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Langevin analogy between particle trajectories and polymer configurations
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A diffusive trajectory drawn by the generalized Langevin equation (GLE) for a colloidal particle evokes a
random fractal of a static polymer configuration. This article proposes a static GLE-like description that enables
the generation of a single configuration of a polymer chain with the noise formulated to satisfy the static
fluctuation-response relation (FRR) along a one-dimensional chain structure but not along a temporal coordinate.
A remarkable point is qualitative differences and similarities in the FRR formulation between the static and the
dynamic GLEs. Guided by the static FRR, we further make analogous arguments in light of stochastic energetics
and the steady-state fluctuation theorem.

DOI: 10.1103/PhysRevE.107.034502

I. INTRODUCTION

A close observation of stochastic phenomena ubiquitously
reveals underlying fractal structures [1–7]. Not only nonequi-
librium but also equilibrium conditions create the fractal
figures. A typical example is polymer configurations, whose
snapshots display random fractals due to chain connectivity in
thermal agitation [8–11]. Indeed, two-point correlations grow
as a power law: 〈

�x2
n

〉 ∼ n2ν, (1)

where xn indicates the nth monomer position with a monomer
index n along a polymer chain, and 〈·〉 is considered an ap-
propriate average with �xn = xn − x0. The Flory exponent ν

characterizes the spatial fluctuation size of a polymer [e.g.,
ν = 1/2 for an ideal chain, whereas ν = 3/4 or � 0.588 for a
self-avoiding (SA) chain in two or three dimensions, respec-
tively] [8–11]. The inverse exponent 1/ν describes the fractal
dimension.

In addition to the spatial configurations, a rich variety of
stochastic processes are also subject to a fractal notion, as ob-
served by inspecting trajectories plotted as a function of time
[1,6,7,12–14]. The spatial correlation [Eq. (1)] is replaced by
the mean-square displacements (MSDs):

〈�x(t )2〉 ∼ tα, (2)

where �x(t ) = x(t ) − x(0) with time t . The Brownian mo-
tion or random walk with α = 1 offers a primary illustration
referred to as normal diffusion. In addition, the notion is ex-
tended to anomalous diffusion identified as nonlinear growth
with α �= 1 [1,6,7,14–29]. Interestingly, the static configura-
tions for the ideal or SA chain have a mathematical analogy to
the trajectories drawn by the random or SA walk, respectively
[8–11].

Consider the dynamical side of the polymer. The temporal
evolution of a tagged monomer’s position x(t ) belongs to a
class of anomalous diffusion expressed by the generalized
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Langevin equation (GLE) with a power-law-function memory
kernel μ(t ) [23–26]:

dx(t )

dt
=
∫ t

0
ds μ(t − s) f (s) + η(t ), (3)

where f (t ) or η(t ) denotes an externally controlled force
or noise acting on the tagged monomer, respectively. A
benchmark dynamical model simplified without the SA and
hydrodynamic interactions (HIs) is the Rouse chain, whose
memory kernel μ(t ) includes the negative-valued power-
law component μα (t ) ∼ −t−3/2 created by a string structure
due to a local coupling between adjacent monomers [see
Eqs. (13) and (14) for more detail]. A physical requirement
claims the fluctuation-response relation (FRR) that associates
the memory kernel with the noise, resulting in anomalous
(sub)diffusion with 〈�x(t )2〉 ∼ t1/2. The GLE formalism
[Eq. (3)] covers not only the Rouse polymer, but also a diverse
range of polymers, e.g., even in the manifest presence of the
SA or the HIs.

A striking similarity between the statics and the dynamics
in the polymer leads to an obvious question: Can the stochas-
tic differential equation akin to GLE (3) describe a static
polymer configuration with an altered kernel μst(n, n′)?

dxn

dn
=
∫ N

0
dn′ μst(n, n′) fn′ + ηn, (4)

where fn′ is an externally controlled constant force acting
on the n′th monomer, and ηn is static noise. An analogous
formulation underlying the polymer is, however, elusive.

