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Brownian motion of flexibly linked colloidal rings
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Ring, or cyclic, polymers have unique properties compared to linear polymers, due to their topologically
closed structure that has no beginning or end. Experimental measurements on the conformation and diffusion of
molecular ring polymers simultaneously are challenging due to their inherently small size. Here, we study an
experimental model system for cyclic polymers, that consists of rings of flexibly linked micron-sized colloids
with n = 4–8 segments. We characterize the conformations of these flexible colloidal rings and find that they
are freely jointed up to steric restrictions. We measure their diffusive behavior and compare it to hydrodynamic
simulations. Interestingly, flexible colloidal rings have a larger translational and rotational diffusion coefficient
compared to colloidal chains. In contrast to chains, their internal deformation mode shows slower fluctuations
for n � 8 and saturates for higher values of n. We show that constraints stemming from the ring structure cause
this decrease in flexibility for small n and infer the expected scaling of the flexibility as function of ring size.
Our findings could have implications for the behavior of both synthetic and biological ring polymers, as well as
for the dynamic modes of floppy colloidal materials.
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I. INTRODUCTION

Contrary to their well-known linear cousins, cyclic or ring
polymers form a closed structure, without a beginning or
an end. Their special topology imparts them with a unique
set of properties different from those of linear polymers [1].
The absence of free ends suppresses reptation and results in
different diffusive properties of ring polymer melts compared
to melts of linear polymers [2] and the emergence of a ki-
netically arrested, glassy state [3]. Their cyclic nature has
been proposed to induce stronger excluded volume effects on
the conformational and diffusive behavior of the rings than
on linear polymers [4] and can lead to a significant slowing
down of polymer dynamics upon self-entanglement [5]. Un-
derstanding the impact of the topological constraint imposed
by their ring-nature is also important at the single polymer
level, where it might help shed light on how genomes fold
themselves into volumes whose linear dimensions are many
orders of magnitude smaller than their contour lengths [6].
These insights might also be used for the design of materials
[7] with multifunctional and switchable properties.

To gain a better understanding of how topology induces
these effects, in situ measurements of the diffusive dynam-
ics and conformations of single ring polymers are needed.
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Experimental measurements of their diffusive behavior have
focused on ring polymers both as isolated molecules in so-
lution [8–10] as well as in the presence of other polymers
[11] and melts [12]. However, even with single-molecule tech-
niques it is challenging to get the high spatial and temporal
resolution that is required to observe both the dynamics and
conformations of individual ring polymers simultaneously.
For many synthetically fabricated cyclic polymers, bulk mea-
surements are often further complicated by polydispersity in
molecular weight and the presence of undesired side products
stemming from the synthesis [13], with the notable exception
of DNA-based ring structures. Despite these challenges, the
diffusion coefficient could be obtained experimentally and
was found to be larger for individual cyclic polymers in so-
lution compared to linear polymers of similar size [8–11,14]
The scaling of the diffusion constant with molecular weight
was furthermore found to not be dependent on topology for
polymers in solution [9]. In contrast, a study on adsorbed
polymers at an interface reports a scaling that is topology-
dependent, and was attributed to the fact that the diffusion
of cyclic polymers is hindered by surface asperities whereas
linear polymers are not [10]. Also in the presence of other
polymers, entanglement effects slow down diffusion [11]. In
general, while it is clear that there is a difference between the
diffusive behavior of ring and linear polymers, a direct ob-
servation of both the conformations and (short-time) diffusive
behavior is lacking.

To circumvent this limitation, we here use flexible rings
made of colloidal particles as model systems instead. Be-
cause of their unique combination of microscopic size and
their sensitivity to thermal fluctuations [15–17], their diffu-
sive properties can be directly studied using well-established
techniques, such as optical microscopy, that provide full
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information of their conformation with high time resolution.
Indeed, for reconfigurable colloidal rings built from patchy
particles bound via critical Casimir interactions, it was found
recently that colloidal analogues of cyclopentane show similar
conformational transformations as their atomic counterparts
[18]. Due to their limited reconfigurability, however, they are
unsuitable to serve as analogues for ring polymers. In contrast,
flexible structures built from spherical colloid-supported lipid
bilayers (CSLBs) [19,20] were found to be completely freely
jointed up to steric exclusions [21,22]. While the experimen-
tally achievable maximum length is limited to a few repeating
units, precluding a study of effects such as self-entanglement
and knotting, their slower dynamics and quasi-2D confine-
ment compared to real molecules make them excellent model
systems to study their diffusive properties and conformations
in situ.

In this work, we study experimentally and numerically
a model system of micron-sized colloidal rings, built from
CSLBs, to obtain a detailed understanding of the conforma-
tional and diffusive properties of flexible rings. We consider
rings of four to eight spherical particles and study both their
conformations and diffusive behavior. The experimentally
feasible size range implies that secondary structural effects
commonly observed for longer polymers, such as knotting or
supercoiling, are geometrically forbidden. We find that while
the smaller rings show no preferred conformations, prefer-
ences arise for the larger rings, because of the increase in
degrees of freedom in combination with steric constraints,
stemming from the fact that the particles cannot interpene-
trate. Both the translational and rotational diffusivity of the
rings is greater than that of chains of the same size, because of
their smaller radius of gyration. Interestingly, their flexibility,
which characterizes the rate of mean-squared conformational
changes, is lower than that of chains. We show that con-
straints stemming from the ring structure cause this decrease
in flexibility and infer the expected scaling of the flexibility as
function of ring size. Our findings may have implications for
the behavior of both synthetic and biological ring polymers, as
well as for the dynamic modes of floppy colloidal materials.

II. MATERIALS AND METHODS

A. Experimental

Flexible colloidal rings were assembled from colloid-
supported lipid bilayers (CSLBs) [19,20]. We followed
the preparation protocol for the CSLBs as described by
Ref. [21]. We employed 2.12 ± 0.06 µm silica particles
as supports, that were coated with a fluid lipid bilayer
by deposition and rupture of small unilamellar vesicles
consisting of 98.8 mol% of the phospholipid DOPC [(�9-Cis)
1,2-dioleoyl-sn-glycero-3-phosphocholine], 1 mol% of
the lipopolymer DOPE-PEG(2000) [1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine-N-[methoxy(polyethylene
glycol)-2000]] and 0.2 mol% of the fluorescently labeled
TopFluor-Cholesterol [3-(dipyrrometheneboron difluoride)-
24-norcholesterol] or, alternatively, the same amount of the
fluorescently labeled DOPE-Rhodamine [1,2-dioleoyl-sn-
glycero-3-phosphoethanolamine-N-(lissamine rhodamine
B sulfonyl)]. Bilayer coating was performed in a buffer

