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Kinetic modeling of the chemotactic process in run-and-tumble bacteria
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The chemotactic process of run-and-tumble bacteria results from modulating the tumbling rate in response to
changes in chemoattractant gradients felt by the bacteria. The response has a characteristic memory time and
is subject to important fluctuations. These ingredients are considered in a kinetic description of chemotaxis,
allowing the computation of the stationary mobility and the relaxation times needed to reach the steady state. For
large memory times, these relaxation times become large, implying that finite-time measurements give rise to
nonmonotonic currents as a function of the imposed chemoattractant gradient, contrary to the stationary regime
where the response is monotonic. The case of an inhomogeneous signal is analyzed. Contrary to the usual Keller–
Segel model, the response is nonlocal, and the bacterial profile is smoothed with a characteristic length that grows
with the memory time. Finally, the case of traveling signals is considered, where appreciable differences appear
compared to memoryless chemotactic descriptions.
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I. INTRODUCTION

The ability of motile microorganisms to sense and migrate
along the gradient of an external stimulus or field is known
as taxis [1]. Chemotaxis is the most remarkable example;
in this case, the migration is due to a chemical or ligand
gradient [2,3]. Biological [4–7] as well as artificial [8–11]
microswimmers are able to perform chemotaxis. For instance,
chemotaxis is a key ingredient in the performance of the
immune system to seek and annihilate foreign invaders [12],
and for bacteria, it helps in finding their ecological niche.

One of the first theoretical models created to study the
chemotaxis phenomenon at the macroscopic level was the
Keller–Segel model, which couples a diffusion-drift equa-
tion for bacterial density with a reaction-diffusion equation for
the chemoattractant concentration and was first developed
to describe slime mold agglomeration [13]. Over the years,
this model was adapted to describe chemotaxis in run-and-
tumble (RT) bacteria [14]. Seyrich et al. [15], improved this
model, including a sensing threshold and the saturation in the
chemotactic response, allowing them to reproduce a traveling
bacteria pulse. Other studies considered different ways to
merge the bacterial dynamics with the chemoattractant con-
centration. Saragosti et al. [16] studied bacterial waves driven
by chemotaxis, involving reaction-diffusion equations de-
rived from a kinetic description without memory of the RT
dynamic. Their results are in qualitative agreement with ex-
periments. Taktikos et al. [17] inspected the diffusive behavior
for several swimming strategies: run-and-tumble, run-and-
reverse, and run-reverse-and-flick, from a phenomenological
point of view. They introduced the chemotactic effect at the
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tumble rate by integrating the concentration and the response
function, showing that the RT strategy is more efficient than
run-reverse and flick.

Chemotaxis in a typical bacterium such as Escherichia
coli (E. coli) is an extensive topic of study since it not only
expresses metabolic preferences but also reveals bias in its
motility due to the environment [18,19]. Their motion is tied
to the rotation of the bacterial flagellum in the RT dynamics.
When all the flagella rotate counterclockwise, they form a
well-ordered bundle and propel the bacteria forward in “run”
mode. If one or more flagella reverse direction, then the bun-
dle is disrupted, and the bacteria reorient. This is known as
a “tumble,” with an average tumbling angle of approximately
70◦ [17,20].

The internal chemotaxis network of E. coli senses and com-
pares temporary changes in the concentration of its chemical
environment to which it responds by changing its movement
[2,21–23]. This network is sensitive to small relative changes
in chemical concentrations and is able to sense different chem-
ical traces, allowing it to migrate to any of them [24,25]. If
the concentration increases over time (for example, because
the bacteria entered a food-rich region), then the bacteria tend
to keep moving in a straight line, tumbling less frequently,
resulting in a biased random walk. However, if this remains
constant, then the bacteria return at the same tumbling rate
[26]. Moreover, a decrease in the average tumbling angle was
reported when bacteria move along a chemical gradient than
against it [4,27].

In this article, we use the tools of kinetic theory to ana-
lyze the chemotactic process of bacteria that present the RT
dynamics described above. The paper is organized as follows.
In Sec. II, we present the mathematical model that describes
how bacteria respond to gradients in the ligands and how the
tumbling rate is modified accordingly. The model considers
the fluctuations of large amplitude and long memory on the
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tumbling rate, which have been recently measured for E. coli
[44]. In Sec. III, we introduce the kinetic model and describe
the relevant observables that quantify the chemotactic re-
sponse to ligand gradients. Section IV considers the case of a
uniform concentration gradient, obtaining the steady bacterial
current and the relaxation times in terms of the microscopic
model. The results for a chemotactic signal changing in space
and time are explored in Sec. V, with special attention to
the spatial distribution of bacteria under a chemotactic land-
scape or for a localized traveling signal. Conclusions and
perspectives are finally given in Sec. VI.