Our aim in this article is to find a stochastic analogy be-
tween the particle trajectories and the polymer configurations.
In Sec. II, we begin with a review of the conventional GLE
derived from the mode analyses, and then we propose a static
GLE-like description with the static FRR not along time t but
along the monomer index n. Section III addresses the same
statistical issue to relate a static response with fluctuations
(the static FRR) from a partition function based on a path
integral. Once the Langevin analogy is found, the stochastic
energetics [30] or the fluctuation theorem [31–36], which has
been developed by focusing on a particle trajectory, may fall
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within the scope of the analogy to a polymer configuration. In
Sec. IV, we consider the heat analogy to the stochastic ener-
getics proposed by Sekimoto [30] with the Langevin equation.
To be consistent with the heat analogy, we develop the argu-
ment toward the steady-state-fluctuation-theorem analogy in
Sec. V. In Sec. VI, we discuss applications and perspectives.
Section VII concludes this study.

II. LANGEVIN ANALOGY

A. From a “dynamical” Rouse chain to a “static” ideal chain

1. Dynamics

We first review a derivation of the dynamical GLE [Eq. (3)]
from equations of motion for the Rouse model [24]. Consider
a linear polymer running the length of Na with a size of
monomer denoted by a in a viscous solution at temperature
T . Also consider monomers indexed from one chain end by
n and whose position at time t is expressed as xn(t ). Note
that we focus on a one-dimensional coordinate along a forced
direction, on which the polymer motion is projected. The
equation of motion for each monomer is written as

γ
∂xn(t )

∂t
= k

∂2xn(t )

∂n2
+ fn(t ) + ζn(t ), (5)

where γ denotes the frictional coefficient per monomer and k
is the spring constant. Note that Eq. (5) is the expression after
taking the continuum limit of the monomer index n.1 On the
right-hand side, the last two terms fn(t ) and ζn(t ) represent
the external force and the thermal noise acting on monomer
n, respectively. The noise is the mean zero 〈ζn(t )〉 = 0 and
the Gaussian distributed random force with the correlation
〈ζn(t )ζn′ (t )〉 = 2Nγ kBT δ(t − t ′)δ(n − n′).2 In the noisy dif-
fusion equation (5), the mean force balance γ ∂〈xn(t )〉/∂t �
k∂2〈xn(t )〉/∂n2 represents tension propagation along the chain
backbone [37], whereas ζn(t ) plays a role in diffusion over the
spatial dimension.

We now trace xn(t ) at the controlled force with fn =
f δ(n − n0)
(t ), where the force is applied into the n0th

1The discrete form assigns indices to the monomers from 0 to N
with the total number of indices N + 1. Each monomer for n ∈ [0, N]
is obeyed by

γ
∂xn(t )

∂t
= −k[xn(t ) − xn+1(t )] − k[xn(t ) − xn−1(t )]

+ fn(t ) + ζn(t ). (6)

The first two terms on the right-hand side are represented by con-
servative force arising from harmonic potentials between adjacent
monomers. The continuum limit of the monomer index n reduces
the discrete k[xn+1(t ) − xn(t )] + k[xn−1(t ) − xn(t )] to the continu-
ous form k∂2xn(t )/∂n2 along with the limit in the total number
of monomers N + 1 → N . In addition, a free boundary condition
in the discrete form is taken into account by virtually introduc-
ing (−1)th and (N + 1)th monomers such that x0(t ) − x−1(t ) =
0 and xN+1(t ) − xN (t ) = 0. The continuum limit turns them into
∂xn/∂n|n=0 = ∂xn/∂n|n=N = 0 [8,9].

2A conversion from discrete to continuous forms implies that
δnn′/N � δ(n − n′) for a sufficiently large N .

monomer,3 and externally controlled force with f or 
(t )
being the force magnitude or the Heaviside step function,
respectively [24–26,38–40].