FIG. 1. Flexibly linked colloidal loops. (a) The flexible rings are
built from colloid-supported lipid bilayers (CSLBs). CSLBs consist
of spherical silica colloids coated with a fluid lipid bilayer. DNA
linkers are inserted into the bilayer using a hydrophobic anchor.
Because of the fluid lipid bilayer, the linkers can diffuse on the
surface of the particles and therefore, the particles can move with
respect to each other whilst staying bonded. (b) The DNA linkers
are functionalized with sticky ends A that are complementary to
sticky ends B, so that particles functionalized with A-type linkers can
only form bonds with particles coated with B-type linkers. [(c)–(e)]
Confocal images of a tetramer (c, n = 4), hexamer (d, n = 6), and
octamer (e, n = 8) loop. (f–h) Bright field snapshots of a flexible
tetramer (f, n = 4), hexamer (g, n = 6), and octamer (h, n = 8) ring,
which show shape changes that are more pronounced for the larger
rings. Scale bars in panels [(c)–(h)] are 2 µm.

at pH 7.4 containing 50 mM sodium chloride (NaCl) and
10 mM [4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid
(HEPES)]. We added double-stranded DNA (of, respectively,
strands DS-H-A and DS-H-B, see the Supplemental Material
of Ref. [21]) with an 11 base pair long sticky end and a
double stearyl anchor, which inserts itself into the bilayer
via hydrophobic interactions, as shown Fig. 1(a). The sticky
end of strand DS-H-A is complementary to the sticky end
of strand DS-H-B, which allows them to act as linkers.
DNA hybridization and experiments were performed in a
different buffer of pH 7.4, containing 200 mM NaCl and
10 mM HEPES. Rings of 2.12 µm CSLBs were formed by
self-assembly or via manual assembly using optical tweezers,
in a sample holder made of polyacrylamide (PAA)-coated
cover glass [21]. Confocal microscopy images of the coated
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TABLE I. Overview of the number of measurements, the total
duration, and the total number of frames per ring size, for the exper-
imental and simulated data.

Measurements Duration [min] Total frames

n Expt. Sim. Expt. Sim. Expt. Sim.

4 14 20 196 600 2.2e5 2.5e7
5 20 600 2.5e7
6 10 20 141 600 1.7e5 2.5e7
7 20 600 2.5e7
8 9 20 110 600 1.3e5 2.5e7

particles are shown in Fig. 1(c) for a tetramer loop, Fig. 1(d)
for a hexamer loop and Fig. 1(e) for an octamer loop.

B. Microscopy

Loops were imaged for at least 5 min (frame rates between
5 and 20 fps) at room temperature using an inverted confocal
microscope (Nikon Eclipse Ti-E) equipped with a Nikon A1R
confocal scanhead with galvano and resonant scanning mir-
rors. A 60× water immersion objective (NA = 1.2) was used.
Lasers of 488 and 561 nm were used to excite, respectively,
the TopFluor and Rhodamine dyes. Laser emission passed
through a quarter wave plate to avoid polarization of the dyes
and the emitted light was separated by using 500–550 nm and
565–625 nm filters.

To complement the data obtained from self-assembled
loops, we used optical tweezers to assemble specific cluster
sizes. For the hexamer and octamer loops, the probability
of forming such a loop using the self-assembly method we
used here is low, therefore these were formed exclusively
using optical tweezers. Briefly, we employed a homemade
optical setup consisting of a highly focused trapping laser
manufactured by Laser QUANTUM (1064 nm wavelength).
The laser beam entered the confocal microscope through the
fluorescent port, after first passing through a beam expander
and a near-infrared shortpass filter. The same objective was
used for imaging and to focus the trapping laser beam. During
the trapping, the quarter wave plate was removed from the
light path.

Particle positions were tracked using a custom
algorithm [20] available in TrackPy by using the
locate_brightfield_ring function [23] or using a
least-square fit of a Mie scattering based model implemented
in HoloPy [24]. Both methods agree to an accuracy of at least
1 px; however, we have found that the Mie scattering based
model is more robust for tracking multiple particles in close
proximity to each other. For all analysis, we only selected
rings that showed all bond angles during the measurement
time, experienced no drift and were not stuck to the substrate.
An overview of the total number of measurements, the total
duration and the total number of frames per ring size is shown
in Table I.

C. Simulations

We have performed Brownian dynamics simulations with
hydrodynamic interactions following the method outlined

in Sprinkle et al. [25] using the open-source RigidMulti-
blobsWall package [26]. The procedure is identical to the
method described in Verweij et al. [22], which we now
briefly summarize. Hydrodynamic interactions are calculated
using the Stokes equations with no-slip boundary conditions.
The hydrodynamic mobility matrix is approximated using the
Rotne-Prager-Blake (RPB) tensor [27], which is a modified
form of the Rotne-Prager-Yamakawa (RPY) tensor [28–30]
and accounts for a bottom wall, which is unbounded in the
transverse directions. These corrections to the RPY tensor
are combined with the overlap corrections described in Wa-
jnryb et al. [30] to prevent particle-particle and particle-wall
overlap. The RPB mobility inaccurately describes near-field
hydrodynamic interactions and therefore breaks down for
small separation distances. This can be overcome by adding
a local pairwise lubrication correction to the RPB resistance
matrix as described in detail in Sprinkle et al. [25]. Based on
the full lubrication-corrected hydrodynamic mobility matrix,
the Ito overdamped Langevin equation is solved to describe
the effect of thermal fluctuations.

We include a gravitational force on the particles to confine
them to diffuse close to the bottom wall, as in the experi-
ments. Interparticle bonds are modeled by harmonic springs
of stiffness 1000 kBT/R2 and equilibrium length 2R, where
R = 1.06 µm is the particle radius. The bond angle is not
restricted. We set the temperature T = 298 K, the viscosity
of the fluid η = 8.9 × 10−4 Pa s, the gravitational acceleration
g = 9.81 m s−2, the particle mass mp = 9.5 × 10−15 kg (by
assuming a particle density of 1900 kg m−3) and the sim-
ulation timestep �t = 1.42 ms. For the firm potential that
prevents overlap, we use a strength of 4kBT and a cutoff dis-
tance [25,31] δcut = 10−2 R. We initialized the particle loops
in the configuration given by the regular polygon of the same
size. Then, these initial configurations were randomized by
running the integration for a simulated time of 60 s prior to
saving the configurations, to ensure a proper equilibration of
the particle positions, bond lengths, velocities and opening
angles. The particle positions were saved every 8 simulation
steps to obtain a final framerate of approximately 90 fps. An
overview of the total number of simulations, the total duration
and the total number of saved frames per loop size is shown
in Table I.

