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Hydrodynamic stability criterion for colloidal gelation under gravity
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Attractive colloids diffuse and aggregate to form gels, solidlike particle networks suspended in a fluid. Gravity
is known to strongly impact the stability of gels once they are formed. However, its effect on the process of gel
formation has seldom been studied. Here, we simulate the effect of gravity on gelation using both Brownian
dynamics and a lattice-Boltzmann algorithm that accounts for hydrodynamic interactions. We work in a confined
geometry to capture macroscopic, buoyancy-induced flows driven by the density mismatch between fluid and
colloids. These flows give rise to a stability criterion for network formation, based on an effective accelerated
sedimentation of nascent clusters at low volume fractions that disrupts gelation. Above a critical volume fraction,
mechanical strength in the forming gel network dominates the dynamics: the interface between the colloid-rich
and colloid-poor region moves downward at an ever-decreasing rate. Finally, we analyze the asymptotic state,
the colloidal gel-like sediment, which we find not to be appreciably impacted by the vigorous flows that can
occur during the settling of the colloids. Our findings represent the first steps toward understanding how flow
during formation affects the life span of colloidal gels.
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I. INTRODUCTION

Colloidal gels feature in a range of applications, because
their properties bridge fluid and solid response. The arrested
dynamics in the percolating particle network allow a gel to
support its own weight for a finite time (the “shelf life”),
while its mechanical weakness allows it to be poured upon
the application of relatively low stresses. A large body of
experimental, simulation, and theoretical work has elucidated
colloidal gel formation [1–11], rheology [12–18], and shelf
life [19–33]. Many of these studies point toward fluid flow and
hydrodynamic interactions (HIs) as contributing to or even
dominating the properties and dynamics of colloidal gels.

Until recently, however, simulations of colloidal gelation
have mostly neglected HIs and flow, due to computational
limitations. State-of-the-art computational fluid dynamics
methods, capable of simulating many thousands of suspended
colloids, have started to rectify this [30,34–38]. For example,
our lattice-Boltzmann (LB) simulations [36] have shown that
HIs speed up the gelation of particles with strong, short-
ranged attractions at low colloid volume fractions φ0 and slow
it down for high φ0 with respect to systems without such
interactions. Surprisingly for an out-of-equilibrium process,
the network structure with and without HIs appeared identical
when the systems are compared at equal “structural time.”
These findings likely resolve seemingly conflicting results

*j.degraaf@uu.nl

[35,39,40] on the role of HIs in establishing structure during
colloidal gelation.

In practice, hydrodynamic flows are almost always primar-
ily driven by buoyancy forces FB. That is, there is a mass
density difference �ρ = ρc − ρs between the colloids (ρc)
and the suspending medium (ρs). For spherical colloids of
diameter σ , this leads to

FB = π

6
g�ρσ 3 < 0, (1)

where g is the local gravitational constant. It is already known
that buoyancy-driven flows are implicated in the way gels
fail at the end of their lifetime. Such collapse can involve
recirculation of the suspending medium triggered by the
falling of dense “debris” from the air-suspension meniscus
[19,25,27,28]. The question naturally arises, “How do such
flows affect the process by which gels form in the first place?”

Allain et al. addressed this using a diffusion-limited-
cluster-aggregation (DLCA) model [41], identifying a tran-
sition between “cluster deposition” and “collective settling.”
The transition was argued to occur when the gelation, sed-
imentation, and diffusion times are equal, leading to a
crossover volume fraction

φ∗ ∝ Pe(3−d )/(1+d ), (2)

with d the fractal dimension (d = 1.8 in DLCA). The gravita-
tional Péclet number,

Pe = πg�ρσ 4

12kBT
, (3)
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is the ratio between displacement through FB and thermal
diffusion with diffusivity D = kBT/(3πησ ), where T is the
temperature, kB Boltzmann’s constant, and η the dynamic vis-
cosity of the suspending medium. The theoretical prediction
for the lower stability bound matched the experimental result
to within one order of magnitude. The agreement is, however,
of limited utility, as the DLCA picture only applies in the
limit φ0 → 0, where φ0 is understood to be the homogeneous
colloid volume fraction at preparation.

The settling of aggregating colloids and the nature of the
sediment has also been the subject of several numerical in-
vestigations [42–46], recently including HIs [37,47]. When
attractions are too weak to gel the system, the steady-state
sedimentation rate can be slightly enhanced with respect to
that of a single particle at low φ0 [44,46,47]. For suffi-
ciently strong attractions, HIs can even interrupt the formation
of a percolating network by aligning and reconfiguring the
forming clusters [37]. However, the full process of gelation
in a confining geometry with (emerging) height-dependent
density and flow heterogeneities has not been studied thus
far.

Here, we extend our recent computational analysis of
bulk gelation of colloids with short-ranged, depletionlike at-
tractions [36] to include buoyancy (FB > 0). We compared
simulations using overdamped Langevin dynamics (no HIs or
flow: NH; [48]) to those using a GPU-accelerated fluctuating
LB fluid (with HIs and flow: WH) that capture large-scale
flow and hydrodynamic interactions between colloids. We
specifically used an enclosed simulation volume to ensure that
density heterogeneities throughout the sample are accounted
for, which can impact the large-scale flows. These simulations
allowed us to identify a distinct gelation criterion, given by
a critical initial volume fraction φc, based on the (initial)
nonsteady settling of the suspension.