To deal with Eq. (5), we move to the normal mode
Xq(t ) [9]:

γq
∂Xq(t )

∂t
= −kqXq(t ) + Fq(t ) + Zq(t ) (7)

with the conversion between the real and mode space
defined as

Xq(t ) =
∫ N

0
dn xn(t )hq,n, xn(t ) =

N∑
q=0

Xq(t )h†
q,n. (8)

The conversion kernels in Eq. (8) are introduced as

hq,n = 1

N
cos
(πqn

N

)
, h†

q,n = 1

cq
cos
(πqn

N

)
(9)

to satisfy a free boundary condition ∂xn/∂n|n=0 =
∂xn/∂n|n=N = 0 [8,9] with cq ≡ (1 + δq0)/2. The coefficients
for the Rouse model are assigned with

kq = k(πq/N )2, γq = γ . (10)

As with Eq. (8), fn(t ) or ζn(t ) becomes Fq(t ) or Zq(t ) on
the mode space, respectively. The noise Zq(t ) in the normal
coordinate has the mean zero 〈Zq(t )〉 = 0 and satisfies the
equilibrium noise condition:

〈Zq(t )Zq′ (t ′)〉 = 2cqkBT γq

N
δ(t − t ′)δqq′ , (11)

which implies that, in practice, modal motion for q is subject
to the thermal bath with effective temperature cqT/N .

Superposition of the normal modes gives a solution to
Eq. (5):

xn(t ) =
∑

q

∫ t

−∞
ds

Fq(s) + Zq(s)

γq
e−(t−s)(kq/γq )h†

q,n. (12)

If only the nth monomer is traced, the subscript drops as
xn(t ) → x(t ), which is hereafter called a tagged monomer.
The tagged monomer dynamics is found to accompany the
anomalous diffusion generated by the GLE [Eq. (3)] com-
bined with power-law memory kernels [24–26,38,39], where
the external force is given by f (t ) = f 
(t ) and η(t ) is
Gaussian distributed noise with mean zero 〈η(t )〉 = 0 and
covariance

〈η(t )η(s)〉 = kBT μ(t − s). (13)

Equation (13) is referred to as the fluctuation-response re-
lation (FRR) and associates the equilibrium noise with the
response function for the GLE [Eq. (3)].

Note that, to be exact, we define μ(s − t ) ≡ μ(t − s) for
s � t using the mobility kernel μ(t − s) for t � s, whereas
the mobility kernels that account for causality are expressed
as δ〈dx(t )/dt〉/δ f (s) = μ(t − s)
(t − s). A response to the

3For the external force acting on or around the chain end n0 = 0 or
N , a positive infinitesimal ε is added or subtracted such that n0 = ε

or n0 = N − ε, respectively, for technical reasons.
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external stimulus is identified by the mobility kernel:

μ(t ) � μc.m.(t ) + μ0(t ) + μα (t ), (14)

which is broken down into three components verified by
close inspection of the time derivative of Eq. (12). From
left to right on the right-hand side, the respective terms ex-
press the center-of-mass motion μc.m.(t ) � 2δ(t )/(Nγ1), the
instantaneous monomeric response μ0(t ) � 2γ −1δ(t ) before
detecting the chain connectivity, and a relaxation of the inter-
nal configuration μα (t ) � −(τuγ )−1|t/τu|α−2 with α = 1/2
for the Rouse polymer and τu ≡ γ /k.

In Eq. (14), the internal relaxation μα (t ) that generates
the subdiffusion (α < 1) deserves attention. Monitoring the
internal relaxation regime during the longest-relaxation-time
period τ1 = γ1/k1 = N2(γ /k), we encounter the subdiffusion
verified with μα (t ) as 〈�x(t )2〉 = ∫ t

0 ds
∫ t

0 ds′ 〈η(s)η(s′)〉 �
kBT

∫ t
0 ds

∫ t
0 ds′ μα (s − s′) ∼ t1/2. The emergence of the

power laws is based on the superposition of the modes in a
long chain limit. The equation of motion for each internal
mode is identical to that for a particle kicked by white
noise in a harmonic potential [Eq. (7) for q � 1], where a
memory kernel defined as a functional derivative of a mean
velocity 〈Ẋq(t )〉 for each internal mode, i.e., μq(t − s) ≡
δ〈Ẋq(t )〉/δFq(s), has an exponential-decay component with
characteristic time scaling as τq = γq/kq ∼ q−2. Specif-
ically, μq(t − s) = −(kq/γ

2
q )e−|t−s|/τq + (2/γq)δ(t − s)

is found. In addition, remarkable fluctuation ampli-
tudes show up through the factor multiplied with the
exponential −(kq/γ