For comparison to the simulated and experimental data,
we have generated permutation data, in which the rings are
completely noninteracting and freely jointed up to steric ex-
clusions. First, we have generated all permutations of the
(n − 3) independent opening angles θi, each of which can
take on Nθ = (360 − 2 × 60)/(δθ ) different values, where δθ

denotes the bin width. The opening angles are indicated by
the blue arcs in the schematics of Fig. 2 for all ring sizes. This
gives a total number of P(Nθ , n − 3) = Nθ !/(Nθ − (n − 3))!
combinations of the (n − 3) opening angles θi. Second, we
removed those combinations that are forbidden because of
steric exclusions between particles. After removing these con-
figurations, we checked if the topology of the structure was
correct and removed configurations of the wrong topology,
i.e., structures that did not form a closed ring. This resulted in
the final allowed combinations, which we call “permutation
data”.
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FIG. 2. Conformations of flexibly linked colloidal loops. (a) The most compact configurations for all rings studied here, from n = 4–8.
The opening angles θi are indicated by the blue arcs. [(b)–(f)] The free energy of (b) tetramer (n = 4), (c) pentamer (n = 5), (d) hexamer
(n = 6), (e) heptamer (n = 7), and (f) octamer (n = 8) rings, for ◦ experimental, � simulated, and permutation data (black line). The shaded
area indicates free energy differences lower than the thermal energy. Blue lines indicate internal opening angles taken into account. The free
energy was determined using Boltzmann weighing of the joint probability density function of all opening angles θi. (g) Mean total curvature
of the loops as function of n for the experimental and simulated data.

D. Diffusion tensor analysis

1. The definition of the coordinate system

As tracking point, we have used the center of mass (c.m.),
which is the same as the center of diffusion (c.d.) for our
colloidal rings. The tracking point should be carefully consid-
ered, because it affects the magnitude of the diffusion tensor
[32,33]. The c.d. yields the lowest value of the diffusion
tensor [33]. The coordinate system used here is identical to
the coordinate system described in Verweij et al. [22] and
we briefly summarize its definition here. The direction of
the body-centered x and y axes was determined as function
of the tracking point rt.p., which defines the origin of the
body-centered coordinate frame. We define

rt.p. = ρ1r1 + ρ2r2 + · · · + ρnrn, (1)

which defines the location of the tracking point as a
linear combination of the particle positions [33]. ρ =
(ρ1, ρ2, . . . , ρn) is a weight vector which determines how
much weight is accorded to each particle in the calculation
of the tracking point rt.p.. As an example, for a tetramer ring,
ρ = (1/n = 1/4, 1/4, 1/4, 1/4).

The direction of the x axis was chosen as

x̂ = ±
[

rt.p.,1 + · · · + rt.p.,s1

ρ1 + · · · + ρs1

− rt.p.,s2 + · · · + rt.p.,n

ρs2 + · · · + ρn

]
, (2)

where rt.p.,i is the ith coordinate of the tracking point and the
loop is split into two parts with equal numbers of particles
according to

s1 = s2 =
⌈n

2

⌉
for odd n,

s1 =
⌈n

2

⌉
, s2 = s1 + 1 for even n.

(3)

ŷ is then chosen such that x̂ and ŷ form a right-handed coordi-
nate system, where the direction of ŷ is chosen to point along
rt.p. − (rs1 + rs2 )/2. This orientation was determined for every
frame, which fixed the orientation of the body-centered coor-
dinate system x(τ = 0), y(τ = 0). For subsequent lag times,
the direction of y(τ ) was chosen such that y(τ = 0) · y(τ ) >

0, i.e., the direction of y does not change sign. The resulting
coordinate system relative to the c.d. is visualized for the
tetramer loops in Fig. 4(a).
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FIG. 3. Radius of gyration of colloidal rings. (a) The radius of gyration in units of the bond length b scales as function of n as predicted by
Eq. (9), which is also shown in the inset, along with the values of the fitted parameters. (b) The ratio between the radius of gyration of rings and
chains is close to the value predicted by renormalization theory [4,37], as shown for the experimental and simulated data that are available for
both the rings and chains. Additionally, the solid line indicates the ratio of the scaling found in panel a for rings and the previously determined
scaling of chains, which takes into account all available ring (n = 4 to 8) and chain (n = 3 to 6) lengths. (c) The free energy in terms of the
radius of gyration divided by its average value for all ring sizes. The distribution is asymmetric and covers a wider range of possible values
for the larger ring sizes. Note that the radius of gyration of tetramer rings is constant and therefore not included here. The schematics show a
circle with its radius equal to the radius of gyration of the most compact (left) and most extended (right) hexamer ring.

2. Definition of the diffusion tensor

We have determined the short-time diffusivity of the rings,
both as function of their instantaneous shape for the tetramer
rings, as well as averaged over all possible configurations for
all loop sizes. Because the rings are sedimented to the bottom
substrate, we consider only the quasi-2D, in-plane diffusivity.

For all rings, we have determined the short-time diffusion
tensor,

D[i j] ≡ 1

2n

∂〈�i� j〉τ
∂τ

, (4)

with τ the lag time between frames, 〈· · · 〉τ denotes a time
average over all pairs of frames a lag time τ apart and
�i = i(t + τ ) − i(t ) is the displacement of the ith diffusion
tensor element. The average diffusion tensor elements D[i j]
were obtained by fitting the overall slope of the mean-squared
displacements as a function of lag time τ . We considered lag
times up to 0.25 s for all experiments, set by the slowest frame
rate of the experimental data. In simulations, lag times up to
0.05 s were considered. For fitting the slopes of the MSDs,
we used a standard least-square fit of a linear model with an
intercept, to characterize the localization error [34].

Using Eq. (4), we have calculated the shape-averaged,
quasi-2D translational diffusion coefficient corresponding to
in-plane diffusivity above the wall and given by DT =
D[rt.p.rt.p.], where rt.p. is the position of the loop relative to
the tracking point defined by Eq. (1). Additionally, we de-
termined the rotational diffusion coefficient D[αα] from the
mean-squared angular displacement of the x axis [defined in
Eq. (2), as depicted schematically in Fig. 4(a) for the tetramer
loop], which describes the rotational diffusivity around an axis

perpendicular to the substrate. Finally, we determine the over-
all cluster flexibility D[θθ] by calculating the mean-squared
displacements of all n opening angles θi as follows:

〈|�θ|2〉τ = 〈|(�θ1, . . . , �θn)|2〉τ . (5)

Here, 〈· · · 〉τ denotes a time average over all pairs of frames
a lag time τ apart and �θi = θi(t + τ ) − θi(t ) is the displace-
ment of the ith opening angle θ . Finally, the flexibility D[θθ]
is given by

〈|�θ|2〉τ = 2nD[θθ]τ, (6)

analogously to the other diffusion tensor elements.

