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Electrophoretic (EP) mobility reversal is commonly observed for strongly charged macromolecules in mul-
tivalent salt solutions. This curious effect takes place, e.g., when a charged polymer, such as DNA, adsorbs
excess counterions so that the counterion-dressed surface charge reverses its sign, leading to the inversion of
the polymer drift driven by an external electric field. In order to characterize this seemingly counterintuitive
phenomenon that cannot be captured by electrostatic mean-field theories, we adapt here a previously developed
strong-coupling-dressed Poisson-Boltzmann approach to the cylindrical geometry of the polyelectrolyte-salt
system. Within the framework of this formalism, we derive an analytical polymer mobility formula dressed
by charge correlations. In qualitative agreement with polymer transport experiments, this mobility formula
predicts that the increment of the monovalent salt, the decrease of the multivalent counterion valency, and the
increase of the dielectric permittivity of the background solvent suppress charge correlations and increase the
multivalent bulk counterion concentration required for EP mobility reversal. These results are corroborated by
coarse-grained molecular dynamics simulations showing how multivalent counterions induce mobility inversion
at dilute concentrations and suppress the inversion effect at large concentrations. This re-entrant behavior,
previously observed in the aggregation of like-charged polymer solutions, calls for verification by polymer
transport experiments.

DOI: 10.1103/PhysRevE.107.034503

I. INTRODUCTION

Electrostatic correlation effects are ubiquitous in biological
systems involving strongly charged biomolecules and
membranes. Counterintuitive phenomena, such as like-charge
attraction, are typically observed in systems including
macromolecules in contact with multivalent counterions
[1–6]. Several mechanisms mediating the attraction between
like-charged rods have been considered in literature, such as
covalence-like binding [7], Gaussian-fluctuation correlations
[8], and structural correlations [9,10]. In dense polymer
systems, like-charge attraction can induce, e.g., bundle
formation of F-actin and toroidal aggregates of DNA [11,12].
Multivalent inorganic ions and polyamines can also act as
condensing agents [13].

Charge inversion (CI) is another interesting manifestation
of charge correlations. This phenomenon occurs when the
macromolecular surface charge flips its sign on the adsorp-
tion of a sufficient amount of counterions from the solution.
When combined with other physical factors, CI can induce
additional effects. For example, in a press-driven flow through
a negatively charged slit pore, multivalent cation addition
can invert the sign of the monovalent counterion current,

generating a like-charged streaming current of negative sign
[14]. One should also mention the important role played by
CI in biology. In the cell medium of eukaryotic organisms,
the negatively charged DNA and the positively charged hi-
stone proteins can assemble into nucleosome. At high salt
concentrations, the stable structure corresponds to a ropelike
DNA wrapped around a beadlike histone having an inverted
net charge [1,15].

Electrophoresis is the motion of dispersed charged par-
ticles relative to a fluid exposed to an electric field. The
resulting driven transport is quantified in terms of the elec-
trophoretic (EP) mobility, defined as the ratio of the drift
velocity and the electric field strength. Based on the EP mobil-
ity strength, one can separate macromolecules in terms of their
size and surface charge [16,17]. Furthermore, EP transport
experiments can be efficiently used to probe the interfa-
cial charge structure of polyelectrolytes [18,19]. Additionally,
from viral infection to nanopore-based polymer sensing, poly-
mer transport through confined pores plays a critical role
in biological processes and various nanoscale applications
[20–23]. The underlying electrohydrodynamic mechanisms
have been extensively explored in recent theoretical works
[24,25].
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The surface CI of polyelectrolytes has been previously
characterized by EP transport experiments [26,27]. Indeed,
these experiments have shown that the addition of multivalent
cations into a polyelectrolyte solution induces the EP motion
of the negatively charged polyelectrolytes along the external
electric field. In this article, we carry out a theoretical inves-
tigation of this seemingly counterintuitive mobility reversal
effect. As the occurrence of this phenomenon requires the
presence of multivalent counterions strongly coupled to the
polyelectrolyte charges, the characterization of the underly-
ing mechanism necessitates the use of a correlation-corrected
electrostatic framework. Thus, considering the linear response
limit of a previously developed strong-coupling- (SC) dressed
Poisson-Boltzmann (PB) approach [24,25,28,29], we derive
an analytical polymer transport formula accounting for the
multivalent ion-induced charge correlations.

We show that our correlation-corrected EP transport for-
mula can qualitatively reproduce various experimentally
observed correlation effects on polymer transport, such as the
onset of the mobility reversal by added multivalent counteri-
ons, and its weakening by the increment of the monovalent
salt component, the increase of the solvent permittivity, and
the reduction of the multivalent counterion valency. The ana-
lytical structure of our formalism enables a clear interpretation
of the correlation mechanism driving these effects [26,27].

As a complementary approach, we also perform particle-
based coarse-grained molecular dynamics (MD) simulations.
A benchmark between MD simulations and the dressed-ion
theory is crucial, since the latter has been previously tested
for solutions in contact with charged planes [24,25,28,29], but
not in the case of charged cylinders. In addition to reproduc-
ing consistently the aforementioned theoretical predictions,
in the dense multivalent counterion regime, our MD simula-
tions capture a re-entrant phase not covered by the theoretical
mobility formula, which is valid only at dilute counterion
densities. Finally, within our computational framework, we
also characterize the effect of the counterion charge distribu-
tion beyond the point-ion approximation. The limitations of
our theory and potential improvements are discussed under
Summary and Conclusions.

II. MOLECULAR DYNAMICS SIMULATION APPROACH

A. Simulation system

We start by discussing the details of the MD simulations
in this work. The simulations were run in a box of vol-
ume Lx×Ly×Lz, where the longitudinal dimension was set to
Lz = 20 nm. Depending on the added salt concentration, the
transverse dimensions Lx = Ly were altered between 24 and
240 nm. As explained in Appendix A, we chose Lz to obviate
finite-size effects from the data.

As depicted in Fig. 1, the system includes a coarse-grained
(CG) DNA chain centered at the coordinates (x, y) = (0, 0)
spanning the cuboid simulation box along the z axis. The
DNA molecule was modeled by a series of spherical beads
distributed uniformly along the polymer axis and separated by
b = 0.17 nm from each other. The value of b is small enough
to provide a smooth potential surface in the longitudinal di-
rection. Moreover, each bead carries an elementary charge

FIG. 1. Left panel: A schematic of the CG DNA located at
(x, y) = (0, 0) along the z axis of the simulation box with total
volume Lx×Ly×Lz. Right panel: Ions distributed within a cylindri-
cal volume of radius r centered at (x, y) = (0, 0). The red, green,
and orange spheres represent trivalent cations, monovalent anions,
and monovalent cations, respectively. In this snapshot, Lx = Ly = 24
nm, and Lz = 20 nm. The concentration of multivalent salt (TCl3)
is ncb = 200 mM and that of monovalent counterions (e.g., Na+)
neutralizing the CG DNA charge 17 mM.

−e, resulting in a linear charge density of λ0 = −e/b =
−5.9 e/nm. The radius of the polymer, or equivalently the
radius of the beads, was set to a = 1.2 nm, which corre-
sponds to the characteristic thickness of double-stranded DNA
molecules [30,31].