2
q ) ∼ −q2 varying with a power

function of q. Keeping them in mind, as mathematically
traced in μα (t ) =∑N

q=1

∑N
q′=1 μα,q(t )δqq′h†

q,n0
hq′,n0 ∼

− ∫∞
0 d (q/N ) (q/N )2e−t (q/N )2 ∼ −t−3/2 with μα,q(t ) =

−(kq/γ
2
q )e−t/τq , we find that the resultant power law arises

from integrating over the dense set of the temporal exponential
decay described with the power-law-dependent characteristic
times and amplitudes in the long chain limit.4

2. Statics

We attempt here to find the static GLE-like expression that
describes each configuration of the ideal chain5 as an analogy
for Eq. (3). One may naturally expect Eq. (4). Note that the

4Power laws obtained by the superposition of normal modes exploit
the integral formula:∫ ∞

0
ds sb−1e−asθ = �(b/θ )/(θab/θ ), (15)

where a, b, θ > 0. Note that a conventional notation �(·) for the
gamma function is employed in Eq. (15), which is the same as
the frictional kernel in Eq. (A6); however, it carries no special
significance. A caveat in applying Eq. (15) is that t/τu → ∞ and
t/(τuN θ ) → 0 are considered as the limit during the regime τu �
t � N θ τu between the monomeric and the entire chain relaxation
times.

5Conventionally, the Rouse model assumes the basic equation to
discuss the dynamics with the local friction, whereas the ideal chain
is the static representation without specification of the dissipation
mechanism.

mean gradient of tension is reduced to the applied force fn ≡
−dTn/dn, where Tn is referred to as the “applied tension”
acting on the nth monomer with

∫ N
0 dn dTn/dn = TN − T0 =

0 taken as a whole. Notably, the tension Tn behaves like a
“force potential” invoked by an “energy potential,” whereas
the respective potentials provide the force from a derivative
with respect to “n” or “x.” In addition, μst(n) denotes a static
(superdiffusive) kernel, and ηn is static noise with mean zero
〈ηn〉 = 0.

The relation of the static kernel μst(n) with ηn no longer
shares the same form as Eq. (13); we now derive an analogous
static FRR using the solution Eq. (12).

The derivative of xn(t ) =∑q�1 Xq(t )h†
q,n with respect to

n produces the left side of Eq. (4):

dxn(t )

dn
= −

∑
q

∫ t

−∞
ds

πq

N

Fq + Zq(s)

γq
e−(t−s)(kq/γq )h(s)†

q,n ,

(16)

where kernels distinct from hq,n, h†
q,n are introduced as

h(s)
q,n = 1

N
sin

(
πqn

N

)
, h(s)†

q,n = 1

cq
sin

(
πqn

N

)
. (17)

The superscript (s) is used to remind us of the initial letter
of sin (·). Note that, in practice,

∫ N
0 dn dTn/dn = 0 does not

demand that q = 0 mode be considered. The right-hand side
of Eq. (16) should be reduced to the right-hand side of Eq. (4).
When the deterministic and the stochastic parts are separated,
the static fluctuation ηn turns out to be given by

ηn = −
∑

q

πq

N

(∫ t

−∞
ds

Zq(s)

γq
e−(t−s)(kq/γq )

)
h(s)†

q,n . (18)

Using Eq. (18), we calculate the autocorrelation of noise,
which is at equal time between n and n′:6

〈ηnηn′ 〉 =
∑
q�1

(πq

N

)2
∫ t

−∞
ds

2cqkBT

Nγq
e−2(t−s)(kq/γq )h(s)†

q,n h(s)†
q,n′

=
∑
q�1

(πq

N

)2 cqkBT

Nkq
h(s)†

q,n h(s)†
q,n′ . (20)

6The external force fm determines the gradient of tension fm =
−dTm/dm and Fq = ∫ N

0 dm fmhq,m. The mean part of Eq. (16) is
extracted as

−
∑

q

∫ t

−∞
ds

πq

N

Fq

γq
e−(t−s)(kq/γq )h(s)†

q,n

= −
∑

q

1

kq

πq

N
Fqh(s)†

q,n

= −
∑

q,q′,m

πq

N

1

kq
h(s)†

q,n hq,mFq′ h†
q′,m

=
∑

m

⎛
⎝−

∑
q

πq

N

1

kq
h(s)†

q,n hq,m

⎞
⎠
⎛
⎝∑

q′
Fq′ h†

q′,m

⎞
⎠. (19)