3. Shape-dependent diffusivity of the tetramer loops

For the flexible tetramer loops, in addition to the shape-
averaged short-time diffusion tensor, we have calculated the
shape-dependent short-time diffusion tensor. This is feasible
for the tetramer loop because its shape is fully characterized
by using only one opening angle. To do so, we have calculated
a 4 × 4 diffusion tensor, where the four degrees of freedom
correspond to translational diffusivity in x and y, rotational
diffusivity and the flexibility of the tetramer loop, which is
described by the diffusivity of the opening angles θi, which
we have defined in Eq. (6). Specifically, for the tetramer loop,
the x and y directions are schematically shown for one config-
uration in Fig. 4(a) and defined by Eq. (2). The rotation angle
used for determining the rotational diffusivity is indicated in
Fig. 4(a) and is the angle of the x(τ ) relative to x(τ = 0), i.e.,
the angle of the body-centered x axis of the current frame
relative to the body-centered x axis of the reference frame
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FIG. 4. Diffusion of flexible tetramer loops. (a) An illustration of the coordinate system used to analyze the diffusivity of the tetramer
rings, as defined in Sec. IID. (b) The displacement of the center of mass (c.m.) of a 10 min experimental measurement of a tetramer loop. The
color indicates the instantaneous value of one of the opening angles θ . [(c)–(f)] We have compared the diffusion tensor elements calculated
from � simulated and ◦ experimental data. (c) The translational diffusion along the x and y directions is comparable in magnitude and shows
little shape dependence. (d) The in-plane translational diffusion coefficient DT . We find that 〈Dexpt/Dsim〉 = 1.10 ± 0.02. (e) The rotational
diffusivity, for which 〈Dexpt/Dsim〉 = 0.92 ± 0.04. (f) Compared to the simulated flexibility, the experimental flexibility is much lower, namely
〈Dexpt/Dsim〉 = 0.20 ± 0.04. All off-diagonal diffusion tensor elements are close to zero.

at τ = 0. The flexibility is calculated from the mean-squared
displacement of the opening angle θ . As illustrated by the blue
arcs in the schematic of Fig. 2(b), θ is defined in such a way
that it is always less than or equal to 120 deg.

The diffusion tensor elements of the tetramer loops were
determined analogously to the trimers [21]. Briefly, for each
pair of frames, we determined the initial shape of the ring,
which is characterized by the opening angle θ . We only con-
sidered trajectories where the variation in θ did not exceed
the edges of the bin describing the initial shape. That is, we
divided the possible values of θ in bins and calculated the
short-time diffusivity given by Eq. (4) for all combinations of
lag times where θ (τ ) remained in the same bin as θ (0), which
were then stored according to their respective θ -bins. In that
way, we calculated the diffusion tensor elements separately
for each initial shape.

III. RESULTS AND DISCUSSION

A. Free energy of different conformations of flexible loops

We designed our colloidal model system for ring poly-
mers by assembling flexible rings of colloid-supported lipid
bilayers (CSLBs), i.e., colloidal silica particles surrounded
by a fluid lipid bilayer [19,20]. We equip the CSLBs with
strong and specific bonds imparted by DNA linkers with sin-
gle stranded sticky ends that are inserted into the lipid bilayer.

The DNA linkers are mobile on the CSLB surface allowing
for configurational flexibility of structures assembled from
bonded CSLBs also after assembly [21,22,35]. We employed
two types of DNA linkers with complementary sticky ends,
which we label A and B, such that A only binds to B and not to
itself; see Fig. 1(b). The colloidal size of our model system al-
lows us to observe the position of the constituent spheres using
bright field microscopy. We visualize their functionalization
with the two strands as well as their correct and selective
binding by integrating dyes with the DNA linkers, and imag-
ing the rings with confocal microscopy; see Figs. 1(c)–1(e).
The use of two complementary sticky ends A and B reduces,
or, in the case of a tetramer loop, even prevents adhesion be-
tween opposing particles in the ring and hence a change of its
topology and reconfigurability. This strategy limits our exper-
iments to even-numbered ring sizes, of which we assembled
tetramers (n = 4), hexamers (n = 6), and octamers (n = 8).
We therefore compared and complemented our experiments
with Brownian dynamics simulations for colloidal rings with
n = 4 − 8 constituent spheres. In these simulations, hydrody-
namic interactions between particles and the substrate were
taken into account via the Rotne-Prager-Blake (RPB) tensor
[27], overlap corrections [30] and a local pairwise lubrication
correction [25] (see Sec. II C for details).

The thus assembled colloidal rings show constant shape
changes induced by thermal fluctuations. The full flexibility
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of the rings is clearly visible in the representative time series
from bright field microscopy movies of flexible tetramers,
hexamers, and octamers; see Figs. 1(f)–1(h) and correspond-
ing movies in the Supplemental Material [36]. Tetramers
possess only one internal degree of freedom and randomly
transitions between diamond-like configurations with internal
opening angles θi between 60 deg � θi � 120 deg. With in-
creasing ring size, the number of degrees of freedom rises and
the constrained motion observed in the tetramer is gradually
lifted. Hexamers and octamers possess three and five internal
degrees of freedom, respectively, and can adopt an increas-
ingly wider range of shapes. Correspondingly, the maximum
internal opening angle that is geometrically possible increases
from 180 deg for n = 5, to 240 deg for n = 6 and to 300 deg
for n � 7, the maximum that is achievable for three otherwise
unconstrained particles in a chain [see Fig. 2(a)]. At n = 7
a compact hexagonal structure is required for attaining this
maximum internal angle. Additional particles beyond n = 7 in
the ring do not increase the maximum internal opening angle,
but the number of conformations of the remaining particles
in case that any three take on the maximum internal angle
is higher. In turn, this increases the probability to observe a
configuration with the maximum value of the opening angle.

To quantify the conformations of the colloidal rings, we
measured all n indistinguishable internal opening angles θ

of a ring of size n and calculated the probability density
function p(θ ). From this, we determined the free energy F
using Boltzmann weighing,

F

kBT
= − ln p(θ ) + F0

kBT
, (7)

where kB is the Boltzmann constant, T the temperature, and F0

is a constant and arbitrary offset to the free energy. The prob-
ability density function p(θ ) is calculated from the histogram
of all observed angles for rings of a given size, by dividing
the number of observed angles in a given angular bin by the
bin width and the total number of observations. The angular
range is determined purely by geometry: the minimum open-
ing angle is θ = 60 deg and the maximum angle depends on n
and is limited by the constraints induced by the topology and
geometry, as shown in Fig. 2(a) and ranges from θ = 120 deg
for n = 4 to θ = 300 deg for n � 7 as noted before.