II. CHEMOTACTIC SIGNALING

We will describe bacteria moving in three spatial dimen-
sions but also in two-dimensional conditions, which is usually
the case when solid surfaces are present [28]. For the motion
of bacteria, we will consider the RT model, where each swim-
mer moves at a constant speed V in the direction indicated by
its director n̂ and performs tumbles with a rate ν. At each tum-
ble, the director changes to a new one n̂′, with a probability
that depends only on the relative angle between both directors,
w(n̂ · n̂′). Recently, we showed that unless w is quite singular,
in the sense that it is highly peaked at 1 and −1, bacteria
reach a diffusive motion after a few tumble events [29]. Then,
different functional forms of w only change quantitatively the
value of the diffusion coefficient, which for all cases scales
as D ∼ V 2/ν. Hence, for simplicity, we will consider that the
tumble is isotropic, meaning that w is constant [w = 1/(2π )
in two dimensions and w = 1/(4π ) in three dimensions].
As usual, translational Brownian diffusivity is not included
because it is much smaller than the one that results from the
RT dynamics [30]. Finally, rotational diffusion is not included
either because contrary to the tumble dynamics, it does not
respond to the chemotactic signal. Its inclusion would only
produce minor changes in the results.

There is a well-studied biochemical pathway for describing
the internal chemotaxis network of E. coli, which has rational-
ized into a set of Langevin equations for the kinase activity
a(t ), the receptor methylation level m(t ), and the relative
CheY-P concentration phosphorylated protein with respect to
its equilibrium value y(t ) [31–34],

ȧ = − 1

τa
[a − ā(m, l )] + ζa, (1)

ṁ = − 1

τm
a + ζm, (2)

ẏ = − y

τy
+ γ a + ζy, (3)

where l is the ligand concentration and ζa, ζm, and ζy are white
noise terms, with correlations 〈ζa(t1)ζa(t2)〉 = 2Taδ(t1 − t2),
〈ζm(t1)ζm(t2)〉 = 2Tmδ(t1 − t2), 〈ζy(t1)ζy(t2)〉 = 2Tyδ(t1 − t2),
and vanishing cross-correlations 〈ζa(t1)ζm(t2)〉 =
〈ζa(t1)ζy(t2)〉 = 〈ζm(t1)ζy(t2)〉 = 0. Ta, Tm and Ty describes
the intensity of the environmental noise, which is not
necessarily thermal inside cells for the ligand, methylation
level, and CheY-P concentration, respectively. For E. coli,
the equilibrium kinase activity is ā ≈ αm − βl , α and β are
the coupling constant due to the linear approximation around

the steady-state [34]. The timescales for kinase response
τa, methylation response τm and CheY-P concentration τy,
are well separated: τa, τy � τm. Finally, γ accounts for the
coupling of CheY-P with the kinase activity. With this, the
chemotactic response can be schematized as follows. If there
is an instantaneous increase in the ligand concentration, then
ā will decrease, inducing first a decrease on a and y and,
on a slower scale, a decrease of m. After a transient of the
order of τm, the system will reach a new steady state with
a = ā = 0, y = 0, and m = βl/α, on average. That is, for
a transient, y takes values opposite to the change on l . To
finish the chemotactic circuit description, we use the model
of Tu and Grinstein [35], where they show that tumbling is an
activated process in which the free energy barrier to switch
the flagella rotary motor direction depends on y. Assuming
that the changes in y are small, a Taylor expansion can be
made on the free energy barrier, concluding that ν = ν0eχy,

where χ > 0 measures the sensibility to changes in CheY-P
concentration and ν0 is the tumbling rate of models without
stochasticity, that is, where the tumbling rate is constant over
time. With this coupling, an instantaneous increase in the
ligand reduces y and the tumbling rate, making bacteria swim
for a longer time in the direction of food, resulting in a biased
random walk.

The experimental works in Refs. [21,31–34,36,37] show
that τa = 0.02 s and τy = 0.5 s are smaller than τm = 8 s. If
we consider temporal variations of the ligand concentration
on the scale of τm, then we can adiabatically eliminate the fast
degrees of freedom. To do so, we take the limit τa → 0 in
Eq. (1), resulting in a = ā = αm − βl and the limit τy → 0 in
Eq. (3), resulting in y = τyγ a. Taking the temporal derivative
of these expressions and using Eq. (2) to eliminate m, we
obtain ẏ = −y/τ − βγ τyl̇ + ζ , where τ = τm/α is the relax-
ation time of the effective chemotactic signaling and ζ is a
white noise with correlation 〈ζ (t1)ζ (t2)〉 = 2T δ(t1 − t2), with
T = (τyα)2(γ 2Tm + Ty/τ

2
m). Finally, it is convenient to define

X = y/
√

T τ , which is a dimensionless Gaussian variable of
unit variance that satisfies the equation