Below φc, the settling is characterized by an effective
acceleration of the colloid-rich phase toward the bottom of
the sample. The buoyancy-driven flows are sufficiently vig-
orous to eject small clusters from the interface between the
colloid-rich and colloid-poor phases and generally disrupt the
formation of the gel network. The acceleration in a system
that otherwise obeys Stokes-flow conditions can be explained
by the combined effect of cluster growth and cluster reorien-
tation. We present a minimal theoretical model to help clarify
this effect. Above φc, the interface settling is decelerated,
which we associate with mechanical strength in the nascent
gel dominating the dynamics. Surprisingly, despite the strong
effect of fluid flow at low volume fractions, the colloidal
sediment that is achieved for long times compared to the time
it takes a single colloid to sediment its own diameter is not
appreciably affected. That is, this sediment is identical within
the error with or without HIs and flow. It is this sediment
that behaves as a true, albeit density-wise heterogeneous gel,
i.e., it has strongly arrested dynamics at intermediate volume
fractions φ ≈ 0.3.

We close our analysis with a comparison to other simula-
tion studies and by highlighting the limitations of our work.
We also connect to recent experiments on gelation in small
confining geometries, thus providing a foundation for further
in-depth studies.

II. NUMERICAL METHODS

The simulation methods used here to study the effect of
buoyancy on the formation of attractive colloidal gels are
similar to those we employed recently [36]. We will therefore
briefly outline the key points and focus on the differences that
are needed to account for FB > 0.

Our simulation volume is a prism with a square base of
length 32σ and it is periodic in the basal direction. We also
performed a few larger size simulations with basal dimen-
sions 48σ and 64σ , respectively. This volume is enclosed
vertically by a “floor” and “ceiling” that are purely repulsive
to the colloids and are impenetrable to the fluid, possessing
no-slip boundary conditions for its velocity field (standard
LB bounce-back algorithm). The placement of the enclosing
boundaries is such that the colloid centers are constrained to
a volume with height H = 125σ . Additionally, a few sim-
ulations were performed with effective heights H = 189σ

and H = 253σ , respectively. We will indicate it in the text
when we deviate from our standard choices of 32σ width and
H = 125σ .

We choose an enclosed, rather than fully periodic simula-
tion volume to facilitate the modeling of backflows throughout
the sample. The fully periodic setup used by Varga et al. [30]
to study gel rupture and more recently by Turetta and Lattuada
[37] to study colloidal gelation—both using FB > 0—imposes
global momentum conservation within the simulation volume.
However, because a local segment of gel experiences flows
that result from compaction throughout the sample, such a
local conservation argument may not hold. That is, the system
may not reach steady-state settling: (i) Heterogeneous flows
can damage the nascent gel locally, setting up larger recircu-
latory flows driven by gravity. (ii) Typically settling gels have
a heterogeneous density, meaning that flow through a specific
slice of the sample can be driven by forces that originate
lower (deeper) in the sample. Both of these considerations
informed our decision not to follow the zero-net-momentum
approach here. We also focus on gel formation rather than
rupture, as we found that there is significant impact on the
amount of preforming of a gel in our (unreported) attempts to
reproduce the results of Ref. [30]. We will return to the topic
of preforming gels later.

We match the bulk diffusivity of our particles between
the NH and WH simulations by setting the viscosity of
our suspending medium η, such that D = kBT/(3πησ ) =
1.1 × 10−2σ 2τ−1, with the thermal energy kBT ≡ 1, unit time
τ ≡

√
mσ 2/(kBT ), and particle mass m = (π/6)ρcσ

3 ≡ 1. A
short-ranged attraction between the colloids is modeled using
[36]

U gen
LJ (r) =

⎧⎨
⎩ε

[(
σ

r

)96

− 2

(
σ

r

)48

+ c

]
r < rc

0 r � rc

, (4)

which mimics an Asakura-Oosawa interaction [49]. Here, r is
the separation, rc the cut-off distance, ε the attraction strength,
and c a shift. The confining boundaries interact with the
colloids via Eq. (4), except that r has been replaced by the
center-to-boundary distance, and we use repulsive parameters
ε = 10kBT , c = 1, and rc = σ .
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FIG. 1. Snapshots of the colloids in a thin (2σ -wide) slice though the center of the simulation box with the colloids indicated in red (NH;
top) or blue (WH; bottom); Pe = 0.28 and ε = 10kBT . In a single panel, the initial volume fraction of the sample increases from left to
right: φ0 = 0.025, 0.05, 0.075, 0.1, 0.15, and 0.3, respectively, as indicated. Each time series has four panels, showing characteristic behaviors
between the initial and final configuration: t/tg = 0, 22.2, 47.0, and 242.2, respectively. For the hydrodynamic simulations, small clusters and
single particles are expelled from the forming gel (encircled in green).

The choice for purely repulsive boundaries on the top and
bottom wall of the simulation volume avoids the additional
complication of the gel hanging from the ceiling. Padman-
abhan and Zia [31] reported this to affect the dynamics in
nonhydrodynamic simulations. We verified that our results
are not strongly impacted by neglecting wall attraction, by
performing additional simulations where there was a 10kBT
and 20kBT colloid-wall attraction, both for a colloid-colloid
attraction of ε = 10kBT . The shape of the colloid-wall po-
tential is that of our high-exponent, shifted Lennard-Jones
interaction provided in Eq. (4), replacing r with the distance
between the colloid and wall. In these attractive-wall sim-
ulations, we found that for a sufficiently high colloid-wall
attraction, clusters were left behind on the top wall as the gel
settled. However, this top-wall deposition did not result in an
appreciable difference in the settling, which is in line with our
finding that the nascent gels are not able to support their own
weight. In view of this, we report only on purely repulsive
walls in the remainder of this paper.