Here the simulations were in the canonical ensemble, i.e.,
with fixed number of particles. Therefore, electroneutrality
in our simulations was achieved by neutralizing the DNA
charges with Lz/b added monovalent counterions (e.g., Na+).
This lead to a counterion concentration of (LxLyb)−1. Ad-
ditional monovalent salt, such as NaCl, and multivalent salt
species of general chemical structure XClqc were added into
the solution. The different cations (X) of equal size and
valency qc were divalent, trivalent (T3+), quadrivalent, or oc-
tavalent charges. Within the theory considerations, the bulk
concentration of the added monovalent and multivalent ions
will be denoted by nsb and ncb, respectively. Overlapping of
the mobile charges was avoided by placing the ions on a reg-
ular grid at the initialization stage. The pairwise interactions
between the polymer beads and the ions were modelled via
the standard Weeks-Chandlers-Andersen potential [32],

Vi j (r) =
{

4εi j

[(
σi j

r

)12

−
(

σi j

r

)6]
+ εi j

}
θ
(
rcut

i j − r
)
, (1)

where the indices i and j correspond to the multivalent,
sodium, chloride ions, and DNA beads; θ (x) is the Heaviside
step function. In the implementation of the potential (1), we
used the Lorentz-Berthelot mixing rules σi j = (σi + σ j )/2
and εi j = √

εiε j and set the cut-off radii of the pairwise inter-
actions rcut

i j = 21/6σi j . The parameters εi and σi are reported in
Table I. The approach follows our previous work, see Ref. [33]
for more details.

The pairwise electrostatic interactions between charges qi

and q j , with respective position vectors ri and r j , were taken
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TABLE I. The parameters of the Weeks-Chandlers-Andersen po-
tential used in the CG model.

Variable DNA bead Na+ Cl− Multivalent ion

ε (kcal/mol) 0.1 0.13 0.124 0.1
σ (nm) 2.4 0.234 0.378 0.5

into account with the Coulomb potential

V c(ri − r j ) = qiq je2

4πεw|ri − r j | . (2)

These potentials treat the solution as a continuous dielectric
medium with permittivity εw. Unless stated otherwise, the
relative dielectric constant of the Coulomb potential was set
to the relative permittivity of water εw/ε0 = 78, where ε0

stands for the vacuum permittivity. The MD simulations were
performed using the LAMMPS Jan2020 package [34,35].

The long-range electrostatic interactions were calculated
with the particle-particle particle-mesh (PPPM) method [36].
Up to the characteristic split distance d s, the pairwise
Coulomb interactions in Eq. (2) were evaluated in real space,
whereas beyond this distance in reciprocal space. The PPPM
accuracy parameter (relative error) was set to 10−5 and the
stencil size parameter to 5. The setting of the distance ds is
discussed in Appendix B.

All simulations were performed in the NV T ensemble.
During the simulations, the temperature was controlled by
the Nose-Hoover thermostat with 300 K as the reference
temperature [37,38]. After an initial placement of the ions
into the simulation box, the system energy was minimized by
the conjugate gradient method. This was followed by a 24-ns
NV T simulation run for data analysis. The first 4 ns of this
run were disregarded. A 2-fs time step was used.

B. DNA charge inversion

In our DNA-liquid system, the mobile charge configura-
tion is set by the collective effect of the electrostatic and
steric interactions between the ions and the DNA beads, and
thermal fluctuations suppress the electrostatic coupling of the
charged entities. It has been previously shown that in the
presence of a sufficient amount of multivalent counterions
in the liquid, the electrostatic many-body effects take over
the thermal fluctuations, leading to the overcompensation of
the bare DNA charges by the counterions bound to the DNA
molecule [25–27,29,39–41].

With the aim of illustrating the corresponding CI effect,
and of relating the latter to the EP mobility inversion of
the molecule, we focus first on the configuration of trivalent
salt (TCl3). Figure 2(a) displays the dimensionless density
profiles ni(r)/nib of the multivalent cations (solid curves)
and monovalent anions (dashed curves) at various bulk TCl3

concentrations from the MD simulations. The density profiles
ni(r) are calculated from counting the ions in a cylindrical
volume around the DNA (cf. Fig. 1). One can see that the T3+
adsorption peaks, located at r ≈ 1.4 nm, are followed by the
Cl− density peaks at r ≈ 1.8 nm. Moreover, the inset shows
that these peaks correspond to the interfacial excess of Cl−

FIG. 2. Radial functions related to charge inversion from the MD
simulations. (a) Normalized density profiles of the T3+ cations (solid
curves) and Cl− anions (dashed curves). (b) Cumulative charge den-
sity in Eq. (3). (c) Electrostatic potential in Eq. (4) at various trivalent
salt concentrations ncb indicated in the legend of (b). The inset in
(a) displays the dimensionless Cl− densities on a smaller linear scale.
The dashed vertical line in (c) marks the no-slip boundary located at
r = a + δ. The gray regions indicate the radius of the polymer a. The
relative liquid permittivity is εw/ε0 = 78.

ions. Thus, the Cl− attraction by the adsorbed T3+ cations
leads to an apparent like-charge binding of the Cl− anions
onto the anionic DNA molecule.

The DNA zeta potential setting the EP mobility of the poly-
mer can be obtained from the cumulative charge density λt (r)
of the molecule. The latter corresponds to the total charge
enclosed by a cylindrical volume of radius r divided by the
length of the cylinder, Lz (see Fig. 1), i.e.,

λt (r) = λ0 + 2πe
∫ r

0
dr′r′[n+(r′) − n−(r′) + qcnc(r′)], (3)

where n+(r), n−(r), and nc(r) denote the number density of
the monovalent Na+ and Cl− ions and the multivalent Xqc+
cations, respectively. Figure 2(b), displaying the cumulative
charge density in Eq. (3), shows that CI occurs in the bulk
T3+ concentration regime ncb � 20 mM.

By integrating the radial Poisson equation, one can relate
the radial component of the electric field E (r) to the cumu-
lative charge density as E (r) = λt (r)/2πrεw. On integration
of the latter equality, the electrostatic potential φ(r) takes the
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FIG. 3. EP mobility μp from MD simulations as a function of the multivalent counterion concentration ncb for various values of (a) the
cation valency qc, (b) the dielectric constant, and (c) the monovalent salt concentration nsb. The dashed curves correspond to a quadratic fitting
function (see main text), and the crosses represent the reversal concentrations n∗

cb, which are reported in Table II.

form

φ(r) =
∫ ∞

r

λt (r′)
2πεwr′ dr′. (4)

The resulting potential profiles displayed in Fig. 2(c) show
that CI manifests itself as the emergence of the electrostatic
potential peaks, where the slope of φ switches from positive
to negative.

As described in Sec. III, the coupled solutions of the
electrostatic Poisson equation and the hydrodynamic Stokes
relation yield the Helmholtz-Smoluchowski identity, which
relates the EP polymer mobility to the DNA zeta potential
ζ via

μp = εwζ

η
, (5)

where η = 8.91×10−4 Pa s is the dynamic viscosity of water.
In Eq. (5), the zeta potential corresponds to the electrostatic
potential value at the no-slip surface separating the mobile
ions from the ones bound to the charged polymer [42]. Given
this definition, the zeta potential can be obtained from our
potential profiles as ζ = φ(a + δ). Based on the results of pre-
vious experiments [43,44], in our calculations the thickness of
the no-slip region was set to δ = 0.5 nm.