Ẋ = −X + bl̇

τ
+

√
2

τ
ξ, (4)

where b = βγ τy
√

τ/T measures the coupling to the ligand
and ξ is a white noise of correlation 〈ξ (t1)ξ (t2)〉 = δ(t1 − t2).
For the temporal derivative of l in Eq. (4), we use that the lig-
and has some spatial-temporal distribution l (r, t ) and, using
the chain rule, resulting in the Lagrangian derivative

l̇ = V n̂ · ∇l + ∂l

∂t
. (5)

In term of these variables, the tumbling rate is

ν = ν0eλX , (6)

where λ = √
T τχ measures the sensitivity of the tumbling

rate to changes in X . Besides its natural dependence with χ , it
also increases with the memory time and the noise amplitude
of CheY-P fluctuations. We remark that this is a description
with normalized variables of the phenomenon, made to high-
light the influence of the relevant scales, the relaxation time
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of the chemotactic signal, τ , and the sensitivity of the tumble
rate to the changes in X , λ.

Note that if neglect memory and fluctuations, X follows
instantaneously the ligand rate of change, X = −bl̇ , resulting
in the tumbling rate ν = ν0e−λbl̇ . This expression, or similar
ones reflecting that the tumbling rate is a decreasing func-
tion of the ligand intake rate, have been previously used in
Refs. [38–42]. In addition, in the literature, the tumble re-
sponse has been approximated in a linearized form [43] and
without including temporal variations of the chemoattractant
gradient [14]. Here, we go beyond this approximation, consid-
ering the effects of fluctuations and memory. To recover the
memoryless limit, it sufficient to take τ → 0 in the forthcom-
ing expressions. To neglect the effect of fluctuations (T → 0),
the previous changes of variables imply that we have to simul-
taneously take the limits b → ∞, λ → 0, while bλ remains
constant.

In Ref. [44], by tracking several individual E. coli (RP437
bacteria in motility buffer supplemented with serine) in 3D, it
was possible to fit the relevant parameters to: V = 27 µm/s,
ν0 = 0.22 s−1, τ = 19 s, and λ = 1.62. However, in Ref. [32]
they obtained τ = 8 s from the study of biochemical networks.
The bacterial strains and culture media are different, which
could be origin of this difference in values. Nevertheless, they
are of the same order, validating the use of the approxima-
tions above. The fitted value of λ is rather high, meaning
that fluctuations are indeed important (as was noticed in the
large variability of tumbling rates in experiments [44]). This
large value would imply that a simple linear expansion for the
free energy barrier is only a first approximation and higher
order terms would be necessary for a full quantitative agree-
ment. However, in the absence of additional experiments, for
this study we consider only up to this order, where already
interesting results are obtained. Even more, to obtain explicit
results, in Sec. V we will consider the additional approxi-
mation ν ≈ ν0(1 + λX ). The description of the chemotactic
coupling, which is finally expressed in Eq. (4), requires that X
does not deviate strongly from its equilibrium value, implying
that the ligand gradients should not be too large. Also, for the
validity of the adiabatic elimination, the temporal variations
of the ligand must take place in scales larger than τa and τy.

Finally, in what follows, to simplify the resulting expres-
sions, we will fix dimensions such that V = ν0 = b = 1, also
implying that lengths are measured in units of the mean
distance traveled by a swimmer between tumbles. In these
dimensionless units, the memory time for E. coli, according
to the experiments in Ref. [44] is τ = 4.2. We recall that this
value is specific for E. coli with the specified culture condi-
tions. Hence, to maintain the analysis as general as possible,
we will present results for small and large values of τ .

III. KINETIC THEORY DESCRIPTION

For simplicity, in what follows, we will present the deriva-
tions in three dimensions, but the main results will be given
also for two dimensions. Whenever possible, the results will
be presented in compact form in terms of the spatial dimen-
sionality d = 2, 3. Each bacterium is described by its posi-
tion r = (x, y, z), director n̂ = (sin θ cos ϕ, sin θ sin ϕ, cos θ ),
where θ and ϕ are the standard spherical coordinates, and

the normalized concentration of CheY-P X . Hence, an en-
semble of bacteria is described by the distribution function
f (r, n̂, X, t ), normalized such that the integral over r, n̂, and
X gives the total number of bacteria. With these elements,
we can write a kinetic equation for the distribution function
f (r, n̂, X, t )

∂ f

∂t
+ V n̂ · ∇ f = 1

τ

[
∂2 f

∂X 2
+ ∂ (X f )

∂X
+ bl̇

∂ f

∂X

]

+ν0eλX

[
1

4π

∫ 4π

0
f (r, n̂′, X, t )d2n̂′ − f

]
,

(7)

where d2n̂ = sin θdθdϕ. The terms on the left-hand side rep-
resent the streaming of bacteria moving at velocity V n̂. In
the first square bracket on the right-hand side are the Fokker–
Planck terms associated to the Langevin Eq. (4). Finally, the
last two terms on the right-hand side describe the tumbling as
a Lorentz-like equation: a gain term of bacteria swimming at
any director n̂′ that perform a tumble and end with n̂, and
a loss term [45–47]. Importantly, the tumbling rate is not
constant but given by Eq. (6).