Gravity is introduced by imposing a constant force on the
colloids in the negative z direction: −FBẑ. The associated
timescale is the gravitational time, the time it takes a particle
to sediment its own radius tg = 3πησ/|FB|. We use a suffi-
ciently small |FB| to stay in the low-Reynolds-number regime
(Re � 0.05 throughout), i.e., hydrodynamic dissipation dom-
inates inertia.

We consider nonequidistant initial φ0 ∈ [0.01, 0.3] cor-
responding to between 2503 and 75,098 colloids in our
simulation volume, and four values of Pe = 0.03, 0.06, 0.28,
and 1.42, respectively, with the last two chosen to correspond
to recent experiments [28,50]. Our systems are equilibrated
using a repulsive potential: ε = 10kBT , c = 1, and rc = σ ,
for 50tB before quenching the system. Here, tB = σ 2/(4D) =
23.5τ is the (Brownian) time for a particle to diffuse its own
radius. At a quench, we simultaneously switch on gravity and
an attraction of ε = 10kBT (or ε = 20kBT ); c = 0 and rc =
1.5σ . In all cases, we performed five independent simulations.

Our runs typically took several hours to several days to
run on a desktop (i7-8700) with modern GPU (NVidia RTX
2080 Ti). Smaller values of the gravitational Péclet number
Pe and larger values of the number of particles N lead to

longer simulation times, as expected. The increases are such
that our smallest values of Pe are at the edge of what is
computationally feasible for the largest number of particles
N . The accompanying scripts in the data package provide the
means to reproduce our results.

III. BUOYANT SETTLING OF GELS

Figure 1 shows the typical behavior with and without HIs
over a range of φ0 (videos are in the Supplemental Material
[51] and described in Appendix A). The interface between
the colloid-rich and colloid-poor regions settles at roughly
the same rate independent of φ0 in systems without flow.
Apparent differences between the samples at low φ0 can be
attributed to a diffusion-based widening of the interface dur-
ing settling, as the network structure has not yet become fully
arrested. With flow, the situation changes drastically. The sys-
tems with the lowest φ0 sediment fastest, and fluid backflow
causes clusters to be expelled from the colloid-rich region.

We quantified this difference as follows. The data is binned
and averaged over slices 4σ in height—accounting for near-
wall density reductions due to excluded volume—to obtain
the height profile φ(z). We consider slices with φ(z) > φ0/2
as colloid rich and determine the position of the interface pc

by extracting highest colloid-rich bin, averaging this over the
five runs. The interface position at small t is well described by
pc = H − A − Btβ+1, where H is the initial height and A, B
are constants, see Fig. 2. Appendix B provides evidence that
this initial settling of the interface is not dependent on H .

IV. CRITICAL VOLUME FRACTION

The form of pc(t ) implies that the interface velocity vc

scales as tβ . Interestingly, β(φ0) is nonmonotonic, see Fig. 3.
Unsurprisingly, β ≈ 0 for the NH system at low φ0: the in-
terface simply tracks the sedimentation of individual colloids
and vc � σ/(2tg). With HIs and fluid flow, however, β > 0 for
systems at low initial volume fractions, indicating accelerating
sedimentation. We will return to this in Sec. V.

At some critical φc, β vanishes and subsequently becomes
negative, decreasing further with increasing φ0. This decrease

034608-3



DE GRAAF, TORRE, POON, AND HERMES PHYSICAL REVIEW E 107, 034608 (2023)

 10−2

 10−1

 100

100 101 102 103

φ 0
 =

 0
.0

1;
 1

 x
 t

φ 0
 =

 0
.3

0;
 1

0 
x 

t

Pe = 0.28

β 
+ 

1 
= 

1.
27

0.
96

0.
53

0.
56

(H
 −

 p
c)

/H

t/tg

WH
NH

H
p
c

FIG. 2. The effect of buoyancy on the interface between the
colloid-rich and colloid-poor region for Pe = 0.28 and ε = 10kBT .
The reduced height of the colloid-poor region (H − pc )/H is given
as a function of the reduced time t/tg for two initial colloid volume
fractions φ0 = 0.01 and φ0 = 0.3, as labeled. For φ0 = 0.3, time
is multiplied by a factor 10 to aid the presentation. The dashed
lines indicate shifted power-law fits, see main text. The mean fitted
power-law coefficient β + 1 is given by the numbers next to each
line. The inset defines the height H and interface position pc.

appears to tend to a constant value, and the WH and NH
systems follow nearly the same trend within the error. Note
that the WH system appears to sediment slightly slower (equal
β, smaller vc). This is probably due to squeeze flows, which
hinder the colloids from approaching each other closely [36].
It should be noted that our lattice-Boltzmann variant does
not resolve lubrication flows, but an effective increase of the
friction upon approach is nonetheless present. Negative β in-
dicates decelerating sedimentation, which is a necessary (but
not sufficient) condition for gelation. In all cases, pc decreases
without showing any plateau or inflection point that can be
linked to a (short-lived) arrested state.
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FIG. 3. The exponent β for Pe = 0.28 and ε = 10kBT as a func-
tion of φ0 with (�) and without (©) HIs, showing standard errors.
Dashed curves: piecewise fits as guides to the eye. Arrow: critical
crossover volume fraction φc.

We have fitted a linear function and an exponential de-
cay to β(φ0) using least squares in the low- and high-φ0

regions, respectively, see Fig. 3. The former is motivated by
the more pronounced linear trend observed for Pe = 1.42, see
Appendix C, which provides β(φ0) curves for different values
of Pe.

V. ACCELERATED SEDIMENTATION

Before moving onto our dynamic stability criterion, let us
consider the accelerated nature of the settling of the interface
between the colloid-rich and colloid-poor region in our sus-
pension for low φ0. We will argue using a minimal theoretical
model that this is indicative of anisotropic collision-based
settling and aggregation in the direction of gravity. In Sec. VI
we confront this understanding with our simulation data.