C. Electrophoretic mobility inversion

We next focus on the EP mobility under a variety of con-
ditions from the MD simulations. Figure 3(a) illustrates the
dependence of the EP mobility on the multivalent cation at
concentration ncb for various valencies. First, the plot shows
that for qc = 2–4 the increment of the concentration ncb

increases the negative polymer mobility and switches it to
positive. The characteristic concentration n∗

cb at which the
mobility is inverted can be identified by a quadratic fit of the
curve μp(ncb) = 0 in the vicinity of the inversion point. In
Fig. 3 these fitting functions are shown by dashed lines. The
reversal concentrations provided by the fits are n∗

cb = 280, 5,
and 0.05 mM, for divalent, trivalent, and quadrivalent salt,
respectively. This is in agreement with prior findings on asym-
metricity of the salt and charge reversal [45]. Additionally,

in agreement with polymer transport experiments [26,27], the
increase of the counterion valency lowers the critical salt
concentration n∗

cb required for the occurrence of the mobility
reversal, i.e., qc ↑ n∗

cb ↓.
The intensification of the DNA CI and the resulting mo-

bility reversal by ion valency stems from the amplification of
charge correlations. Indeed, in Sec. III C, we show that the
weight of the charge correlations responsible for CI is propor-
tional to the electrostatic coupling parameter defined as � =
q2

cB/μGC, where B = e2/(4πεwkBT ) stands for the Bjerrum
length, and μGC = 1/(2πqcBσp) is the Gouy-Chapman (GC)
length. Here σp is the surface-charge number density of the
polymer, and σp = 1/2πab in the simulations. These iden-
tities imply that the coupling parameter is a cubic function
of the ion valency (� ∝ q3

c ), explaining the sharp emergence
of mobility reversal on the rise of the counterion valency at
constant concentration ncb, as can be seen in Fig. 3(a).

Figure 3(a) also shows that for qc � 2, the EP mobil-
ity exhibits a nonmonotonic dependence on ncb. Namely, as
the multivalent cation concentration is increased beyond the
value n∗

cb, the reversed mobility rises, reaches a peak, and
drops monotonically. This peculiarity is qualitatively simi-
lar to the re-entrance phenomenon observed in like-charge
polymer interactions; according to prior experimental studies
and theoretical analysis of these systems, multivalent cations
triggering DNA condensation at low concentrations reverse

TABLE II. The reversal concentrations n∗
cb from MD simulations

for different parameters in Figs. 3 and 4. n/a indicates that n∗
cb is too

small to be reliably estimated from the simulations.

Parameters n∗
cb (mM)

Fig. 3(a)
qc = 2, 3, 4, 8 n/a 0.055 5 280
Fig. 3(b)
εw/ε0 = 100, 78, 60, 40 n/a 0.3 5 35
Fig. 3(c)
nsb = 0, 6, 20, 50 mM 5 7.2 10 15
Fig. 4
rod A, B, C, D 70 80 140 260
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the effect at large concentrations, resulting in the segregation
of the condensates in the charged liquid [40,46,47].

The permittivity of the solvent is an additional control
parameter previously investigated by transport experiments
[26]. The effect of the liquid permittivity on the EP polymer
velocity is displayed in Fig. 3(b). One can see that at fixed
multivalent ion concentration, the reduction of the solvent
permittivity rises the negative DNA mobility and switches
the latter to positive, i.e., εw ↓ μp ↑. This implies that the
mixing of the water solvent with a lower permittivity liquid
can solely trigger DNA mobility inversion. This result is in
agreement with polymer transport experiments in Ref. [26],
where the negative DNA velocity in water-ethanol mixtures
was observed to rise and reverse with increasing the volume
fraction of ethanol in the liquid.

The occurrence of mobility reversal on the reduction of
the solvent permittivity is a consequence of stronger charge
correlations in lower permittivity liquids. Indeed, according
to its definition above, the electrostatic coupling parameter
scales quadratically with the inverse dielectric permittivity,
i.e., � ∝ ε−2

w . Hence, the reduction of the liquid permittivity
enhances the weight of the electrostatic many-body interac-
tions responsible for CI and mobility reversal. Owing to this
mechanism, Fig. 3(b) shows that the multivalent ion concen-
tration at the reversal drops with the liquid permittivity, i.e.,
εw ↓ n∗

cb ↓.
Finally, in Fig. 3(c), we investigate the effect of added

monovalent salt, such as NaCl, at concentration nsb, on DNA
mobility. The plot indicates that monovalent salt ions coun-
teract the multivalent cations and monotonically suppress the
mobility inversion. Consequently, in accordance with poly-
mer transport experiments [26,27], the minimum counterion
concentration for mobility reversal increases with the amount
of monovalent salt, i.e., nsb ↑ n∗

cb ↑. In Sec. III, within the
framework of our correlation-augmented EP transport theory,
we show that this feature originates from the attenuation of
charge correlations by monovalent ions.

D. Influence of charge distribution in multivalent counterions

In order to extend our understanding of the mechanism
behind mobility inversion beyond the counterion valency, we
scrutinize the role played by the spatial charge distribution
in the multivalent counterions on polymer mobility. To this
end, we ran MD simulations by replacing the spherical triva-
lent counterions by rodlike charges with the same valency.
Each rodlike ion of total length L = 1.6 nm consists of seven
spheres linearly distributed. The diameter of each sphere
is 0.5 nm, the same as previous multivalent spherical ions
(see Table I), and the distance between two adjacent spheres
is 0.18 nm.

First, we analyze the purely steric effect originating from
the finite length of the trivalent ions. To this aim, we place
three elementary charges on the central sphere of the rod (rod
A in Fig. 4) and compare the resulting polymer mobility (cyan
curve) to the case with spherical trivalent ions (red curve). The
plot indicates that as the rotational penalty experienced by the
rodlike ions close to the polymer surface reduces their density
and their degree of condensation, the finite counterion size
decreases the polymer mobility while increasing the critical

FIG. 4. EP mobility from MD simulations in the presence of
trivalent counterions of different intramolecular structures. The re-
versal concentrations are found at n∗

cb = 7, 70, 80, 140, and 260 mM
for sphere, rod A, B, C, and D, respectively. The reversal con-
centrations n∗

cb are shown in Table II. Here the concentration of
monovalent salt is nsb = 0. In the inset the red circle denotes a spher-
ical trivalent counterion, whereas the yellow circles are monovalent
spherical counterions located at different sites in the seven-bead
rodlike molecule.

counterion concentration required for mobility inversion from
n∗

cb = 7 mM to n∗
cb = 70 mM.

Second, we investigate the electrostatic effect associated
with the surface charge density of the multivalent counterions.
To this purpose, we split the three elementary charges on the
ion by moving two unit charges from the center to the end in
a symmetric fashion (see the corresponding configurations in
the legend of Fig. 4). One can see that the resulting reduction
of the ionic surface charge density weakens the DNA screen-
ing by the counterions, lowering the EP polymer mobility
monotonically at all concentrations. As a result, the criti-
cal ion concentration for mobility reversal rises from n∗

cb =
70 mM for rod A–like counterions to n∗

cb = 80, 140, and
260 mM for rodlike counterions of types B, C, and D,
respectively.