We plot the obtained values for the free energy as a func-
tion of the possible range of opening angles for rings of
n = 4–8 in Fig. 2. For all datasets, we set the free energy to
0 at the smallest value and compare it to the thermal energy
of 1 kBT , which is indicated by the shaded area. The tetramer
rings show no preference for any opening angle with respect
to the thermal energy. They transition freely and with equal
probability between all possible internal opening angles, as
shown in Fig. 2(b). For the pentamer loops, however, the free
energy exceeds the thermal energy for large internal opening
angles θi � 158 deg; see Fig. 2(c). Similarly, for n = 6–8 we
also find that the free energy exceeds the thermal energy for
increasingly greater values of the opening angles: for hexamer
loops this occurs if θi � 178 deg, for heptamer loops if θi �
192 deg, and for octamer loops if θi � 204 deg. This finding
implies that smaller opening angles occur more frequently,
leading to an effective free energy preference, and is found
both in experimental measurements and simulations.

We can attribute this free energy preference to the steric
constraints imposed by the ring topology and self-avoidance
of the segments of the ring. To demonstrate this, we count
the number of possible conformations of the ring for a given
opening angle taking steric constraints into account. We then
extract the free energy from this permutation data and plot
it alongside the experiments and simulations in Fig. 2. The
good agreement clearly confirms that these preferences purely
arise from steric constraints: there are simply fewer possible
configurations that include large values of the opening an-
gles. Indeed, for n = 4–7 compact structures of the ring are
required to observe the largest opening angles, as depicted in
Fig. 2(a), with concomitantly fewer possible conformations
of the rings. In fact these steric constraints defined the max-
imum of the opening angles in the first place. Comparing
the difference between the minimum and maximum values of
the free energy between different ring sizes we see that the
difference increases with n until n = 7. This implies that the
ratio between the observable configurations for one angle in
the maximum angle range and those for any other value of
the opening angle decreases. For n = 8, the steric constraint
is partially lifted and more conformations are possible for
one internal angle at the maximum possible value. As a con-
sequence, the maximum free energy difference lowers again
compared to n = 7.

B. Gyration radii of rings and chains

Whilst the opening angles between particles in a chain
can be used to uniquely describe its conformation, they are
not a very intuitive measure for how compact or extended
the structure is. A better means that is also used to quantify
the extent of polymer chains and colloidal bead-chains is the
radius of gyration Rg, which is defined as

Rg =
[

1

n

n∑
i=1

|ri − rc.m.|2
]1/2

, (8)

where ri is the position of the ith sphere and rc.m. is the
position of the center of mass of the loop.

The radius of gyration of rings is expected to follow the
same scaling as the radius of gyration of chains [4,38], given
by [39]

Rg = abnν, (9)

with a a positive constant, b is the Kuhn length (approxi-
mately equal to the bond length [22]) and the Flory exponent
ν = 3/(d + 2) = 3/4 for a self-avoiding walk in d = 2 di-
mensions [40,41]. As shown in Fig. 3(a), we find an excellent
agreement between the predicted scaling law and the exper-
imental and simulated data. The fitted value of ν = 0.771 ±
0.003 is in close agreement with the theoretically expected
value from renormalization theory [40,41] of 3/4. While we
fit our data for small n over a limited range of n only, we
still find the theoretically predicted scaling laws are followed
despite them having been derived in the limit of large n.
This scaling coefficient also agrees with the value we have
previously determined for chains of ν = 0.726 ± 0.005 [22],
as would be expected since the scaling coefficient should be
independent of topology.
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For the scaling constant a, however, we find a lower value
for the rings (aring = 0.241 ± 0.001) compared to the chains
[22] (achain = 0.349 ± 0.002). This means that, as intuitively
expected, the rings are on average more compact than chains
of the same number of particles. We explore the ratio between
R2

g of the rings and chains G = R2
g,ring/R2

g,chain in greater detail
in Fig. 3(b), by comparing the simulated and experimental
values to the predicted ratio of G = 0.568 based on renor-
malization theory [4,37], which is close to the values that
we obtain here. Because the chain data is only available for
n = 3 to 6 while for the loops, we consider sizes of n = 4
to 8, we have also determined G by dividing a2

ring by a2
chain.

As shown in Fig. 3(b), the value that we obtain from the
fitted scaling relations (G = 0.48) is also close to the theo-
retically expected value. Taken together, these results show
that our colloidal model system exhibits the same scaling of
Rg as molecular polymers based on predictions from polymer
theory, which is surprising considering their low number of
segments n.

Finally, in Fig. 3(c), we show the free energy of the rings
in terms of their radius of gyration, which we normalized by
the average value. First, we note that the agreement between
the simulated and experimental data is good for all ring sizes,
although we systematically observe higher free energy values
at a given value of the normalized radius of gyration for
experiments compared to simulations. This difference is most
clearly visible at higher values of free energy and might be
due to limited experimental data, as the free energy is calcu-
lated from a probability density function. Second, it becomes
apparent that the distribution of the free energy in terms of the
scaled radius of gyration is asymmetric for all ring sizes and
that it covers a greater range for the larger ring sizes. This last
observation can be intuitively understood to be caused by the
increasing number of particles and also, the increasing number
of degrees of freedom. Furthermore, we observe that either
very compact or very extended structures are less likely than
intermediate structures, with differences in the free energy of
the most likely extents compared to the least likely ones reach-
ing up to around 10 kBT . These differences in the free energy
are likely caused by excluded volume interactions in the case
of the compact structures and steric constraints to preserve the
ring topology for the more extended configurations.

Another way to quantify ring configurations is to look at
the mean total curvature, which is the average of the sum of
all n opening angles θi for all observed configurations, defined
as [42]

〈curv〉 =
〈

n∑
i=1

θi

〉
t

, (10)

where 〈...〉t denotes the average over the measurement time.
Colloidal rings can be described as two-dimensional, equilat-
eral polygons for which the total curvature is equal to 2π if
they are convex. This is the case for n = 4, 5; see Fig. 2(a). For
n � 6, concave configurations are possible and their relative
number increases with colloidal ring length. Therefore, the
total curvature increases with n as is shown in Fig. 2(g).

To summarize, the size of the colloidal rings can be charac-
terized by their radius of gyration, which follows the scaling
relations that are predicted from polymer theory. The ring

topology and excluded volume interactions play an important
role, which may also affect the diffusive properties of the
colloidal rings, which we will now consider.

