) solutions for θ

with a discontinuity only at x = 0 have odd symmetry about
x = 0.
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