III. SC-DRESSED EP TRANSPORT THEORY

In order to physically understand the various aspects of the
EP mobility reversal investigated in the previous section by
MD simulations, we develop here a SC-corrected analyti-
cal theory of EP polymer transport. The theory is based on
the dressed-ion limit [29] of the SCPB formalism [24,25],
treating the monovalent salt ions at the weak-coupling level
while taking into account the SC correlations mediated by
the multivalent charge species. We emphasize that due to its
grand-canonical nature, the present theory can consistently ac-
count for the bulk charge reservoir present in the real system.
This feature leads into quantitative differences between the
theory and the canonical MD simulations here. In contrast
to the MD simulations, where the finite number of charges
in the setup required to force the electroneutrality condition
via the addition of extra monovalent cations, in our grand-
canonical formalism the inclusion of the chemical equilibrium
between the interfacial and bulk charges allows to satisfy
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automatically both the DNA and the bulk electroneutrality
conditions.

A. Derivation of the SC-dressed polymer mobility

The EP mobility of a cylindrical polymer with radius a
translocating through a nanopore of radius d has been previ-
ously calculated by the coupled solution of the Navier-Stokes
and Poisson equations in Ref. [25]. This calculation is re-
viewed in Appendix C. Therein, we show that the polymer
mobility reads

μp = μep[φ(r = a∗) − φb], (6)

where we introduced the EP mobility coefficient defined as
μep = εwε0kBT/(eη). In Eq. (6), φ(r) = eV (r)/(kBT ) is the
dimensionless electrostatic potential, with the radial distance
r from the polymer axis. Moreover, the constant bulk poten-
tial is defined as φb = 4πBqcncb/κ

2, with the salt screening
parameter κ2 = 4πB(n+b + n−b), where n±b stands for the
bulk concentration of the monovalent salt ions. In Eq. (6), the
effective polymer radius a∗ is related to the physical polymer
radius a by a∗ = a + δ, where δ is the hydrodynamic no-slip
length. We also note that the relation (6) is naturally equivalent
to Eq. (5).

The evaluation of the mobility (6) requires the calcu-
lation of the average potential at the polymer surface. In
Appendix D, we review the derivation of the SC-dressed av-
erage electrostatic potential in the dressed-ion limit [29] of
the SCPB formalism [24]. It is shown that the corresponding
potential reads

φ(r) = φs(r) + φc(r), (7)

where the average potential component associated with the
monovalent salt and satisfying the linear PB equation is

φs(r) =
∫

d3r′G(r, r′)σ (r′), (8)

and the SC potential induced by the multivalent-ion compo-
nent of valency qc and bulk concentration ncb is

φc(r) = qcncb

∫
d3r′G(r, r′)kc(r′). (9)

In Eqs. (8) and (9), we introduced the fixed surface charge of
the polymer σ (r) = −σpδ(r − a), and the electrostatic Green
function satisfying the kernel equation

[∇ · ε(r)∇ − κ2ε(r)θ (r − a)]G(r, r′) = − e2

kBT
δ(r − r′).

(10)

In Eq. (10), we defined the radial dielectric permittivity profile

ε(r) = εpθ (a − r) + εwθ (r − a), (11)

with the water permittivity εw and the polymer permittiv-
ity εp. Moreover, the salt screening parameter is defined as
κ2 = 4πB(n+b + n−b), where n±b stands for the bulk con-
centration of the monovalent salt ions. As discussed at the
beginning of Sec. III, due to the grand-canonical nature of our
formalism, the ion concentrations satisfy automatically the
bulk electroneutrality condition, i.e., n+b − n−b + qcncb = 0.

In Eq. (9), we introduced the partition function of the
multivalent ions

kc(r) = θ (r − a)e−qcφs (r)−q2
c δG(r)/2 (12)

related to the counterion density as ρc(r) = ncbkc(r), with the
ionic self-energy

δG(r) = lim
r′→r

[G(r, r′) − Gb(r − r′)], (13)

where Gb(r) = Be−κr/r stands for the electrostatic Green’s
function in the bulk region. The self-energy (D12) takes into
account two separate electrostatic effects. The first one is the
repulsive ionic solvation force on the multivalent charges orig-
inating from the screening deficiency in the salt-free polymer
volume. The second effect is the strongly repulsive image-
charge forces associated with the dielectric contrast between
the polymer and the solvent.

The evaluation of the average potential components (8) and
(9) requires the knowledge of the Green’s function satisfying
Eq. (10). The latter can be solved by exploiting the cylindrical
symmetry of the system. The details of this solution in Fourier
space can be found in Refs. [25,48]. The Fourier expansion of
the Green’s function and its bulk limit read

G(r, r′) = B

π

∞∑
n=−∞

∫ ∞

−∞
dk ein(φ−φ′ )eik(z−z′ )

× [In(pr<) + �nKn(pr<)]Kn(pr>); (14)

Gb(r, r′) = B

π

∞∑
n=−∞

∫ ∞

−∞
dk ein(φ−φ′ )eik(z−z′ )

× In(pr<)Kn(pr>), (15)

where we used the modified Bessel functions of the first kind
In(x) and of the second kind Kn(x), the auxiliary screening pa-
rameter p = √

κ2 + k2, the shortcut notations r< = min(r, r′)
and r> = max(r, r′) for the radial coordinates, and the dielec-
tric jump function

�n = pIn(ka)I ′
n(pa) − γ kIn(pa)I ′

n(ka)

−pIn(ka)K ′
n(pa) + γ kKn(pa)I ′

n(ka)
(16)

including the dielectric coefficient γ = εp/εw. Injecting
Eqs. (14) and (15) into Eq. (D12), the self-energy in Eq. (12)
follows as

δG(r) = B

π

∞∑
n=−∞

∫ ∞

−∞
dk �nK2

n (pr). (17)

Substituting now the Green’s function (14) into Eq. (8), the
mean-field (MF) potential follows as the standard solution of
the linear PB equations around a charged cylinder,

φs(r) = − 2

qcκμGC

K0(κr)

K1(κa)
, (18)

as expected. Moreover, the correlation component (9) of op-
posite sign responsible for CI becomes

φc(r) = 4πBqcncbJ (r), (19)
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FIG. 5. (a) Polymer mobility μp in Eq. (21) versus the multivalent counterion concentration ncb for various values of the (a) monovalent
salt concentration n+b, (b) the electrolyte permittivity εw, (c) the multivalent charge valency qc, and (d) the polymer permittivity εp. The model
parameters are a = 1.2 nm, δ = 0.1 nm, and σp = 0.783 e/nm2. The charge valency in (a), (b), and (d) is qc = 3, and the salt concentration in
(b)–(d) is n+b = 300 mM.

where we introduced the integral function

J (r) = K0(κr)
∫ r

a
dr′r′kc(r′)

{
I0(κr′) + I1(κa)

K1(κa)
K0(κr′)

}

+
{

I0(κr) + I1(κa)

K1(κa)
K0(κr)

}∫ ∞

r
dr′r′kc(r′)K0(κr′).