To find Eq. (21), we compare Eq. (19) with Eq. (4) and also use∑
m h(s)

q,mh(s)†
q′,m = δqq′ .
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Tn, fn

n

<dxn/dn>

n

Tn, fn

n

n

<dxn/dn>

0 N

0 N

(a) (b)

FIG. 1. Schematic profiles for a Rouse polymer in tension Tn,
applied force fn, and local stretching rate 〈dxn/dn〉: (a) local tension
induced by a local external dipole force and (b) uniform tension
applied by pulling both the chain ends. The upper figures show
profiles for tension or applied force, drawn with a solid black or
red broken line, respectively. The corresponding local stretching rate
〈dxn/dn〉 is displayed in the lower figures. The vertical scales for Tn

and fn are not the same.

A remaining issue is μst(n, n′). By superimposing the mean
mode components, we find the static memory kernel to be

μst(n, n′) = −
∑
q�1

1

kq

(πq

N

)
hq,n′h(s)†

q,n . (21)

Comparing Eq. (21) with (20) reveals that a simple replace-
ment from t to n does not successfully establish the FRR like
Eq. (13). Instead, we encounter

〈ηnηn′ 〉 = kBT ∂n′μst(n, n′), (22)

where ∂n′hq,n′ = −(πq/N )(cq/N )h(s)†

q,n′ with a notion ∂n ≡
d/dn. Notably, Eq. (22) is specified only by the static param-
eter kq, similar to a static relation between heat capacity and
internal energy fluctuation kBT 2∂〈U 〉/∂T = 〈δU 2〉, where
U denotes the internal energy. In addition, we find that,
generally, μst(n, n′) �= μst(n′, n); however, symmetricity is re-
covered by differentiating it as ∂n′μst(n, n′) = ∂nμst(n′, n).

We consider here specific situations. Only the local interac-
tion is present for the Rouse polymer with ν (x) = 1/2, where
the noise serves as a local pointlike correlation:

〈ηnηn′ 〉 = kBT

k
δ(n − n′), (23)

which is derived from Eq. (20) as the continuum limit of the
monomer index. Then, recalling Eq. (22) and d〈xn(t )〉/dn =
− ∫ dn′ μst(n, n′)dTn′/dn′, we estimate the mean stretching
rate d〈xn(t )〉/dn. Specifically, if a local dipole force with fn =
−∂Tn/∂n = − f ∂δ(n − nd )/∂n acts on the nd th monomer, the
mean rate is found to be d〈xn〉/dn = ( f /k)δ(n − nd ), indi-
cating local stretching at nd [see Fig. 1(a)]. As shown in
the profiles for the tension (black solid line) and the ap-
plied force (red broken line) in Fig. 1(a), a pair of applied
external forces with equivalent magnitude but opposite di-
rections [i.e., the dipole expressed mathematically by fn =

− f ∂δ(n − nd )/∂n] acts if the tension Tn = f δ(n − nd ) is
locally imposed there,7 which stretches the local part like
the δ function, as shown in the lower-left profile in Fig. 1.
In addition, as shown in Fig. 1(b), if both ends are pulled
with Tn = f 
(n − ε) − f 
(n − N + ε), we observe homo-
geneous stretching d〈xn〉/dn = f /k as a result of the local
restoring force expressed by k∂2xn/∂n2 under uniform ten-
sion. Note that, for technical purposes, positive infinitesimal
ε is introduced such that the forced points are completely in
the chain.8

B. SA chain

SA polymer

Often, in practical situations, incorporating long-range in-
teractions is inevitable. First, the monomers repel each other
and the effective interaction of SA qualitatively swells the
polymer, as quantified by the Flory exponent ν mentioned in
the discussion of Eq. (1). In addition, together with the SA in-
teractions, we discuss the HIs that lead to qualitative changes
in the dynamics, although the HIs are not necessarily required
in the SA chain. The HIs add long-range frictional interac-
tion between monomers due to the medium flow created by
the distant monomer’s motion. The characteristic relaxation
time is represented by τ ∼ Rz with dynamical exponent z,
e.g., z = 3 for the nondraining scenario or z = 2 + 1/ν for
the free-draining scenario. A generalization that incorporates
these long-range interactions into mode analyses9 can be im-
plemented by replacing the coefficients in Eqs. (7) and (11)
with

kq = k(q/N )1+2ν, γq = γ (q/N )1−(z−2)ν . (25)