Note that acceleration at low Reynolds numbers (Re �
0.05) is counterintuitive. In this regime, inertia is dominated
completely by friction: the fluid and particles suspended
therein do not accelerate. However, other simulation studies
have shown that for weak attractions between the colloids,
the steady-state sedimentation rate can be slightly enhanced
with respect to that of a single particle at low φ0 [44,46,47].
Clearly, there should be a transient regime upon quenching a
system between reduced settling of “free” particles and that of
the settling steady-state aggregates.

In the case of sufficiently strong interactions to induce
gelation, Turetta and Lattuada [37] indicate the emergence of
a steady state with an enhanced settling rate. In this state,
hydrodynamic interactions impact shape and orientation of
the clusters, as well as their ability to percolate. However, the
acceleration of the interface itself is thus far unaddressed and
it is necessary to explain the absence of a steady-state settling
behavior in our system. We do so by considering an idealized
one-dimensional (1D) argument.

Assume that k spheres in contact form a “rod” of length l =
2ka, which is aligned in the direction of gravity (k measures
the rod’s aspect ratio). This rod has a longitudinal friction
coefficient of

γ‖ ≈ 3

2
γsph

k

log k
, (5)

in bulk fluid [52]. Here, γsph = 6πηa is the single-sphere
sedimentation coefficient and log represents the natural log-
arithm. Note that the net buoyant force also scales with k,
which implies that the sedimentation velocity of a single rod
is ∝ log k.

Now we assume that this infinite dilution result also holds
for slightly higher densities, and we consider several vertically
aligned rods with a distributions of lengths. In particular, we
assume that Eq. (5) holds for densities that are sufficient to en-
able accumulation by collision. That is, longer rods sediment
faster, accumulating shorter rods sedimenting at a lower level
as they overtake these. This increases their length, since the
accumulation is in the length-wise direction, and consequently
their sedimentation rate. This in turn increases the rate of
accumulation, leading to an acceleration of settling.

In our idealized model, the process only terminates if the
initial state permits a steady-state distribution, wherein rods
of equal length sediment with fixed separations. Note that
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FIG. 4. Properties of the clusters that form close to time t = 0
for a sample with Pe = 0.28. In all cases, blue squares indicate data
obtained with hydrodynamics (WH) and red circles the nonhydro-
dynamic (NH) data. (a) The probability density function (PDF) for
free clusters of size n at time t ≈ 5tg for colloid volume fraction
φ0 = 0.05. The dashed lines serve as guides to the eye. (b) The
median value n̄ of the PDF for the cluster size as a function of the
initial volume fraction φ0 (t = 5tg) and time t (inset; φ0 = 0.018) for
Pe = 0.28. The error bars provide the standard error of the mean, and
the dashed lines are linear fits.

hydrodynamic interactions could, in practice, destabilize such
a configuration even if all rods have fixed length but are not
equidistantly spaced. In our much more involved simulations,
this situation cannot occur. The nascent gel strands are de-
formed, reorient, and break due to hydrodynamic interaction
and backflow. But, more importantly, the system densifies,
leading to the formation of a network that can support itself.
Both aspects would prevent the formation of a steady state of
settling, which is why we chose to perform our analysis in a
confining geometry, also see Sec. II.

VI. EARLY-TIME CLUSTERING

We test the validity of our simple argument by studying
the early-time clustering in our simulations. In the following
we use φ0 = 0.05 and Pe = 0.28 to ensure that we are in a
regime of (maximally) accelerated settling. Figure 4(a) shows
a representative example of the difference in the free-cluster
distribution between systems with and without HIs (t ≈ 5tg).
The “free” clusters were extracted by tallying all clusters of
size n in the system and removing the large, single cluster

that constitutes the sediment and parts of the gel that are
forming near the bottom of the sample. To obtain accurate
statistics, data from all five simulation runs were combined,
which allowed us to arrive at the probability density function
by normalizing the resulting histogram.

Note that the systems with HIs have smaller clusters, pre-
sumably due to backflows breaking up the nascent gel strands.
This does not invalidate the argument we put forward in
Sec. V, however, as the temporal evolution of the full dis-
tribution should be examined to judge the effect of HIs and
flow. Additionally, the small clusters are typically expelled
out of the interface by being carried along with the backflow.
That is, these small clusters are a poor indicator of the net
effect. Instead, we concentrate on the median cluster size n̄
that can be extracted from the probability density functions
(PDFs) that can be computed for each time t .

Figure 4(b) shows an example of the behavior of n̄. The
main panel of this graph shows that n̄ ∝ φ0 for low vol-
ume fractions, where there is a small difference in prefactor
between systems with and without HIs. At slightly higher
volume fractions the trend appears to be linear still, but within
the error, the distinction between the two systems has blurred.
In addition, there is a change in slope that is not relevant to
the discussion to follow. The linearity n̄ ∝ φ0 could be related
to the constant settling predication proposed by Allain et al.
[41]. However, note that their argument is based on spherical
aggregates, which we will shortly see is not appropriate for
describing our system. In addition, as we will also see in
Sec. VII, our data does not follow the DLCA trend that Allain
et al. base their argument on. Thus, the difference must be
sought in other quantifiers.

The inset to Fig. 4(b) reveals that at short times n̄ ∝ t for
small volume fractions (φ0 = 0.018), both with and without
flow and HIs. We conclude that in both cases the clusters grow
and that at these short times, there appears to be no intrinsic
difference between the mechanism of growth. The NH case
has slightly faster cluster growth, again, presumably due to
the disruptive effect of backflow interfering with growth in the
WH case. This is not entirely unexpected, because for a value
of Pe = 0.28, diffusion outstrips sedimentation by a factor of
four on the single-particle level.