C. Diffusion of flexible tetramer loops

The continuous change of the ring’s configuration might
also affect its short-time diffusive behavior. We will here
analyze the diffusive behavior of the simplest ring shape, the
tetramer, because of its simplicity and equal probability of
all configurations. In Fig. 4(a), we schematically show the
coordinate system relative to the center of mass (c.m.) of the
tetramer loop, which is defined in Sec. II D. The position
of the c.m. as function of time for a 10 min experimental
measurement is depicted in Fig. 4(b). The variations in color,
which indicate the instantaneous value of one of the opening
angles θ , clearly show that indeed, the tetramer loops contin-
uously change their shape while they diffuse.

These continuous shape changes could affect the transla-
tional diffusivity of the tetramer loops. However, as shown
in Fig. 4(c) for the shape-dependent, short-time translational
diffusivity with respect to the x and y axes, which is defined in
Sec. II D, we find that the translational diffusivity is constant
and does not depend on the opening angle θ . This may be
explained by the fact that for tetramer loops, the radius of
gyration, which is a measure for their size, is constant as well.
Therefore, the translational diffusivity can be well described
in terms of the average diffusivity DT of the x and y axes that
is shown in Fig. 4(d). In Figs. 4(c) and 4(d), the experimental
translational diffusivity is greater than the simulated transla-
tional diffusivity, while the experimental data shows slightly
larger fluctuations because of the experimental uncertainties.
We have observed this difference before for flexible colloidal
chains and it can likely be ascribed to the fact that in exper-
iments, the substrate is a hydrogel with a finite slip length,
while the simulations assume a no-slip boundary condition
[22].

Next, we consider the rotational diffusivity of the loops,
which is defined as the in-plane rotation of the x axis shown
in Fig. 4(a) or, equivalently, rotation of the cluster around
the out of plane axis, for a plane parallel to the substrate.
From Fig. 4(e), we see that the experimentally measured rota-
tional diffusivity is slightly lower than the simulated rotational
diffusivity, but both show the same dependence on shape.
Specifically, the more compact square configuration has a
higher rotational diffusivity than the more extended diamond
structure, as can be expected based on the greater projected
surface area of the diamond structure.

Finally, from Fig. 4(f), we conclude that also the flexibility
of the tetramer loop depends on its shape, although more
weakly: the flexibility is somewhat larger for square config-
urations than for diamond configurations. This indicates that
more open structures have a higher flexibility, as we have
also observed for chains [21,22]. For chains of CSLBs, we
have found that the experimental flexibility is 75–80% of the
flexibility of the simulated chains, which is probably caused
by friction of the DNA linker patch not taken into account in
the simulations [22]. For the tetramer loops, however, we ob-
serve a drastically lower flexibility, namely, the experimental
flexibility is just (20 ± 4)% of the simulated one, as shown
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FIG. 5. Shape-averaged translational and rotational short-time diffusivity. (a) The position of the center of mass of three experimental
10 min measurements of a tetramer, hexamer and octamer ring. (b) Translational diffusivity of the rings as function of ring size n. The
experimental diffusivity is greater than for the simulated data, both follow the same scaling described by Eq. (11). (c) The orientation α with
respect to the initial orientation of three experimental rings as function of time. (d) The rotational diffusivity of rings as function of n shows
the same behavior for the experimental and simulated data, which can be described by Eq. (12).

in Fig. 4(f). This indicates that the tetramer loops experience
more interparticle friction compared to the tetramer chains.
Indeed, there is one extra bond in the tetramer rings compared
to the tetramer chains, which will not only lead to an increase
in interparticle friction, but also imposes an additional con-
straint. We will discuss this difference in more detail in the
next section.

D. Shape-averaged diffusivity of rings and chains

1. Translational and rotational diffusivity

Having characterized the diffusivity of the tetramer loops,
it is interesting to determine how the diffusivity scales with
loop size n. A detailed shape-dependent study of the diffusiv-
ity is not feasible due to the fast increase in degrees of freedom
with n, and hence we instead consider the shape-averaged,
short-time diffusivity of the colloidal rings. In Fig. 5(a), we
show the center of mass (c.m.) position for a tetramer, hex-
amer and octamer loop, as tracked from 10 min experimental
measurements. From this, we extract the short-time transla-
tional diffusivity DT , which is defined in Sec. II D, as function
of ring size n, see Fig. 5(b). We note that the experimental
diffusivity is slightly larger than in the simulations, as we had
observed previously for the tetramer loops and the flexible
chains [22], probably due to the different boundary conditions
in experiments and simulations. We hypothesize this is due to
the no-slip boundary condition on the substrate that is used

in the simulations, while in the experiments the substrate is a
hydrogel that has a finite slip length.

Second, the translational diffusivity of rings decreases as
function of their size, as is expected, which we have pre-
viously shown for flexible chains [22]. In fact, based on
Kirkwood-Riseman theory [43], the translational diffusivity
DT of both chains and loops are expected to scale as

DT ∝ 1/Rg ∝ n−ν, (11)

where the radius of gyration Rg is defined in Eq. (9). By
fitting the simulated data in Fig. 5 using Eq. (11), we in-
deed find great agreement between model and data for ν =
0.771 ± 0.003, the value we have found in Sec. III B. Devia-
tions from the model are slightly greater in the experimental
data of the colloidal rings. Nonetheless, both the experimen-
tal and simulated data are in agreement with the expected
Kirkwood-Riseman scaling.

Comparison of the exponent ν we have found with
measurements on the 2D diffusion of cyclic polymers is intrin-
sically difficult, because for the polymers, such an experiment
requires adsorption of the molecules to an interface. The
presence of surface asperities hinders free diffusion of cyclic
polymers on the surface due to their ringlike topology and
leads to a Rouse scaling law. In this case, the translational
diffusion coefficient relates to the molecular weight, Mn ∝ n,
as DT ∝ M−μ

n , where μ was found to be μ = 0.75 for short
(n < 70) cyclic polymers and μ = 1 for long cyclic polymers

034602-9



VERWEIJ, MELIO, CHAKRABORTY, AND KRAFT PHYSICAL REVIEW E 107, 034602 (2023)

[44]. Experiments on high Mw cyclic polystyrene molecules
in a good solvent and adsorbed to silica quartz confirmed
μ = 1.00 ± 0.10 [10]. In our colloidal model system, adhe-
sion to the surface is not necessary because gravity provides a
quasi-2D confinement. Still, we find ν = 0.771 ± 0.003 close
to the value for μ.