Incidentally, Eq. (10) for the Rouse polymer with the local
interaction is recovered by substituting ν = 1/2 and z = 4.
Likewise, the GLE form of Eq. (3) can be constructed by
superposition of the whole modes: x(t ) =∑q Xq(t )h†

q,n. Note
that, whereas the monomeric instantaneous response μ0(t ) is
kept intact, the others are replaced by μc.m.(t ) � 2δ(t )/(Nγ1),
and the internal relaxation

μα (t ) = −
∑
q�1

cq

N

kq

γ 2
q

e−(kq/γq )t (h†
q,n)2

� − 1

τuγ

∣∣∣∣ t

τu

∣∣∣∣
−2+(2/z)

. (26)

7A method for handling the δ function is found in a textbook
on quantitative seismology [41] and also in a paper on chromatin
hydrodynamics [42].

8Both the Rouse and SA polymers can use Eq. (24) to derive the
local stretching rate d〈xn〉/dn. Taking the average of Eq. (4), we have

d〈xn〉
dn

= −
∫ N

0
dn′ μst(n, n′)

dTn′

dn′

=
∫ N

0
dn′ ∂μst(n, n′)

∂n′ Tn′ = (kBT )−1

∫ N

0
dn′ 〈ηnηn′ 〉Tn′ . (24)

The second equation is followed by integration by parts with T0 =
TN = 0, and the last equation comes from the FRR Eq. (22).

9The numerical verification in the mode analyses of the SA inter-
action is found in Ref. [43].
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<dxn/dn>
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n

<dxn/dn>

0 N

0 N

(a) (b)

FIG. 2. Schematic profiles for an SA polymer. Axes and legends
are the same as those in Fig. 1.

When calculating the MSD with the internal relaxation ker-
nel Eq. (26), we encounter the subdiffusion 〈�x(t )2〉 ∼ t2/z,
which is a general expression. In fact, for the dynamical expo-
nent z = 4 in the Rouse model, we rediscover the subdiffusion
〈�x(t )2〉 ∼ t1/2.

Although the polymeric parameters differ from those of
the Rouse polymer, the analogous formalities to obtain the
static GLE-like expression are available; we therefore arrive
at the same consequence as Eqs. (4) and (22). Note that, as
expected, the dynamical effects of the HIs eventually become
irrelevant to the explicit static expression of Eqs. (4) and (21).
However, the SA polymer has the long-range SA interaction,
where the summation is qualitatively separated into a few
cases; the consequences for 0 < n, n′ < N are as follows (see
the Appendix for details):

〈ηnηn′ 〉 � kBT

k

∑
q�1

1

N

(πq

N

)1−2ν

×
[

cos

(
πq(n − n′)

N

)
− cos

(
πq(n + n′)

N

)]

�
{ kBT

k , n � n′,
kBT

k |n − n′|2ν−2, |n − n′|  1.
(27)

In addition, 〈ηnηn′ 〉 = 0 if either n or n′ is placed at the chain
end. A strategy similar to that used for the Rouse polymer
can be used to estimate the stretching rate for the SA poly-
mer; however, the physical manners should be qualitatively
distinct. Unlike the dynamical kernel μ(t − s), the transla-
tional symmetry for the static kernel μst (n, n′) does not always
hold in the presence of a long-range interaction for the finite
chain length N , where effects of the chain ends can enter into
Eqs. (20) and (21).