For each free cluster, we determined the center (of mass)
and computed the distance vectors �r of all particles in the
cluster with respect to this center. Next, we computed the
cosine of the polar angle with respect to the z axis (along
which gravity is pointed): cos θ = ẑ · �r/|�r|, where ẑ is a
unit vector. Finally, we averaged the value P2(cos θ ), where
P2 is the second Legendre polynomial, over all clusters of
the same size for a given time to arrive at the mean cluster
orientation p̄2. This quantity is an indicator of the amount,
by which the clusters are elongated along the z axis. When
p̄2 = 0, there is no intrinsic bias; clusters that have p̄2 ≈ −1/2
are flattened out in the xy plane, and clusters with p̄2 = 1 are
fully aligned with the z axis.

Figure 5 shows the value of p̄2 for several times t
postquenching the system. In simulations without HIs and
flow, we find that there is no bias to the cluster orientation
within the error for all times. The data obtained from our
hydrodynamic simulations reveals that small clusters (up to
about n = 5 in size) have no intrinsic bias in their orientation.
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FIG. 5. The average orientation p̄2, as defined in the main text, of
the “free” clusters in the sample as a function of time t (expressed in
gravitational times tg) and cluster size n. Simulations were performed
with Pe = 0.28 at φ0 = 0.05, blue squares indicate data obtained
with hydrodynamics (WH), and red circles the nonhydrodynamic
(NH) data. The dashed black line shows the mean p̄2 value for an
isotropic cluster, and the error bars provide the standard error of the
mean.

However, for times t � 17.5tg, when most of the colloidal
clusters have not yet fully settled, there is a noticeable differ-
ence between the simulations with and without HIs. Around
t = 5tg, we find slightly larger clusters in the system with HIs.
These continue to grow and, around t = 10tg, display a mea-
surable anisotropy, favoring orientation along the z axis. The
largest clusters reach the bottom sediment before t ≈ 15tg,
but those larger clusters that remain suspended in the simu-
lation with HIs show an increased alignment with gravity. At
t ≈ 20tg, most of the large clusters in the simulations with HIs
have sedimented and there no longer is an appreciable bias.

Combining the understanding that our minimal 1D model
brings with the cluster properties that we have shown here, we
conclude that flow and hydrodynamic interactions, potentially
coupled with mobility-mediated growth, indeed lead to an
orientational bias in sufficiently large clusters. As predicted
by our 1D model, the oriented clusters settle out rapidly,
which underlies the accelerated sedimentation of the interface
between the colloid-rich and colloid-poor parts of the sus-
pension. Our result can be seen as a transient variant of the
observations by Turetta and Lattuada [37].

VII. DYNAMICAL STABILITY CRITERION

Returning to the dynamics of the interface, we can use the
specific value of φ0 for which β = 0 to define the crossover
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FIG. 6. The critical volume fraction φc as a function Pe for
ε = 10kBT (
) and 20kBT (�) showing standard errors. Fitted lines
(gray): φc ∝ log Pe labeled by the prefactor. Green line: the bulk per-
colation threshold, φ = 0.034 (dashed) and 0.032 (solid) for ε = 10
and 20kBT , respectively. Purple dashed curve: DLCA prediction [41]
with unit prefactor and d = 1.8.

volume fraction φc. We determine this value from our ex-
ponential fit, see Fig. 3. By doing so for a range of Péclet
numbers and two values of ε, we are able to create a state dia-
gram for the dynamical stability of a colloidal gel, see Fig. 6.

We find a regime where φc ∝ log Pe, so that a straight line
demarcates an “accelerating” from a “decelerating” settling
region in the (log Pe, φc) state space of gelation versus sed-
imentation. In the accelerating region, particle networks can
form in principle, but the nascent structures are destroyed
in practice by buoyancy-induced back flows, as evidenced
by small clusters being expelled from the gel, see Fig. 1
and Supplemental Material movies [51]. In the decelerating
region, networks can form that are able to support their own
weight to a certain extent. That is, mechanical strength in the
forming branches is able to withstand forces generated due to
sedimentation flow as fluid is squeezed out from the holes in
the network.

Note that doubling the attraction strength halves the slope
of the boundary line, i.e., the crossover Péclet number Pec ∝
exp(Cεφ0) with C a constant. This is indicative of attrac-
tions dominating the dynamics, or equivalently, of mechanical
strength in the emerging network.

The linear trend is bounded from below by an effective per-
colation threshold φp ≈ 0.033. It is clear that the system must
be able to percolate to form a network structure and eventually
a gel. However, below the green bounds, even a system with
FB = 0 was not found to percolate. We obtained the respective
ε boundaries by determining the minimum volume fraction
required to observe percolation within 103tB in bulk for NH
gels using the methods described in Ref. [36]. Appendix D
provides the details of this analysis.

For all our considered Pe values, the system has equili-
brated its gravitational profile in this time. It should be noted,
however, that for Pe ↓ 0, at some point DLCA (purple curve
in Fig. 6) is expected to hold: we therefore did not extend the
green lines fully to the left. Our percolation threshold depends
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FIG. 7. The effect of preforming the gel network by 50tB before
switching on gravity. (a) Comparison of the interface pc evolution
(no-preforming,�, and preforming, �, respectively) as a function of
time t in terms of the gravitational time tg. The three initial volume
fractions are as labeled for simulations with HIs, Pe = 1.42, and ε =
10kBT . (b) Comparison of the associated exponent β as a function
of the initial volume fraction φ0. The dashed lines represent the fitted
exponent and linear trend obtained from the full Pe = 1.42 and ε =
10kBT data without preforming, see Fig. 12.

slightly on the value of ε, see Fig. S6 [51], which controls
cluster rearrangement. Larger ε compacts the forming clusters
more and hinders in-cluster rearrangements, raising φp.