While the diffusivity of both rings and chains exhibits
the same scaling, the ratio of their diffusion coefficients is
predicted to be greater than unity, and independent of n.
For long polymers, the ring-to-chain diffusivity ratio K ≡
DT,ring/DT,chain is predicted to be approximately equal to K =
3π/8 � 1.2 based on Kirkwood-Riseman theory [37,45].
Renormalization group calculations predicted K = e3/8 =
1.45 [46]. Reported experimental values for synthetic polymer
solutions vary between K = 1.11–1.2 [47–49] and K = 1.36
[50]; for short plasmid DNA K = 1.24 [51] and for longer
single DNA molecules K = 1.32 was found [9]. To obtain the
ratio K based on our data, we calculate the ratio of the model
fits for chains and rings for n = 4–8. For the simulated data,
we find that on average K = 1.04 ± 0.01, whereas the exper-
imental data yields K = 1.08 ± 0.01. These values are close
to the predicted ratio based on Kirkwood-Riseman theory and
similar to measurements on synthetic polymer solutions. As
expected, the rings show a slightly greater diffusivity, which
is explained by their smaller radius of gyration compared to
chains of the same number of particles.

In the same fashion as for the translational diffusivity,
we can determine the shape-averaged, short-time rotational
diffusivity by calculating a rotation angle as function of time.
Here, we calculate the angle α from the rotation of the x̂ vector
defined by Eq. (2) with respect to x axis of the laboratory
frame, as depicted schematically in Fig. 4(a) for the tetramer
loop. Figure 5(c) shows how this rotation angle α changes
as function of time for three experimental measurements of
a tetramer, hexamer, and octamer loop. Based on the mean-
squared angular displacements of α, the rotational diffusivity
can be calculated in turn.

The rotational diffusivity is shown in Fig. 5(d), from which
it can be seen that the experimental values are very close to the
simulated ones. Analogous to the translational diffusivity, the
rotational diffusivity follows the same scaling as for chainlike
objects, given by [43]

D[αα] ∝ ln (2L/b)

L3
, (12)

where b is the Kuhn length (approximately equal to the bond
length) and L = b[1 + (n − 1)ν], with n the number of parti-
cles and ν the Flory exponent. Indeed, in Fig. 5(e) we find a
good fit of the experimental and simulated data using Eq. (12)
for ν = 0.771 ± 0.003, the value we have found in Sec. III B.

Last, we compare the ratio of rotational diffusivities of
rings and chains for the available data of chains [22] and rings.
We use a method analogous to the determination of K , the ra-
tio of translational diffusivities, and calculate the ring-to-chain
rotational diffusivity ratio Kr ≡ D[αα]ring/D[αα]chain. For the
simulated data, we find that on average Kr = 2.18 ± 0.10,
whereas the experimental data yields Kr = 1.86 ± 0.01.

In summary, the smaller average radius of gyration of flex-
ible rings compared to chains of the same number of particles
has implications for both their translational and rotational

diffusivity. For both diffusion constants, the rings have
a higher diffusivity as expected and this effect is most
pronounced for rotational diffusion, where rings exhibit a
rotational diffusion that is approximately twice as high as that
of chains. The ratio that we find for the translational diffusion
of rings and chains is close to the theoretically expected value
of approximately 1.2 based on Kirkwood-Riseman theory
[37,45]. Therefore, the Kirkwood-Riseman model is found
to be an excellent model for predicting the shape-averaged
short-time diffusivities of flexible colloidal rings and chains.

2. Flexibility or conformational diffusion

Besides translation and rotation, flexible colloidal objects
feature another diffusion coefficient stemming from changes
in their conformation [52,53]. For rings of size n the num-
ber of conformational degrees of freedom is given by n − 3
based on Maxwell counting [54]. It is therefore not feasible
to characterize the displacements in terms of the initial shape
for larger values of n as we have done previously for chains
with three and four segments [21,22]. Instead, we calculate
the shape-averaged probability distributions of �θ for all ring
sizes from the simulated data [see Fig. 6(a)]. As the ring size
n increases, the distribution becomes slightly broader. This
is expected, because the confinement of the motion by the
constraint imposed by the ring closure condition is reduced,
the larger the ring becomes. We characterize this broadening
by measuring the standard deviation σn of the distribution,
whose nonlinear dependence with n is shown in the inset.

From the angular displacements of the flexible loops,
we can determine their conformational diffusivity D[θθ], or
flexibility, from the slope of the mean-squared angular dis-
placement as given by Eq. (6). This is an analogous definition
of a diffusion constant in terms of bond angles instead of
bead positions. From Fig. 6(b), we can observe that for both
the simulated and experimental data, the flexibility indeed
increases as function of loop size n, as we had expected based
on Fig. 6(a). The experimental flexibility is lower than the
simulated one, which is likely caused by interparticle friction
stemming from the DNA linker patch between the particles.
This friction is not modeled in the simulations and therefore
the simulated flexibility is higher, as we had observed previ-
ously for colloidal chains [22].

The conformational diffusion coefficient Dn[θθ] shows a
nonlinear dependence with increasing ring size. This can
be understood from the fact that the standard deviation σn

and Dn[θθ] are related through Dn[θθ] = σ 2
n /(2nτ ) [see also

Eq. (6)]. While these data have been averaged over all internal
opening angles, averaging is not the cause for the nonlinear
behavior, as we find the same behavior for the conformational
diffusion coefficient of a single opening angle in the ring.

Interestingly, the chain length above which Dn[θθ] starts to
saturate coincides with the chain length above which the steric
constraints in the opening angle are lifted, and the free energy
differences between small and large opening angles decrease
again; see Fig. 2. At the same time, the number of conforma-
tional degrees of freedom increases and the distribution of the
radius of gyration broadens. Combined, this leads to a greater
range of possible displacements that are sterically allowed and
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FIG. 6. Shape-averaged flexibility. (a) Probability density of the
angular displacements �θ of all loops (simulated data) averaged
over all opening angles θ . Solid lines show a fit of a Gaussian.
The inset shows the standard deviation σn of �θ vs n. (b) Flexi-
bility of the rings as function of n. Solid lines are fits of Eq. (15).
Dotted lines show the expected flexibility of chains and loops for
n → ∞. (c) Probability density of the angular displacements �θ

of the tetramer loops (simulated data), binned per opening angle θ

(see legend). Dotted lines show the mean angular displacement, solid
lines show a fit of a Gaussian.

therefore, a broader probability distribution for the larger ring
sizes.

We therefore hypothesize that the constraints stemming
from the requirement that the structures need to remain a
closed ring are causing this dependence on n. This ring con-
straint imposes that all displacements �θi of the internal
opening angles add up to zero between two time steps that
are a lag time τ apart. More importantly, the n − 3 confor-
mational degrees of freedom require that only n − 3 of these
displacements can be chosen independently. The remaining

three displacements are then determined by the requirement
of the closed ring topology. If we consider the independent
displacements to have a distribution with standard deviation
σindep., and the dependent displacements to have a distribution
with standard deviation σdep., we can write

σ 2
n = (n − 3)σ 2

indep. + 3σ 2
dep.. (13)

However, as the three dependent displacements are com-
pletely determined by the choice of the independent displace-
ments, their distribution has an effective standard deviation
σdep. = 0. Thus,

σ 2
n = (n − 3)σ 2

indep., (14)

and we find that

Dn[θθ] = (n − 3)σ 2
indep.