(20)

Plugging Eqs. (18) and (19) into Eqs. (7)–(9), the polymer
mobility in Eq. (6) finally takes the form

μp = −eσp

κη

K0(κa∗)

K1(κa)
+ eqcncb

κ2η
[κ2J (a∗) − 1]. (21)

Equation (21) is the main result of the present work. We
emphasize that to our knowledge this identity is the first
analytical beyond-MF mobility formula accounting for the
SC correlations induced by the multivalent charges. The first
term of Eq. (21) corresponds to the MF-level EP mobility, and
the second term of opposite sign is the multivalent counterion
contribution responsible for mobility reversal. From Eq. (21),
the critical multivalent cation concentration at the mobility
reversal follows as

n∗
cb = κσs

qc

K0(κa∗)

K1(κa)

1

κ2J (a∗) − 1
. (22)

In the simplest case, where the no-slip length vanishes, i.e.,
a∗ = a, Eqs. (21) and (22) simplify to

μp = −eσp

κη

K0(κa)

K1(κa)

+eqcncb

κ2η

{
κ

aK1(κa)

∫ ∞

a
dr′r′kc(r′)K0(κr′) − 1

}
;

(23)

n∗
cb = κσs

qc

K0(κa)

K1(κa)
(24)

×
{

κ

aK1(κa)

∫ ∞

a
dr′r′kc(r′)K0(κr′) − 1

}−1

. (25)

B. Characterization of the EP mobility inversion

Figure 5 displays the polymer mobility in Eq. (21) versus
the multivalent counterion concentration, and Fig. 6 illustrates

the multivalent ion density profile in Eq. (12) at various
model parameters. These mobility and counterion density
plots should be interpreted together.

The inspection of Figs. 5(a) and 5(b) indicates that the
theoretical mobility formula (21) agrees qualitatively with
the MD simulation results in Figs. 3(b) and 5(c). Namely,
Figs. 6(a) and 6(b) respectively show that the increment of
the monovalent salt or the solvent permittivity suppressing the
interfacial potential attenuates the counterion adsorption, i.e.,
n+b ↑ kc(r) ↓ and εw ↑ kc(r) ↓. In Figs. 5(a) and 5(b), one
sees that due to the resulting reduction of charge correlations,
the larger the monovalent salt concentration or the liquid
permittivity, the larger the multivalent counterion concentra-
tion required for the mobility reversal, i.e., n+b ↑ n∗

cb ↑ and
εw ↑ n∗

cb ↑.
Figures 5(c) and 6(c) indicate that charge valency brings an

opposite effect to polymer mobility. Indeed, one sees that mul-
tivalent cations of larger valency exhibit a stronger adsorption
and higher interfacial density, i.e., qc ↑ kc(r) ↑. Due to the
resulting intensification of the surface charge correlations, the
higher the charge valency, the lower the counterion concentra-
tion at the mobility reversal, i.e., qc ↑ n∗

cb ↓. We note that this

FIG. 6. (a) Dimensionless multivalent ion density kc(r) =
nc(r)/ncb against the separation distance from the polymer axis at
the model parameters in Figs. 5(a)–5(d).
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trend is equally in agreement with the computational result of
Fig. 3(a).

Finally, we investigate the surface polarization effects as-
sociated with the low dielectric permittivity of the polymer
on its mobility. Figure 6(d) shows that for εp < εw, the repul-
sive image-charge forces embodied by the self-energy term
δG(r) of Eq. (12) exclude the multivalent counterions from
the surface of the polymer, i.e., εp ↓ kc(r) ↓. As a result,
Fig. 5(d) indicates that the lower the polymer permittivity, the
higher the required bulk counterion concentration for the mo-
bility reversal, i.e., εp ↓ n∗

cb ↑. We finally note that the present
theory does not capture the re-entrance regime of the simula-
tion results in Figs. 3(a) and 3(b). This limitation of the SC
formalism is a consequence of the virial treatment of the
multivalent charges, restricting the validity of the theory to
dilute multivalent counterion concentrations.

C. Scaling of the mobility and the reversal concentration

In our MD simulation results presented in Sec. II, the effect
of the experimentally controllable physical parameters on the
mobility inversion was explained qualitatively in terms of
the electrostatic coupling parameter �. In order to provide a
solid mathematical background supporting this analysis, we
investigate here the dependence of the analytically derived EP
mobility formula (21) on this coupling parameter. To this aim,
we first scale all lengths by the GC length as r̄ = r/μGC, and
define the dimensionless salt screening parameter s = κμGC

and the electrostatic coupling parameter � = q2
cB/μGC. The

counterion partition function (12) becomes

kc(r̄) = θ (r̄ − ā)e−ψ (r̄)−�Us (r̄), (26)

with the scaled average potential and self-energy

ψ (r̄) = −2

s

K0(sr̄)

K1(sā)
; (27)

Us(r̄) =
∞∑

n=−∞

∫ ∞

−∞

dk̄

2π
�nK2

n ( p̄r̄), (28)

where we introduced the additional dimensionless parameters
ā = a/μGC, k̄ = kμGC, p̄ =

√
s2 + k̄2, and

�n = p̄In(k̄ā)I ′
n( p̄ā) − γ k̄In( p̄ā)I ′

n(k̄ā)

−p̄In(k̄ā)K ′
n( p̄ā) + γ k̄Kn( p̄ā)I ′

n(k̄ā)
. (29)

In terms of these scaled parameters, the polymer mobility (21)
takes the form

μp = μep

qc

{
−2

s

K0(sā∗)

K1(sā)
+ 4π [I (a∗) − s−2]� n̄cb

}
, (30)

with the dimensionless counterion concentration n̄cb=μ3
GCncb,

and the auxiliary integral

I (r̄) = K0(sr̄)
∫ r̄

ā
d r̄′r̄′kc(r̄′)

{
I0(sr̄′) + I1(sā)

K1(sā)
K0(sr̄′)

}

+
{

I0(sr̄) + I1(sā)

K1(sā)
K0(sr̄)

} ∫ ∞

r̄
d r̄′r̄′kc(r̄′)K0(sr̄′).

(31)

We first consider the case εp = εw, where ionic image-
charge forces are absent. In Eq. (30), one sees that the

electrostatic coupling parameter � is involved in the positive
correlation component corresponding to the second term in
the bracket at two different levels. First, the coupling pa-
rameter � comes into play as a linear prefactor scaling the
multivalent cation concentration n̄cb. The corresponding de-
pendence on the parameter � originates from the correlations
between the polymer charges and the multivalent counterions.
These correlations driving the counterion adsorption onto the
polymer surface give rise to the polymer CI and the mobil-
ity reversal. Indeed, one notes that in the limit of vanishing
coupling parameter (� → 0), the correlation component in
Eq. (30) disappears, and the EP mobility tends to its MF
counterpart corresponding to the first term in the bracket.

Second, Eq. (31) shows that � equally contributes to the
mobility (30) nonlinearly as the self-energy magnitude of the
ionic partition function in Eq. (26). This nonlinear contri-
bution takes into account the correlations of the multivalent
counterions with their monovalent salt cloud and the po-
larization charges. These correlations generate the repulsive
solvation and image-charge forces suppressing the multivalent
counterion adsorption.

Figure 7(a) shows that this competition gives rise to the
nonuniform trend of the polymer mobility (30) with respect to
the electrostatic coupling parameter. Namely, one sees that at
large enough multivalent cation concentrations (blue and red),
the negative mobility initially governed by MF electrophoresis
rises linearly with �, switches from negative to positive at
the CI point, and reaches a peak located at � ≈ 100. In the
regime of larger coupling strengths, where the repulsive ionic
solvation energy in Eq. (26) significantly excludes multivalent
counterions from the polymer surface, the resulting weaken-
ing of the polymer CI suppresses the reversed mobility and
turns the latter from positive back to negative.