We tested the robustness of our result by preforming gels
without gravity (FB = 0) for 50tB after equilibration. Subse-
quently switching on gravity, we found that the sedimentation
is slightly more rapid at φ0 < φc, see Fig. 7(a). We interpret
this as being related to the fact that preforming leads to larger
anisotropic clusters, which have a higher rate of collective
settling. Note that β is slightly lowered for a given φ0, as the
cluster growth should be diminished when the gel is allowed
to preform. Nonetheless, the trend in β is similar, also see
Figs. 3(b) and 7. This similarity implies that φc is a meaningful
stability measure, though clearly the value of φc will be shifted
to lower values of φ0 by preforming the gel, as there will be
greater mechanical strength at lower volume fractions.

VIII. PROPERTIES OF THE SEDIMENT

As the nascent gels settle (rapidly or slowly), they become
more compact, since both the mechanical strength and resis-
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FIG. 8. The average colloid concentration in a horizontal slice
φ(z) as a function of the height z (normalized by H ) after sedimenta-
tion at Pe = 0.28 and ε = 10kBT . The blue curves show the data with
(WH) and the red curves without hydrodynamic interactions (NH).
Results for 14 initial volume fractions φ0 are provided, from left
to right the values are φ0 = 0.01, 0.018, 0.025, 0.038, 0.05, 0.063,
0.075, 0.088, 0.1, 0.125, 0.15, 0.175 0.2, 0.25, and 0.3. The two
straight dashed lines are guides to the eyes, indicating a crossover
in trend. The standard error is roughly three times the linewidth; it is
not shown here to improve the presentation.

tance to backflow increase. This eventually (t 
 100tg) leads
to structures that are arrested (vc ≈ 0) and can be character-
ized as colloidal gels. We do expect these gels to compact
further at times longer than we can probe numerically.

Figure 8 shows height profiles φ(z) in the gel state for our
standard set of φ0 and Pe = 0.28, i.e., the typical reference
point for our discussion thus far. At φ0 = 0.30, φ(z) shows
a narrow interfacial region at the top (0.8 � z � 0.7), where
the density rises rapidly as z decreases, followed by the main
gel body in which the density increases slowly from φ ≈ 0.4–
0.5. The presence of a density gradient recalls low-Pe results
without HIs [45]. As can be appreciated from Appendix E,
the result is robust with system size. However, Fig. 14 in
that Appendix also reveals that the shape of φ(z) depends
sensitively on the value of Pe.

A clearly demarcated interfacial region is also evident in
the φ(z) data at lower volume fractions. As φ0 decreases,
the crossover from interface to gel body decreases linearly,
and the density gradient in the latter becomes progressively
less linear. When φ0 has dropped to 0.1, the crossover from
interface to gel body has become a continuous “knee” rather
than an abrupt change in slope. Interestingly, the crossover
point, insofar as it still can be discerned, becomes constant at
φ0 < 0.1. This feature is more pronounced for small values of
Pe, see Fig. 14(a).

It is presently unclear what underlies the change in trend
in φ(z) as a function of the initial volume fraction and of
Pe. However, it is clear that the explanation must be sought
in terms of a mechanical description, as (surprisingly!) we
find no systematic difference between gels obtained with and
without HIs, despite the significant differences in settling rate
between the two at low φ0.

034608-7



DE GRAAF, TORRE, POON, AND HERMES PHYSICAL REVIEW E 107, 034608 (2023)

IX. CONNECTION WITH EXPERIMENT

Lastly, let us turn to experiments on colloidal gels in
narrow confinement [32,53]. To the best of our knowledge,
only Razali et al. [53] systematically investigated the effect
of buoyancy on the gelation and settling. They concluded
that “in small systems sedimentation is enhanced relative to
nongelling suspensions, although the rate of sedimentation
is reduced when the strength of the attraction between the
colloids is strong.” Our results suggest that the enhanced
sedimentation may be partially explained by backflow and
cluster growth. The reduction in settling speed with increased
attraction strength aligns with our finding that this shifts the
stability region, thus slowing down the dynamics at fixed
φ0 > φc.

Turning to our sediments, see Figs. 8, 14, and 15, we note
that these are a long-lived metastable “gel” state. That is,
there is an open network structure at intermediate volume
fractions that supports its own weight against gravity for
times considerably exceeding the gravitational and Brownian
time. We note that for the realistic experimental values of
Pe = 0.28 [50] and Pe = 1.41 [28], we have a significant
density gradient in our gel. By contrast, the initial density
profile of experimentally reported colloidal gels is typically
homogeneous [27,28,50]. However, it should be noted that
those measurements are carried out over much larger length
scales. It may be that our gels are too small to exhibit a
constant density regime, even taking into account the substan-
tially taller simulation volumes reported in Appendix E. The
discrepancy between experiment and simulation may also be
due to the effect of frictional constraints on interparticle mo-
tion [9–11] or aggregation [37]. The source of the mismatch
makes an interesting subject for future study. However, here,
we have chosen not to analyze the origin of the shape of the
φ(z) profiles further, as it does not capture the experiments of
interest [28].