2nτ
. (15)

By fitting this prediction to our experimental data, we find
σ 2

indep./(2τ ) = (129 ± 16) deg2/s and for the simulated data
we find σ 2

indep./(2τ ) = (226 ± 4) deg2/s [indicated by the dot-
ted line in Fig. 6(b)], which is the value that the flexibility
saturates at for large n. It should be noted that this is a
prediction derived from small n data and does not take any
additional large n effects into account. Based on the derived
scaling, the flexibility is expected to saturate at large n, but
this remains to be tested in future work. The ratio between
the experimental and simulated flexibility is 0.57 ± 0.07. This
ratio is close to the value of 0.75 to 0.8 that we had found
previously for colloidal chains [22]. This suggest that the
decrease in experimental flexibility is approximately the same
for chains and loops. Most likely, it is caused by friction that
is not accounted for in the simulations.

Our description of the flexibility of colloidal loops in
Eq. (15) predicts that for large n, the flexibility should ap-
proach a limiting value of σ 2

indep./(2τ ). Interestingly, for large
ring sizes, the flexibility does not depend on n anymore, just
as the flexibility of colloidal chains is independent of the
chain size. Therefore, it is instructive to compare the values
of σ 2

indep./(2τ ) that we have found for colloidal rings to those
we had determined previously for colloidal chains. For chains,
we have found an average flexibility of (168 ± 4) deg2/s [in-
dicated by the dashed line in Fig. 6(b)] for our simulated
data and (100 ± 20) deg2/s for the experimental data [22].
Therefore, we find that the ratio between the flexibility of
loops and chains is 1.34 ± 0.03 for the simulated data and
1.30 ± 0.30 for the experimental data. These values agree
within error. They indicate that for large n, the flexibility of
colloidal loops is greater than that of colloidal chains.

A possible explanation for the prediction that colloidal
loops have a greater conformational flexibility than colloidal
chains for n � 8 might be found in the differences of their
translational diffusivity. For ring-structures, the translational
diffusivity is larger by a factor K of 1.1 to 1.4, as discussed in
Sec. III D. Indeed, the ratio between the flexibility of loops
and chains that we find here also falls into this range of
values for K. Therefore, it is likely that the larger flexibility
of the colloidal rings for n � 8 is a result of their greater
translational diffusivity compared to colloidal chains of the
same size. We note that the translational diffusivity has also
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previously been identified to be important for the flexibility,
where it was found that the maximum value of the flexibility
was determined by the translational diffusion coefficient of the
individual spheres [22,55].

Finally, we also consider effects that stem from excluded
volume interactions and hydrodynamics. To do so we consider
the simplest ring that has just a single degree of freedom, the
tetramer loop. In Fig. 6(c) we show the probability density
function of displacements �θ during a lag time of τ = 0.05 s
for the simulated data for three initial configurations. First,
for the square configuration (θ ∈ [84◦, 92◦]), we find that as
expected displacements are symmetrically distributed around
zero. This is in contrast to the diamond configurations: for θ ∈
[60◦, 68◦] we find a small bias toward positive displacements
and for θ ∈ [116◦, 124◦] we find the opposite, a bias toward
negative displacements. The origin of these shifts likely stems
from a combination of the constraint that the internal opening
angle cannot be smaller than 60◦ or larger than 120◦, and hy-
drodynamic interactions when particles that span the internal
opening angle are close to each other [21].

In addition to the mean value, the distribution for square
configurations is also broader than the distribution of the
diamond configurations. This leads to the slightly larger dif-
fusivity for the square configurations that we have observed
in Fig. 4(f) for the short-time diffusivity of tetramer loops.
Therefore, we hypothesize that the differences in flexibility
as function of angle θ that we have observed in Fig. 4(f) are
in part caused by steric constraints. Other contributions stem
from hydrodynamic interactions between the particles.

To summarize, we have found that the flexibility of the
colloidal loops increases as function of loop size n. For n � 8,
the flexibility saturates to a higher value than the flexibility of
colloidal chains. For smaller loop sizes, steric restrictions lead
to a lower flexibility. We have proposed a scaling relation in
terms of the number of conformational degrees of freedom
and find that it describes our simulated and experimental
data well. The observed scaling could have implications for
other microscopic ringlike structures found in biology, such
as ring polymers. Additionally, the observation that in addi-
tion to hydrodynamic properties, steric constraints can have a
large effect on the conformational diffusivity of flexible ob-
jects as well could have broader implications beyond ringlike
structures.

IV. CONCLUSIONS

In conclusion, we have studied a model system of flex-
ible colloidal loops using experiments and simulations, to
gain greater insight in the physical processes that govern the

behavior of reconfigurable ringlike microscopic objects, such
as ring polymers. First, we have found that for the loops
consisting of four to eight spheres, steric constraints have a
large effect on the possible conformations of the rings, as
characterized by their opening angles and radius of gyration.
Indeed, we have found differences in free energy of around
6 kBT between the most and least likely configurations of the
rings. We found that the scaling of the radius of gyration scales
according to Flory theory, and that the ratio of radii of gyration
of rings and chains is close to the expected value derived for
molecular polymers by renormalization theory.

The diffusive properties of the rings show the same scaling
as function of size as flexible colloidal chains and follows
predictions based on Kirkwood-Riseman theory. We find that
the ratio between the translational diffusivity of rings and
chains is close to the expected theoretical value and observe
that the rotational diffusivity of rings is approximately twice
as high as that of chains. In contrast to chains, for which the
flexibility is nearly constant, the flexibility, or conformational
diffusivity, of rings increases as function of ring size up to a
limiting value, set by hydrodynamic friction. We propose a
simple scaling that considers the number of conformational
degrees of freedom in the displacements and found that the
proposed scaling is in good agreement with the experimental
and simulated data.

This observed scaling could have broader implications for
other microscopic ringlike structures found in synthetic and
biological systems, such as ring polymers. In particular, our
observation that topological constraints can have a large effect
on the conformational diffusivity of flexible objects as well
could have broader implications beyond ringlike structures.
Therefore, it would be interesting to investigate the confor-
mational diffusivity of (model systems for) structures where
geometric constraints play a significant role, such as in floppy
colloidal crystals and intrinsically disordered proteins.
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