The two most relevant observables when there are chemo-
tactic signals are the density profile

ρ(r, t ) ≡
∫

f (r, n̂, X, t ) d2n̂dX (8)

and the bacterial current

J(r, t ) ≡
∫

f (r, n̂, X, t )V n̂ d2n̂dX. (9)

In the absence of any chemotactic signal (l̇ = 0), the X
variable evolves independently of the position and orientation,
allowing us to find the solution of the Fokker–Planck sector
in the kinetic equation in terms of Hermite polynomials. The
steady solution for X , for vanishing concentration gradient, is
a simple Gaussian distribution of zero mean and unit variance.
Based on this, when the chemotactic signal is present, we
propose solutions as the series

f (r, n̂, X, t ) = e−X 2/2

√
2π

∞∑
n=0

Hn(X/
√

2) fn(r, n̂, t ), (10)

where Hn is the Hermite polynomial of order n [such that
H0(x) = 1, H1(x) = 2x, . . .] [48]. With this expansion, owing
to the orthogonality condition of the Hermite polynomials, the
density and bacterial current are simply given by the first term
in the series

ρ(r, t ) =
∫

f0(r, n̂, t ) d2n̂, J(r, t ) =
∫

f0(r, n̂, t )V n̂ d2n̂.

(11)

IV. RESPONSE TO A UNIFORM
CONCENTRATION GRADIENT

We first consider the simple case of a uniform concen-
tration gradient, where we can show in detail the analyt-
ical methods that will be used. The classical chemotactic
response, in which a steady current is established, corre-
sponds to finding a stationary and homogeneous solution,
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for which fn(r, n̂, t ) = fn(n̂). Fixing the gradient along the
z axis, ∇l = l ′ẑ, implying that l̇ = l ′ cos θ , gives after substi-
tuting the expansion (10) into Eq. (7),

2nn!

τ

[
bl ′
√

2
cos θ fn−1(n̂) + n fn(n̂)

]
=

∞∑
p=0

Ipn(λ)[gp − fp(n̂)],

(12)

for n = 0, 1, 2, . . . , where we used the orthogonality relation
of the Hermite polynomials and we defined f−1 = 0. For the
recurrence equation, we defined

gp = 1

4π

∫
fp(n̂)d2n̂ (13)

and the matrix

Ipn(λ) = 1√
2π

∫ ∞

−∞
eλX−X 2/2Hp(X/

√
2)Hn(X/

√
2)dX

= eλ2/2

⎡
⎢⎣ 1

√
2λ . . .√

2λ 2(1 + λ2) . . .
...

...
. . .

⎤
⎥⎦. (14)

The relations (12) must be understood as equations for
the partial distribution functions fn(n̂), for n = 0, 1, 2, . . . ,
which are obtained in terms of the set of gn. Imposing the
self-consistent relations (13) gives the full solution in terms
of ρ0 = 4πg0, the global density of the bacterial suspension.
In practice, the series is truncated for a maximum degree n of
Hermite polynomials.

Truncating at n = 0 gives a vanishing current because this
corresponds to maintaining a symmetric Gaussian distribution
for X , not responding to the chemotactic signal. For n � 1
finite currents are obtained. The expressions are involved,
particularly for increasing values of n, where more terms
are present. However, by the character of the expansion in
Hermite polynomials, the series is not convergent for large
values of the ligand gradient l ′ and only the linear response
current is adequately obtained (see Fig. 1 for a comparison
with numerical simulations). Performing a Taylor series on l ′
gives J =µ0ρ0∇l , where the static mobility µ0 per swimmer
can be computed to different numbers of polynomials n:

μ0 = 1

d

(
1 + τe

λ2
2

) μ̂, n = 1, (15)

μ0 = 2 + e
λ2

2 (1 + λ2)τ

d
[
2 + e

λ2
2 (3 + 2λ2)τ + eλ2

τ 2
] μ̂, n = 2. (16)

Here μ̂ = bλ gives the characteristic value of the mobility.
Note that, as expected, if the chemotactic circuit is broken,
either because the CheY-P protein does not respond to changes
in the ligand (b = 0) or because the energy barrier does not
change with X (λ = 0), the current vanishes identically. Im-
portantly, if we consider only the linear dependence on λ [that
is, if we approximate ν ≈ ν0(1 + λX )], then it is sufficient
to compute up to n = 1, and both expressions coincide to
μ0 = μ̂/[d (1 + τ )]. Note that this expression corresponds to
the limit where fluctuations are neglected. When the memory
is neglected, the mobility reduces to μ0 = μ̂/d even if fluctu-
ations are taken into account.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