X. CONCLUSION AND OUTLOOK

Summarizing, it is clear that short-time buoyancy-induced
flows can significantly impact colloidal gelation. We have
identified a dynamic stability criterion for the colloid vol-
ume fraction at which the system gels, which depends on
attraction strength and the ratio of buoyant settling versus
diffusion. The stability crossover emerges as a competition
between cluster growth, leading to a low-volume-fraction
acceleration of settling, and intermediate volume-fraction net-
work formation. The latter imparts mechanical strength to the
nascent gel, that causes it to experience hydrodynamic drag
as a porous material rather than a collection of disconnected
clusters.

However, interestingly, none of the drastic short-time dy-
namics induced by backflows strongly impact the settled
transient gel structure. Future work that includes (lubricated)
frictional interparticle interactions and tackles the computa-
tional challenges of simulating larger system sizes may bring
better agreement with experimental observations. This is a
necessary first step toward predicting and subsequently im-
proving the shelf life of colloidal gel products.

An open data package containing the means to reproduce
the figures and overall results of the simulations is available
[54].
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APPENDIX A: DESCRIPTION OF ACCOMPANYING
VIDEOS

The two videos accompanying Fig. 1 from the main text
show the evolution of the colloidal suspension in a thin
(2σ ) slice though the center of the simulation box with the
colloids indicated in red (NH; collapse_lv.mp4) or blue
(WH; collapse_lb.mp4); Pe = 0.28 and ε = 10kBT . In
both movies the initial volume fraction of the sample increases
from left to right: φ0 = 0.025, 0.05, 0.075, 0.1, 0.15, and 0.3,
respectively. The frame rate is such that for each second 10tg
elapses, with tg the gravitational time (see main text).
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FIG. 9. The effect of system size on the initial power-law be-
havior of the interface between the colloid-rich and colloid-poor
region for Pe = 0.28, φ0 = 0.1, and ε = 10kBT . The height of the
colloid-poor region (H − pc ) is given as a function of the reduced
time t/tg for five different box sizes, as labelled. The dashed lines
indicates a power-law fit that works well for all box sizes, from which
we find β ≈ 0.05. All simulations in this figure were performed with
HIs.
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FIG. 10. The exponent β as a function of φ0 for Pe = 0.03. Blue
squares indicate data obtained with hydrodynamics (WH). Due to
the long run-time of the simulations, the nonhydrodynamic (least
insightful) curves were not computed for this value of Pe. The error
bars provide the standard error, and the dashed curve is an exponen-
tial fit that additionally serves as a guide to the eyes.

The video compare_preform.mp4 shows the sedimenta-
tion for the colloidal suspension WH in a similar representa-
tion for φ0 = 0.1, Pe = 1.42, and ε = 10kBT . The difference
between the blue representation (left) and the cyan one (right)
is that the latter is preformed for 50tB with tB the Brownian
time. It should be noted that the interface of the preformed gel
sediments faster.

APPENDIX B: SCALE-INDEPENDENT SETTLING
DYNAMICS

Figure 9 reveals that the box size in which we per-
formed the simulations did not measurably impact the settling
coefficient β. Here, we specifically focused on the initial den-
sity φ0 = 0.1 for Pe = 0.28 and ε = 10kBT , because this is
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FIG. 11. The exponent β as a function of φ0 for Pe = 0.06. Blue
squares indicate data obtained with hydrodynamics (WH) and red
circles the nonhydrodynamic (NH) data. The error bars provide the
standard error, and the dashed curves are piecewise fits of a linear
and exponential function.
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FIG. 12. The exponent β as a function of φ0 for Pe = 1.42 in a
box of height H = 125σ and width of 32σ . Blue squares indicate
data obtained with hydrodynamics (WH) and red circles the nonhy-
drodynamic (NH) data. The error bars provide the standard error,
and the dashed curves are piecewise fits of a linear and exponential
function. The inset shows two additional NH simulation results for
effective heights H = 125σ (orange, 
) and H = 253σ (green, �),
respectively, with a square base of length 48σ .

where we locate φc (β ≈ 0). If there was a significant effect of
the system size/shape on the critical volume fraction, it would
have been revealed here. We note that there is a slightly bet-
ter defined initial power-law behavior for the larger systems.
From the cumulative results, we obtain a value of β ≈ 0.05,
which is sufficiently close to our original measurement.

In addition to the analysis performed using simulations
accounting for HIs and flow, we performed regular Langevin
dynamics simulations for two additional box sizes: effec-
tive heights H = 125σ and H = 253σ , respectively, with a
square base of length 48σ in both cases. The effect on the β

parameter that follows from these is minimal, as can be ap-
preciated from the inset to Fig. 12. This is unsurprising; any
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FIG. 13. Estimation of the percolation threshold. The probability
of percolating Pperc as a function of the initial volume fraction φ0 for
two interaction strengths: ε = 10kBT (blue squares) and ε = 20kBT
(red circles). Error bars indicate the standard error of the mean, and
the dashed lines are fits to the data with the function tanh[A(φ0 − B)],
where A and B are constants.
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effects would be most strongly expressed in simulations with
HIs. We mention the result here for completeness. The goal
of these simulations was to chart the effect of box height
H on the height profile φ(z) in the long-time sediment. The
profiles we obtained were qualitatively similar, as shown in
Appendix E.