From Eq. (30), the critical concentration for the mobility
reversal follows as

n̄∗
cb = 1

2πs�

K0(sā∗)

K1(sā)

1

I (ā∗) − s−2
. (32)

Figure 7(b) shows that due to the amplification of the inter-
facial counterion adsorption responsible for CI, the rise of
� leads to the linear drop of the characteristic counterion
concentration (32) up to � = �c ≈ 100. At larger � values,
where the multivalent counterion adsorption is significantly
weakened by the repulsive ionic solvation forces, the charac-
teristic concentration n̄∗

cb reverses its slope and rises quickly
with the coupling parameter. Figure 7(c) indicates that if one
also takes into account the low dielectric permittivity of the
polymer, the addition of the strongly repulsive image-charge
interactions to the ionic solvation forces drops substantially
the boundary of the self-energy-dominated coupling parame-
ter regime, i.e., εp ↓ �c ↓.

IV. SUMMARY AND CONCLUSIONS

In this work, we have combined correlation-corrected
transport theory and particle-based numerical simulations to
characterize the electrostatic mechanisms behind various ex-
perimentally observed features of DNA mobility inversion.
Our MD simulations were run in the NV T ensemble. On the
other hand, our polymer transport theory was derived in the
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FIG. 7. (a) Polymer mobility (30) and [(b) and (c)] critical concentration (32) versus the electrostatic coupling parameter �. The polymer
radius is ā = 10.0 and the no-slip length is δ̄ = 1.0. The remaining parameters are given in the legends.

dressed-ion limit [29] of the SCPB formalism [24,25] incor-
porating mutually the weak and SC interactions induced by
the mono- and multivalent ions, respectively. As this theory is
based on the μV T ensemble, the underlying grand-canonical
picture includes the bulk charge reservoir present in the phys-
ical system. The main result of this theoretical approach is the
identity of Eq. (21), providing the first-known-to-us analytical
EP mobility formula taking into account the contribution from
SC correlations responsible for mobility inversion. We sum-
marize below the main predictions of this analytical formula,
equally supported by our numerical simulations, providing
qualitatively equivalent results.

The EP mobility formula and its scaled form in Eq. (30)
indicate—as anticipated—that EP polymer mobility reversal
is caused by the excess of multivalent counterions adsorbed
onto the DNA surface. The strength of this effect originating
from the strong coupling of the multivalent counterions and
the DNA charges is set by the magnitude of the coupling
parameter � in the second term of Eq. (30). Our MD simula-
tion results show that as the adsorption excess is accompanied
with the CI of the macromolecule, the resulting like-charge
coion attraction by the anionic polyelectrolyte comes into play
as an additional macroscopic signature of mobility reversal
(see Fig. 2).

We have also investigated the effect of the experimentally
controllable system components on the polymer mobility. We
found that the increment of the monovalent salt component
weakens charge correlations and the multivalent charge ad-
sorption onto DNA, resulting in the suppression of the EP
mobility reversal. Consequently, the amount of multivalent
counterions n∗

cb required for the occurrence of mobility inver-
sion increases with the monovalent salt concentration n+b, i.e.,
n+b ↑ n∗

cb ↑. However, as the multivalent counterion-DNA
coupling is enhanced by the increase in the ion valency or
the decrease of the dielectric permittivity, i.e., qc ↑ � ↑ and
εw ↓ � ↑, the increase of the counterion charge or the de-
crease of the solvent permittivity lowers the minimum amount
of multivalent charges required for mobility inversion, i.e.,
qc ↑ n∗

cb ↓ and εw ↓ n∗
cb ↓. It is noteworthy that the afore-

mentioned predictions are in qualitative agreement with the
observations of the EP polymer transport experiments [26,27].

In the presence of curved interfaces separating water and
solvent-free dielectric cavities, such as the surface of DNA
with permittivity εp ≈ 2–5 in contact with the high per-
mittivity electrolyte, the computational cost associated with

the presence of an infinite number of image-charge inter-
actions does not allow the explicit inclusion of the surface
polarization effects into the MD simulation framework. How-
ever, due to the underlying continuum field representation,
our SC-dressed transport theory naturally incorporates the
image-charge effects on the polymer mobility. Based on
this generality of the theory, we showed that the strongly
repulsive polarization forces originating from the dielectric
contrast at the polymer-solvent interface repel the multivalent
counterions and reduce their coupling to the DNA charges.
Consequently, the dielectric cavity created by the low per-
mittivity polymer rises the minimum amount of trivalent
counterions required for mobility inversion by almost two
orders of magnitude.

Finally, we have considered two additional peculiari-
ties exclusively accessible by our simulation approach. In
Fig. 3, we showed that the multivalent counterions triggering
mobility inversion at dilute concentrations suppress the inver-
sion at large concentrations. The corresponding re-entrance
phenomenon previously observed in experiments on DNA
condensation [40,46,47] calls for verification by EP trans-
port experiments. Additionally, in order to characterize the
effect of the typically extended charge structure of multivalent
cations, such as spermidine, we investigated the impact of
the counterion density on the EP mobility. Our simulations
revealed that as the extended structure of the multivalent
cations reduces their surface charge density, also resulting
in their rotational penalty close to the DNA surface, the fi-
nite counterion size weakens the DNA-counterion coupling,
therefore suppressing the mobility reversal. Consequently, the
characteristic multivalent counterion concentration for mobil-
ity reversal increases with the ion charge magnitude. It should
be noted that the modeling here simplifies the molecular
level dependencies in nucleic acid–ion interactions, see, e.g.,
Refs. [49–51].

In the present study, the MD framework chosen for our nu-
merical computations required the simulation of the charged
system in the NV T ensemble, characterized by the constraint
of conserved particle number. Future Monte Carlo simula-
tions using the particle insertion method would enable the
simulation of the model in the grand-canonical ensemble,
thereby allowing direct quantitative comparison of the theo-
retical and simulation results. Moreover, our theoretical and
computational models neglect the conformational polymer
fluctuations. It has been experimentally shown that the stiff

034503-9



XIANG YANG et al. PHYSICAL REVIEW E 107, 034503 (2023)

polymer approximation holds for polymer lengths extending
up to the persistence length of lp ≈ 30–55 nm [52]. Therefore,
the consideration of long polymers necessitates the incorpora-
tion of the polymer conformations into the model. The latter
is a highly challenging task, and is beyond the scope of the
present article.

A link to plotted simulations data is available at [53]. If us-
ing the open data, then we request acknowledging the authors
by a citation to the original source (this publication).

ACKNOWLEDGMENTS

This work was supported by the Academy of Finland
through its Centres of Excellence Programme (2022-2029,
LIBER) under Project No. 346111 (M.S.). The work was also
supported by Technology Industries of Finland Centennial
Foundation TT2020 grant (T.A-N. and X.Y.). We are grate-
ful for the support by FinnCERES Materials Bioeconomy
Ecosystem. Computational resources by CSC IT Centre for
Finland and RAMI—RawMatters Finland Infrastructure are
also gratefully acknowledged.

The authors have no conflicts of interest to disclose.