J/(ρ0V )

l

FIG. 1. Normalized stationary current J/(ρ0V ) for three-
dimensional systems with τ = 1 and λ = 1.5, as a function the
imposed gradient l ′. In purple, the stationary current obtained av-
eraging for Taveg = 2×106 after eliminating the transient, while in
green is the averaged response for the shorter time Tshort = 102,
starting from an isotropic initial condition. The symbols are the
results of the simulations and the colored lines are guides to the
eyes. In black, the full nonlinear current keeping terms up to
n = 1, J = 2ρ0[arctan γ /γ − 1]/log[1 − 2γ /(1 + γ )], where γ =
blλ/[1 + τe

λ2
2 ].

To compare with the analytical predictions, agent-based
simulations are performed, solving numerically the differ-
ential equations for X and the position vector r using the
Euler–Heun scheme. The tumbles are performed by simulat-
ing the Poisson process in discrete time, that is, at each time
step �t , with a probability �teλX , a tumble is performed,
and the new direction is chosen at random. For the steady
state, after discarding a transient (Ttransient = 103), averages
are taken for large times (Taveg = 2×106). Figure 1 presents
some examples of the stationary current as a function of the
imposed gradient l ′. A first linear response regime is obtained,
while for large gradients, the current saturates to the max-
imum possible value Jmax = ρ0V . From the linear regime,
the static motility μ0 is obtained, which is plotted in Fig. 2
against the theoretical prediction [Eqs. (15) and (16)]. The
prediction to order n = 1 is accurate for small values of λ and
τ , while the following order has an excellent agreement with
the simulations up to high values of the parameters, except
for small memory, where there is a systematic deviation. Ne-
glecting fluctuations gives a poor result except if τ or λ are
small.

With the help of the kinetic equation, it is possible to deter-
mine also how long it takes for the system to reach the steady
state when, suddenly, a chemotactic signal is established (or
when bacteria reach a region with a fixed gradient). For that,
we consider that the system starts in equilibrium, that is,
homogeneous, isotropic, and with the equilibrium Gaussian
distribution for X ,

f (r, n̂, X, t = 0) = ρ0
e−X 2/2

2(2π )3/2
. (17)

Using the Laplace transform, Ã(s) = ∫ ∞
0 e−st A(t )dt , the

chemotactic mobility when the series is truncated up to n = 1,
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λ
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FIG. 2. Static mobility μ0 that characterizes the linear response
as a function of λ, for different values of the memory time τ for
three dimensional systems. From top to bottom, τ = 0.1 (purple),
0.5 (green), 1.0 (light blue), and 5.0 (orange). The symbols are the
results of the simulation, the dashed lines the theoretical prediction
to order n = 1 [Eq. (15)], the solid lines the prediction to order
n = 2 [Eq. (16)], and the dotted lines are the prediction neglecting
fluctuations, μ0 = μ̂/[d (1 + τ )].

is

μ̃(s) = μ̂

ds
[
1 + τe

λ2
2 + sτ (2 + λ2) + e− λ2

2 s(1 + sτ )
] . (18)

The poles of μ̃, which are independent on the spatial dimen-
sionality, give the following relaxation rates to the stationary
mobility μ0,

ν1/2 = 2τ + z ∓ √
z2 + 4τ z − 4w

2w
, (19)

where w = τe−λ2/2 and z = τλ2 + e−λ2/2, and the minus
(plus) sign should be used for ν1 (ν2). For small λ, ν1 ∝ ν0 in
dimensional units is associated to the relaxation process due to
tumbling only, while ν2 ∝ ν0 + 1/τ in dimensional units pro-
vides the relaxation to the steady current by the chemotactic
circuit besides tumbling.

When more Hermite polynomials are included, new re-
laxation rates appear. Figure 3 presents the relaxation times
T relax

i = 1/νi for different memory times τ . For small memory
times, the successive relaxation times decrease, with a clear
hierarchical structure. This justifies truncating the Hermite
series to a few terms, resulting in an adequate description
for the slow dynamics; only for a description of the fast
relaxations more Hermite terms would be needed. Also, in
the small memory regime, the convergence on the values for
the relaxation times is fast, and the values are accurately pre-
dicted with few terms. When the memory time τ increases, the
scale separation of relaxation times and the rapid convergence
of the values is lost and more terms are needed to obtain ac-
curate values for the dynamics. Although the description with
few terms might be inaccurate for large τ , it still gives new
phenomena that result from the finite memory (see Sec. V).
Also, we remark that the stationary mobility (Fig. 2) is

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

 0  0.5  1  1.5  2

λ

T relax
i

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2

λ

T relax
i

FIG. 3. Largest three relaxation times as a function of λ: T relax
1

(purple), T relax
2 (green), and T relax

3 (orange). The dashed line results
using 2 and solid lines using 3 Hermite polynomials. Different mem-
ory times are presented: τ = 0.2 (top) and τ = 5.0 (bottom).

accurately described with only two terms even for large values
of τ and λ.