APPENDIX C: ADDITIONAL SEDIMENTATION
EXPONENTS

In this Appendix we provide additional information on the
exponent β that describes the power-law dependence of the
initial settling velocity. Here, we present this as a function
of φ0 for Pe = 0.03, 0.06, and 1.42 in Figs. 10, 11, and
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FIG. 14. The average colloid concentration in a horizontal slice
φ(z) as a function of the height z (normalized by H ) after sedi-
mentation at (a) Pe = 0.03 and (b) Pe = 1.42, respectively; in both
cases ε = 10kBT . The blue curves show the data with (WH) and the
red curves without hydrodynamic interactions (NH). Results for 14
initial volume fractions φ0 are provided, from left to right the values
are φ0 = 0.01, 0.018, 0.025, 0.038, 0.05, 0.063, 0.075, 0.088, 0.1,
0.125, 0.15, 0.175 0.2, 0.25, and 0.3. The two straight dashed lines
are guides to the eyes, indicating a crossover in trend. The standard
error is not shown here to improve the presentation but is comparable
to the fluctuations on the trends.
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FIG. 15. The average colloid concentration profile φ(z) as a
function of the reduced height z/H in the sediments that form at
Pe = 1.42 and ε = 10kBT . The red data in the main panel is for our
standard box dimensions of H = 125σ and basal length 32σ , while
the orange dashed curve shows the result for a basal width of 48σ

and the same height H . The inset shows data (purple curves) for an
effective height of H = 253σ and a basal width of 48σ . All data was
obtained without accounting for HIs. Results for five initial volume
fractions φ0 are provided, from left to right the values are φ0 = 0.025,
0.050, 0.075, 0.100, 0.125, and 0.150. The two straight dashed lines
are guides to the eyes, indicating a crossover in trends. The standard
error is not shown here to improve the presentation but is comparable
to the fluctuations on the trends.

12, respectively, where Pe indicates the gravitational Péclet
number.

Only the ε = 10kBT result is shown in Fig. 10, the result
for ε = 20kBT is analogous. Accelerated sedimentation is
found for all values of Pe in systems with HIs. The guides
to the eye are a composite between a fitted linear function for
small φ0 and an exponential decay, respectively. Both fits were
obtained using a least-squares approach. Note the pronounced
linear trend of the low-φ0 data for Pe = 1.42 in Fig. 12, which
is referenced in the main text.

APPENDIX D: PERCOLATION MEASUREMENTS

Figure 13 shows the result of our analysis of the percolation
threshold, on which we base our vertical gelation boundaries
in Fig. 3 of the main text. To obtain this quantity, we simulated
1000 colloids in a cubic simulation volume for several edge
lengths, such that we obtained the desired values of φ0 shown
in the figure. The systems were prepared in the usual manner
(main text and Ref. [36]) and were allowed to gel for the
somewhat arbitrary, but very long time of 103tB. At this point
we determined whether the system had percolated, which
we define by asserting that a cluster exists that self-connects
in one direction across the periodic simulation volume. We
use an interparticle spacing of 1.05σ to determine whether
a particle is part of a cluster or not, with σ the diameter in
our high-exponential Lennard-Jones potential (see main text).
This measurement was repeated 20 times for each point in our
data set, from which we obtained our error bars, as shown in
Fig. 13.
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The data revealed a lower bound to φ0 beyond which we
did not find any instances of systems that had percolated.
Clearly, our data shows finite-size and finite-time effects, as
there is a sizeable transition zone where the system has a
finite, nonunity probability to percolate. In principle, the per-
colation analysis can be improved by scaling out the finite
system size, which should reveal a sharper transition. How-
ever, we chose not to do so here, as obtaining this level of data
is a costly process and further improving it does not serve the
purpose of our work. We fitted the data using tanh[A(φ0 − B)],
where A and B are constants, to determine the point where the
system did not percolate. The shape appeared to capture our
trend well but is otherwise not physically motivated. The fit-
ting gave the following transition points φp = 0.034 ± 0.001
and φp = 0.032 ± 0.001 for ε = 10kBT and ε = 20kBT , re-
spectively, see main text.

Note that, surprisingly, the ε = 20kBT system has a
slightly lower percolation threshold than the ε = 10kBT sys-
tem. We suspect that the higher interaction strength leads
to slower rearrangements of the forming gel strands. As a
consequence, the clusters that form remain more extended,
allowing them to percolate more readily. However, the effect
is subtle, since the shift in the average trend is less than 10%
of the signal.

APPENDIX E: ADDITIONAL SEDIMENTATION PROFILES

Figure 14 shows a crossover in the shape of the sedimented
suspension that mirrors that shown in Fig. 8 for values of the
Péclet number of Pe = 0.03 and Pe = 1.42, respectively. This
crossover is located at φ0 ≈ 0.08.

Note that depending on the value of Pe, the shape of the
sediment below the meniscus—to the left of the sharp increase
in density—differs substantially. In Fig. 8 of the main text, the
profile is clearly linear, while in Fig. 14(a) there is a concave
quality to it and Fig. 14(b) presents a convex shape. To give
context to this, a linear density profile is similar to the density
trend found for an initially homogenous, linearly elastic solid
under gravitational compression. The flattening off of the pro-
file for low values of the Péclet number indicates that above
a certain volume fraction, for low gravitational strength, the
gel can support (some of) its own weight without becoming
strongly compressed. Conversely, at high Pe, compaction at
low values of z is needed to support the weight that rests on
top of the network.

Finally, we consider the effect of box dimensions on the
sediment in Fig. 15. Here, we used the highest gravitational
strength and volume fractions up to φ0 = 0.15 in simulations
without HIs to have the gel sediments form in a reasonable
time. We note from the main panel that widening the box has
little effect on the shape of the sediment. However, within the
error, the upward turn in the “knee” in φ(z) that indicates
the crossover between the gel body and the colloid-dense
and colloid-poor interface is less pronounced; we have ex-
tended the horizontal guide to the eye to indicate this. The
shape of the profile for a box that is nearly double the height
(H = 253σ ) is similar, but the presence of a knee is even less
pronounced. We conclude that—at least for the simulations
that we have checked in this manner—the system size does
not appreciably impact the qualitative trend observed for the
φ(z) profile of the sediment.
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