APPENDIX A: FINITE-SIZE EFFECTS IN MOLECULAR
DYNAMICS SIMULATIONS

In this section, we explore the influence of the size of the
simulation box on the ion density and the average potential
profiles. A major constraint for the convergence of the system
size V is the minimum amount of counterions required to
screen the polymer charges. Therefore, according to the iden-
tity Nc = ρcV , low charge concentrations ρc require a large
system size to keep the counterion number Nc above some
threshold value needed to compensate for the DNA charges.

The aforementioned effect can be illustrated by comparing
the ion number density at the boundary of the simulation box
with its bulk value. According to this criterion, finite-size
effects can be considered to be negligible if the normalized
multivalent ion density defined as kc(r) = nc(r)/ncb tends to
unity at the system boundary located at r∗. As an example,
we observed that at high concentrations located in the regime
ncb � 100 mM, a simulation box of size Lx = 24 nm was able
to provide a sufficient amount of counterions to compensate
the PE charges. Consequently, at this box size, the ion den-
sity at the system boundary was sufficiently close to unity
[kc(r∗) � 0.98] for finite-size effects to be negligible.

The left plot of Fig. 8 shows that for the same box size
Lx = 24 nm but at the lower counterion concentration ncb =
50 mM (orange curve), due to the decrease of the counterion
number below the critical amount required to screen the DNA
charges, the normalized ion density at the system boundary
drops below unity. One sees that by increasing the box size
to Lx = 60 nm (green curve), the density at the boundary
increases to unity, indicating the elimination of the visible
finite-size effects from the simulations. In the right panel of
Fig. 8, one sees that decreasing further the counterion con-
centration down to ncb = 5 mM, the box size Lx = 60 nm
becomes insufficient to satisfy the thermodynamic limit in the
transverse direction (green curve). In this case, the increase

FIG. 8. Normalized trivalent ion density at the bulk concentra-
tions ncb = 50 mM (left) and ncb = 5 mM (right), and for different
dimensions of the simulation box (see the legends) displaying reduc-
tion in the finite-size effects at Lx � 60 nm (left) and Lx � 112.8 nm
(right). The relative permittivity and the longitudinal system size are
εw/ε0 = 78 and Lz = 20 nm.

of the system size up to Lx = 112.8 nm allowed again to
restore the thermodynamic limit by rising the boundary value
of the normalized ion density significantly close to unity (blue
curve). In Table III, we report the characteristic system sizes
enabling the substantial suppression of the finite-size effects
by keeping the boundary value of the normalized ion density
above the value of 0.95.

An additional finite-size effect is the finite boundary value
of the electrostatic potential. In the physical system, the bulk
electroneutrality condition leads to a vanishing potential in
the bulk reservoir. However, in the simulation box of finite
transverse dimensions, the electrostatic potential always has
a finite value at the boundaries of the system. In order to
minimize this finite-size effect, the transverse size of the box
should be chosen significantly larger than the characteristic
screening lengths of the potential. Thus, the elimination of this
effect required us to choose the system size such that the latter
satisfies the condition Lx � μGC for the salt-free liquid and
Lx � κ−1 in the presence of salt. The corresponding values
are displayed in Table III.

Finally, in order to eliminate finite-size effects associ-
ated with the length of the polymer, we had to identify the
characteristic polymer length above which the results remain
unaffected by an increase in the molecule length. In Fig. 9,
we show that the increase of the polymer length above Lz ≈
10 nm does not lead to a significant change of the cumulative
charge density. Thus, in order to ensure that our ion condensa-
tion results are free of finite length effects, we always set the
polymer length to Lz = 20 nm.

TABLE III. Characteristic lengths and parameters: The horizon-
tal box size Lx , the screening length κ−1, the GC length μGC, and the
PPPM distance d s for various trivalent salt concentrations and the
relative permittivity εw/ε0 = 78.

ncb (mM) Lx (nm) max κ−1 (nm) μGC (nm) d s (nm)

0.1–0.5 240 25 0.1 3.0
1–5 112.8 7.9 0.1 3.0
10–50 60 2.5 0.1 1.5
>100 24 0.8 0.1 1.5
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FIG. 9. Cumulative charge density with trivalent counterions of
bulk concentrations ncb = 1 mM (left) and ncb = 50 mM (right), and
different longitudinal system sizes (see the legend) indicating the
numerical convergence at Lz � 10 nm. The relative permittivity is
εw/ε0 = 78, and the transverse system size is Lx = 112.8 nm (left)
and Lx = 60 nm (right).

APPENDIX B: ADDITIONAL DETAILS REGARDING
CONVERGENCE OF THE PPPM ELECTROSTATICS

CALCULATION METHOD

We provide here details regarding convergence consider-
ations of the PPPM method used to evaluate the pairwise
electrostatic interactions between the charges in the polymer-
ion complex. The PPPM approach splits the electrostatic
Coulomb interactions into a short-range and a long-range
component. The short-range component defined as the inter-
actions between each charge and its neighbors located within a
distance d s is evaluated directly in the method. The long-range
interactions of the central charge with the other charges lo-
cated at a larger distance r > ds are evaluated by mapping the
interacting particles into a grid and carrying-out a fast Fourier
transform [54]. The Key parameter for the convergence of
the calculation is d s. Grid spacing is generated automatically
from d s by LAMMPS. For computational efficiency, the pa-
rameter d s is often in coarse-grained modeling set to a value
slightly larger than the particle size. However, for elevated
local charge density such as in this study, the choice can lead
to loss of convergence when ds > 4 nm. We carefully checked
the ion distribution convergence in our work. Based on the
outcome of the convergence checking, in our simulations, we
use ds = 1.5 nm for system sizes in the range Lx � 60 nm.
In larger systems where the simulations are significantly more
time consuming if extensive weight is on the mesh part, we
use a larger value of ds = 3 nm. This allows fast numerical
computation by keeping practically the same accuracy. The
ion distribution remains the same as ds = 1.5 nm. The corre-
sponding values of the parameter ds are reported in Table III.
The parameter of relative error was set to 10−5 and the stencil
size was set to 5. No other PPPM calculation parameters were
modified from LAMMPS algorithm implementation defaults.

APPENDIX C: CALCULATION OF THE EP
POLYMER MOBILITY

In this part, we explain the derivation of the EP polymer
mobility. This derivation is based on the coupled solution of

the Stokes equation

η∇2uc(r) + eEρc(r) = 0, (C1)

and the Poisson equation

∇2φ(r) + 4πBρc(r) = 0, (C2)

where we neglected the fixed charge density simply fixing the
electrostatic boundary conditions, and defined the ion charge
density

ρc(r) =
∑
i=±

qini(r). (C3)

We suppose that the polymer translocates inside a coaxial
cylindrical nanopore of radius d . First, we combine Eqs. (C1)
and (C2) to eliminate the ion charge density functions, and
express the result in cylindrical coordinates. This yields

η

r
∂rr∂ruc(r) − eE

4πBr
∂rr∂rφ(r) = 0. (C4)

Equation (C4) can be easily solved to give

uc(r) = eE

4πBη
φ(r) + c1 ln r + c2. (C5)