The presence of several relaxation times with comparable
values for large τ and λ, generates a striking phenomenon.
When the system is initiated with an isotropic distribution
(equivalently to placing initially the system in a region without
chemoattractants), the response, averaged for a short time, can
be nonmonotonic with the imposed gradient. Indeed, as shown
in Fig. 1, the short-time response presents a maximum as com-
pared to the stationary response, which is strictly monotonic.
This nonmonotonicity is due to swimmers that are stuck in
suboptimal directions that nevertheless move partially along
the gradient (cos θ > 0), for which the tumbling rate has be-
come very small. Only for much longer times, the swimmers
will make tumbles to more optimal directions (cos θ ≈ 1). As
a result, the short-time response is also appreciably smaller
than the stationary one.

V. SPATIOTEMPORAL RESPONSE

For chemical signals, with spatiotemporal variation, it is
relevant to study how the population responds by analyzing
the patterns that appear in the bacterial density. Here, we
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will consider the linear response of the system, for which we
consider that the concentration field of the chemoattractant is
given by a reference value plus a small Fourier mode is space
and time l (r, t ) = l0 + εl1ei(k·r−ωt ), where ε � 1. Choosing
the z axis along k gives l̇ = iε(k cos θ − ω)l1ei(k·r−ωt ). Hence,
to solve the kinetic equation we propose a solution

f (r, n̂, X, t ) = f0(X ) + ε f1(θ, X )ei(k·r−ωt ), (20)

where f0(X ) = ρ0e−X 2/2/[2(2π )3/2] is the homogeneous and
isotropic equilibrium solution, with density ρ0, and the pertur-
bation f1 is expanded as

f1(θ, X ) = e−X 2/2

√
2π

∞∑
n=0

Hn(X/
√

2) fn(θ ). (21)

Simplifying Eq. (6) to ν = ν0(1 + λX ), which is valid in the
limit of small fluctuations, the kinetic equation to order O(ε1)

reads

i(k cos θ − ω)

[
ρ0bl1
23/2π

δn1 + fn(θ )

]
+ n

τ
fn(θ )

− λ√
2

[gn−1 − fn−1(θ )] − [gn − fn(θ )]

−
√

2(n + 1)λ[gn+1 − fn+1(θ )] = 0], n = 0, 1, 2, . . . ,

(22)

where gn are defined in Eq. (13). For the purpose of the linear
response, when considering the linear contribution in λ, as in
the static regime it is sufficient to truncate the equations to
n = 1. With this, the bacterial density and current are

ρ(r, t ) = ρ0 + ερ0ψ (k, ω)l1ei(k·r−ωt ), (23)

J(r, t ) = ερ0μ(k, ω)kl1ei(k·r−ωt ), (24)

where

ψ2D(k, ω) = μ̂[
√

1 + 2τσ + τ 2(k2 + σ 2) − τ
√

k2 + σ 2 − 1]

(1 − √
k2 + σ 2)

√
1 + 2τ [σ −

√
1 + 2τσ + τ 2(k2 + σ 2)] + τ 2(1 + k2 + σ 2)

(25)

and

ψ3D(k, ω) = 2μ̂

τ

[kτ + arctan(k/σ )] arctan[kτ/(1 + στ )] − kτ arctan(k/σ )

[k − arctan(k/σ )]{k − arctan[kτ/(1 + στ )]} (26)

are the density response functions in two and three di-
mensions, respectively, and to simplify notation we defined
σ = 1 − iω. Truncating Eqs. (22) with more terms change
the angular distribution, but do not alter the response func-
tions. Using the mass conservation equation ∂ρ

∂t = −∇ ·
J, the current response functions are given by μ(k, ω) =
(ω/k2)ψ (k, ω). Although formally the linear response func-
tions are valid for all wave vectors and frequencies, in
practice, for a given value of l1, l̇ increases with k and ω.
This limits the applicability of the previous expressions up to
maximum values of k and ω.

To gain insight, three important cases are considered: the
static response, the response to a traveling harmonic wave, and
the wake generated by a concentrated traveling chemotactic
signal.

A. Static response

For a static chemotactic signal (ω = 0), the response as-
sociated to the current, μ(k, 0), vanishes identically as no
stationary current can be produced by a sinusoidal signal in
space. The static response function for the density ψ (k, 0) has
a bell shape that can be well approximated to a Lorentzian
form

ψ (k, 0) ≈ ψ0

1 + k2/k2
0

, (27)

with constants that are obtained imposing that the asymptotic
limits for k � 1 and k � 1 are correctly reproduced. The

results are

ψ02D = μ̂τ

1 + τ
, k02D =

√
1 + τ

τ
, (28)

ψ03D = 2μ̂τ

1 + τ
, k03D =

√
(1 + τ )(π2 − 4)

2τ
, (29)

in two and three dimensions, respectively (see Fig. 4 for
a comparison with the full expression). Going back to real
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FIG. 4. Comparison of the full expression for the static re-
sponse function ψ (k, 0) in three dimensions for τ = 0.1(purple), 0.5
(green), 1.0 (light blue), and 5.0 (orange), with the Lorentzian ap-
proximation (black dashed line). In two dimensions the comparison
is similar. Inset: the same in log-log scale.
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FIG. 5. Stationary normalized density profile in the comoving frame, generated for a propagating square pulse moving at different speeds:
(a) U = 0, (b) U = 0.04, (c) U = 0.5, and (d) U = 1.0. In purple the results of the simulations of particles with τ = 1 and λ = 1, moving
in two dimensions in a square box of size L = 20 with periodic boundary conditions, and with a chemotactic pulse of amplitude l1 = 0.4. In
orange the analytical prediction using Eq. (25). For the nonpropagating pulse (a), the prediction using the Lorentzian approximation (27) is
shown in light blue. The green curves correspond to the memoryless approximation (τ → 0), where the response has been rescaled to put the
figures in scale.

space, a concentrated chemotactic signal (a Dirac δ) generates
a bacterial cloud with a size k−1

0 and total number of swim-
mers Ncloud = ρ0ψ (0, 0), which in 3D equals 2ρ0μ̂τ/(1 + τ ).
The characteristic length grows with τ (linear for small values
of τ and as the square root for large values), reflecting that
bacteria miss the chemotactic target because their reaction
time depends on the memory time τ . The intensity of the
accumulation, ψ0, also grows with the memory time, to later
saturate.

The nonlocal response given by the density response func-
tion ψ (k, 0) should be compared with the usual Keller–Segel
model [13]. There, the total current, diffusive plus chemotac-
tic, is J = −D∇ρ + ρμ∇l , and gives for the static regime
ρ = ρ0eμl/D, that is, a completely local response.

For a stationary signal with a step profile in one direction,
l (r, t ) = l0 + l1sgn(x), with sgn(x) ≡ x/|x| the sign function,
the stationary bacterial concentration can be explicitly ob-
tained using the Lorentzian approximation

ρ(r) = ρ0 + l1ψ0sgn(x)(1 − e−k0|x|), (30)

resulting in a rounded profile, with the same smoothing length
k−1

0 .

To test these predictions, we compare with simulations
performed with the method described in Sec. IV. In this case,
we consider a two-dimensional system, where the particles
move in a square box of size L = 20, with periodic boundary
conditions. To generate an inhomogeneous state, we impose a
square ligand profile in the x direction,

lsquare(x) =
{−l1, −L/2 � x < 0

l1, 0 � x < L/2
. (31)

The system is initialized homogeneously and, after a transient,
the particle density ρ(x) is measured. Figure 5(a) shows the
normalized density profile �ρ(x)/ρ = [ρ(x) − ρ0]/ρ0. As
the particles are noninteracting, the reference density is imma-
terial, and smooth profiles are obtained averaging over long
times. The theoretical prediction is obtained by numerically
evaluating the Fourier series obtained by the multiplication of
static response function ψ (k, 0) with the Fourier coefficients
of the ligand profile. Both the full expression (25) or the
Lorentzian approximation (27) show an excellent agreement
with the simulations [Fig. 5(a)]. Note that the rounding off
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of the profile, not predicted by the Keller–Segel model, is
accurately described by our model.

B. Response to traveling waves

As a second case of interest, we consider ligand waves,
traveling with velocity U. Going to Fourier space, the response
is obtained substituting ω = k · U (i.e. σ = 1 − ik · U) in
Eqs. (25) and (26). The resulting expressions for ψ and μ,
which are no longer isotropic, are complex to work with
analytically, but they can be used to compute numerically their
inverse Fourier transform and hence the resulting density and
current waves.

As a simple condition, we first take the square pulse
Eq. (31), moving at constant speed along the x direction:
lmov.sq.(x, t ) = lsquare(x − Ut ). Simulations are performed in
two dimensions as in Sec. V A. Here, the particle den-
sity ρ(x) is measured in the comoving frame of the wave.
Figures 5(b)–5(d) show the normalized density profiles
�ρ(x)/ρ = [ρ(x) − ρ0]/ρ0, which are compared with the
theoretical prediction. The agreement is excellent for all the
velocities under consideration. For comparison, we present
the approximation without memory (τ → 0), where we artifi-
cially rescaled the response to put the figures in scale. It is seen
that, as the Keller–Segel model, this approximation misses the
smoothing and rounding off of the profiles observed in the
simulations.