In order to fix the integration constants c1,2, we impose to
Eq. (C5) the no-slip BCs at the nanopore wall and the polymer
surface,

uc(r = d ) = 0; uc(r = a∗) = vp, (C6)

where we defined the EP polymer translocation velocity vp,
and the effective polymer radius a∗ = a + δ that differs from
the physical polymer radius a by the hydrodynamic no-slip
length δ. Then we account for the force-balance relation
on the polymer, Fel + Fsh = 0, with the electric force Fel =
−2πaLpσpE coupled to the polymer charges, and the hy-
drodynamic shear force Fsh = 2πaLpηu′

c(a) exerted on the
polymer surface. Moreover, we take into account the Gauss’
law at the polymer surface, i.e., φ′(a) = 4πBσp, where
σp stands for polymer surface charge density. The polymer
translocation velocity follows as

vp = eE

4πBη
[φ(a∗) − φ(d )]. (C7)

Now, in order to recover the bulk polymer limit, we take the
pore radius to infinity (d → ∞). The EP polymer mobility
defined as μp = vp/E finally becomes

μp = μep[φ(a∗) − φb]. (C8)

with the EP mobility coefficient μep = εwε0kBT/(eη) and the
bulk potential constant

φb = φ(d → ∞) = qcncb

∫
d3rcGb(r − rc) = 4πBqcncb

κ2
.

(C9)

APPENDIX D: DERIVATION OF THE DRESSED-ION
THEORY FROM THE SCPB FORMALISM

In this Appendix, we describe briefly the calculation of the
SCPB equation and review the key features of this formalism
developed in Ref. [24]. Then we explain the derivation of the
dressed-ion formalism [29] directly from the SCPB theory.
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1. Review of the SCPB formalism

In Ref. [24], the SCPB formalism has been derived from
the field theoretic representation of the partition function of a
solvent-implicit electrolyte mixture in contact with negatively
charged macromolecules such as the walls of a nanoslit or
a nanopore. The liquid mixture is composed of monovalent
salt anions and cations with valencies q± = ±1 and bulk con-
centrations n±b, and a dilute multivalent counterion species
of valency qc > 1 and reservoir concentration ncb. The bulk
electroneutrality condition consistently following from the
SCPB formalism reads

n+b − n−b + qcncb = 0. (D1)

The SCPB formalism is based on the Schwinger-Dyson
identity corresponding to an exact Poisson equation. The
explicit evaluation of this identity formally expressed as a
field average is carried out by treating the weakly coupled
monovalent salt component within a WC-level Gaussian field
approximation, and the strongly coupled dilute multivalent
counterion component via a virial expansion.

The Gaussian approximation assumes quadratic fluctua-
tions of the electrostatic potential whose variance is set by the
WC-level Debye-Hückel (DH) Green’s function solving the
kernel equation

[∇ · ε(r)∇−κ2ε(r)e−Vi (r)]G(r, r′) = − e2

kBT
δ(r − r′), (D2)

where κ = √
4πB(n+b + n−b) is the DH screening parame-

ter.
The SCPB equation satisfied by the average potential φ(r)

has the form of a Poisson equation,

kBT

e2
∇ · ε(r)∇φ(r) + σ (r) +

∑
i=±,c

qini(r) = 0, (D3)

where σ (r) stands for the fixed macromolecular charge den-
sity. Moreover, the multivalent and monovalent ion densities
have been defined as

nc(r) = ncbkc(r), (D4)

n±(r) = n±bk±(r)[1 + ncbT±(r)], (D5)

with the dimensionless density function

ki(r) = e−Vi (r)−qiφs (r)−q2
i δG(r)/2, (D6)

for i = {±, c}, and the steric ion potential Vi(r). In Eq. (D6),
the average potential function induced by the fixed macro-
molecular charges and screened exclusively by the monova-
lent salt component reads

φs(r) = φ(r) − φc(r), (D7)

where the additional potential component originating from the
multivalent charges is

φc(r) = qcncb

∫
d3rckc(rc)G(r, rc). (D8)

Equation (D5) contains as well the second virial coefficient

T±(r) =
∫

d3rc[kc(rc) f±(rc) − f±b(r − rc)] (D9)

accounting for the direct monovalent-multivalent ion interac-
tions, with the Mayer function and its bulk limit defined as

fi(r, rc) = e−w(r−rc )−qiqcG(r,rc ) − 1, (D10)

fib(r − rc) = e−w(r−rc )−qiqcGb(r−rc ) − 1, (D11)

respectively. In Eq. (D11), we introduced the bulk Green’s
function Gb(r) = Be−κr/r. Moreover, the repulsive hard-
core (HC) potential in Eqs. (D10) and (D11) has been defined
as w(r − r′) = ∞ if ||r − r′|| � 2ahc, and w(r − r′) = 0 for
||r − r′|| > 2ahc, where ahc stands for the HC ion radius.
Finally, in Eq. (D6), the ionic self-energy corresponding to
the equal-point correlation function renormalized by its bulk
value has been defined as

δG(r) = lim
r′→r

[G(r, r′) − Gb(r − r′)]. (D12)

2. Dressed-ion limit of the SCPB formalism

Here via the DH expansion of the SCPB Eq. (D3), we
derive the dressed-ion-level electrostatic potential. This per-
turbative expansion known to be accurate at large monovalent
ion concentrations [29] corresponds to the treatment of the
monovalent salt species within the linear DH approximation.
First, in Eqs. (D10) and (D11), we set the HC potential to zero,
i.e., w(r − r′) = 0. Then, in Eq. (D6), we neglect the self-
energy of the monovalent ion densities. Finally, we expand
Eqs. (D6) and (D10) and (D11) in terms of the monovalent
salt valencies q±. This yields

fi(r, r′) ≈ −qiqcG(r, rc); fib(r − r′) ≈ −qiqcGb(r − rc),
(D13)

and

k±(r) = [1 ∓ φs(r)]e−Vi (r). (D14)

Substituting the identities in Eqs. (D13) and (D14) into
Eqs. (D5) and (D9), and making use of the electroneutrality
condition (D1) together with the identity

∫
d3rcGb(r − rc) =

1/(n+b + n−b), the monovalent ion densities simplify to

n±(r) ≈ n±be−V±(r)

[
2n∓b

n+b + n−b
∓ φ(r)

]
. (D15)

Finally, plugging the DH-level densities in Eq. (D15) into the
SCPB Eq. (D3), the latter takes the linear form

−kBT

e2
[∇ · ε(r)∇ − κ2ε(r)e−Vi (r)]φ(r) = σ (r) + qcncbkc(r).

(D16)

At this point, one notes that in Eq. (D16), the differential
kernel acting on the potential φ(r) corresponds to the inverse
of the Green’s function solving Eq. (D2), i.e.,

G−1(r, r′) = −kBT

e2
[∇ · ε(r)∇ − κ2ε(r)e−Vi (r)]δ(r − r′).

(D17)
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This allows us to express Eq. (D16) as

∫
d3r′G−1(r, r′)φ(r′) = σ (r) + qcncbkc(r). (D18)

Finally, inverting Eq. (D18) by using the identity∫
dr G(r′′, r)G−1(r, r′) = δ(r′ − r′′), the average potential

follows as

φ(r) = φs(r) + φc(r), (D19)

with the MF-level salt-screened potential component

φs(r) =
∫

d3r′G(r, r′)σ (r′), (D20)

and the multivalent counterion-induced correlation compo-
nent φc(r) given by Eq. (D8).
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