As a final case of interest, we consider a localized chemo-
tactic signal that travels through the system with a constant
velocity U, i.e., l (r, t ) = l0 + Lδ(r − Ut ), where L is the in-
tensity of the signal and δ is the Dirac delta function. The pur-
pose is to analyze the bacterial wake that is generated, which
in this case is not homogeneous in y. Figure 6 (top) presents
the normalized density �ρ(r)/(ρ0μ̂L), obtained by numeri-
cally computing the inverse Fourier transform. In simulations,
it is not possible to put a Dirac delta signal, and we used
instead a Gaussian signal l (r) = L

2πR2 e−r2/2R2
, of width R = 7

and intensity L = 150, moving in a two dimensional box of
size 60×60. Figure 6 (bottom) shows the generated density
wake in the comoving frame, obtained in the simulation. Note
that due to the periodicity of the box, the wake appears also in
the front. For a moving signal, the total number of particles in
the wake vanishes exactly, with an excess of particles near the
signal and a deficit at large distances. The limit to vanishing
signal velocity is subtle as the crossover distance between
these two behaviors diverge when the velocity vanishes.

VI. CONCLUSIONS

We have analyzed the chemotactic process on run-
and-tumble bacteria, like E. coli. Considering that in the
chemotactic signaling pathway there is a dominant timescale,
we simplified the mathematical model to a single protein
concentration X that controls the tumbling rate as ν = ν0eλX .
This protein concentration evolves according to changes of
the chemoattractant signal feel by the bacteria while displac-
ing, with a characteristic memory time. With these elements,
we have built a kinetic description of a bacterial suspension
subject to chemoattractant signals that are either static of have
spatiotemporal dependencies. The resulting kinetic equation,

FIG. 6. Top: Prediction for the density wake in two dimensions,
generated by a localized chemotactic signal l (r, t ) = l0 + Lδ(r −
Ut ) (black dot), traveling to the right at speed U = 0.1 in an un-
confined volume. The memory time is τ = 1.0 and the scale bar has
length V/ν0. Bottom: Density wake in two dimensions, obtained in
simulations for a Gaussian chemotactic signal l (r) = L

2πR2 e−r2/2R2
,

of width R = 7 and intensity L = 150, traveling to the right at speed
U = 0.1 in a two dimensional box of size 60×60. The memory
time is τ = 1.0. In both cases, the colorbar, which has a nonlinear
scale to facilitate the visualization, presents the normalized density
�ρ(r)/(ρ0μ̂L).

for the number of bacteria in a given position and orientation
and with a specified value of the protein concentration can be
solved in Laplace space for the temporal dependence, Fourier
spaces for the spatial, and in Hermite polynomials for the
protein concentration. In practice, to present the results, the
Hermite series are truncated to a few polynomials.

The detailed description of the model allowed us to de-
termine the macroscopic transport coefficients, namely the
chemotactic mobility and the density response in terms of
the microscopic model. For simplicity and for illustration pur-
poses, we concentrated in the case where the tumbling angle
is isotropic. The extension to other tumbling angle distribu-
tions is direct, as well as going to higher orders in Hermite
polynomials if it were necessary.

The kinetic model shows that there is a well-defined
timescale hierarchy when the memory time is small, result-
ing in a rapid convergence with few Hermite polynomials.
However, for larger memory times the hierarchy is broken,
implying that the short-time response is quite different to
the stationary response, with the former being nonmonotonic
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with the chemotactic signal. This result should be taken into
account when analyzing experimental data, as long transients
can appear.

When spatiotemporal signals are considered, it is found
that a natural length scale appears Eq. (28), which for E. coli
takes the value k−1

0 ≈ 170 µm, when the values measured in
Ref. [44] are used. For chemoattractant gradients with charac-
teristic lengths similar or smaller than this value, the simple
local response J = μ0ρ0∇l breaks down, and the nonlocal
kernels (25) and (26), or its approximation (27) should be
used.

The analytical and numerical calculations show that
relevant features appear in the chemotactic response of run-
and-tumble bacteria. These predictions can be exploited in

experimental studies with the aim of validating and refining
the models for the chemotactic circuit, as well as new ex-
periments where the different parameters could be measured
independently. Possible geometries are microfluidic devices
with patterned stationary chemotactic signals, where bacteria
can be tracked to measure their concentration around the
attractants and the distribution of tumbling rates. Also, sta-
tionary flows can be imposed to produce bacterial wakes.
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