For a local dipole with fn = − f ∂δ(n − nd )/∂n, as shown
in Fig. 2(a), the stretching rate d〈xn〉/dn � (kBT f /k)|n −
nd |2ν−2 for n �= nd is found to have a long tail because of
the long-range SA interaction. Because 2ν − 2 = −1/2 for
two dimensions (ν = 3/4), or 2ν − 2 � −4/5 for three di-
mensions (ν � 3/5), the monomers are increasingly stretched

as they approach the nd th monomer, i.e., d〈xn〉/dn ↗ as
|n − nd | ↘. In addition, as shown in Fig. 2(b), pulling both
ends with Tn = f 
(n − ε) − f 
(n − N + ε) creates global
inhomogeneous stretching d〈xn〉/dn � ( f /k)[n2ν−1 + (N −
n)2ν−1]. Given that 2ν − 1 = 1/2 for two dimensions, or �
1/5 for three dimensions, the stretching rate d〈xn〉/dn in-
creases as the monomers approach the (N/2)th monomer
along the chain, i.e., d〈xn〉/dn ↗ as |n − N/2| ↘.

We have thus far seen the analogous GLE-like form even
in the static situations; however, a noticeable difference is
observed with respect to the absence of the causality on
the static formulation. In fact, the static response exhibits
the approximate reversal symmetry (not the exact symmetry
because of the chain end effects, unless n = N/2), e.g., as
Fig. 2(a), whereas a response is temporally followed by an
instantaneous stimulus in the dynamical GLE.

III. PARTITION FUNCTIONS

We address here the same statistical issue to relate a static
response with fluctuations as that of Eq. (22) viewed from the
partition function based on the path integral. The general form
of the partition function for the observation of xn is given by

Zx[{Tn}] =
∫

Dxn exp

(
−U [{xn}] − ∫ N

0 dn Tn∂nxn

kBT

)
, (28)

where an additional term
∫ N

0 dn Tn∂nxn is inherent in the
polymer, with ∂nxn representing the local stretching rate. The
conjugate quantity to xn is Tn = − ∫ n

0 dn′ fn′ , which is defined
as minus the sum of the applied force from one end with∫ N

0 dn ∂nTn = 0 retained, and Tn is interpreted as applied ten-
sion acting on the nth monomer. Note that the coarse-grained
monomeric description of U ({xn}) can be given by the Ed-
wards Hamiltonian,10 which formally has integration over n;
thus, a double integral

∫
dn
∫

dn′ is hidden in the argument of
the exponential for Zx through U ({xn}).

The role of the additional term − ∫ N
0 dn Tn∂nxn is clearer

if we consider the local applied dipole force fn = − f ∂δ(n −
nd )/∂n given by the tension Tn = f δ(n − nd ). This ten-
sion contributes to the Hamiltonian by − ∫ N

0 dn Tn∂nxn =
− f ∂nxn|n=nd , which indicates the local stretching at n = nd . In
addition, given the uniform tension under Tn = f 
(n − ε) −
f 
(n − N + ε), we characterize the typical tensile-deformed
size as

〈�x〉 f =
∫

Dxn �x
exp
(−U [{xn}]− f �x

kBT

)
Zx

, (30)

where �x ≡ xN − x0 simply denotes the end-to-end dis-
tance, and 〈 〉 f represents the ensemble average at the

10Incorporation of the SA interaction into the bonding potential can
be provided by the Edwards Hamiltonian:

U ({xn}) =
∫ N

0
dn

1

2
k

(
∂xn

∂n

)2

+ vSA

∫ N

0
dn
∫ N

0
dn′ δ(xn − xn′ ),

(29)

where vSA denotes the SA parameters.
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constant applied force f . As in a general equilibrium relation
kBT 2∂〈U 〉/∂T = 〈δU 2〉 [44], standard calculus with canoni-
cal ensemble leads to a static FRR:

∂〈�x〉 f

∂ f
= 〈δ�x2〉 f

kBT
. (31)

Note that Eq. (31) or kBT 2∂〈U 〉/∂T = 〈δU 2〉 represents a
response to mechanical or thermal perturbation, respectively.
Incidentally, when f x/kBT � 1, Eq. (31) is linearized to
〈�x〉 f / f � 〈�x2〉0/kBT , which is considered a form more
analogous than Eq. (31) to the dynamical FRR 〈�x(t )〉/ f =
〈δ�x(t )2〉/kBT satisfied by the displacement [25,26].

We next verify Eq. (22). Consider the thermodynamic
function Fx ≡ −kBT ln Zx. The functional derivative of Fx

with respect to Tn results in

〈∂nxn〉 f = 1

Zx

∫
Dxn ∂nxn

× exp

(
−U ({xn}) − ∫ N

0 dn Tn∂nxn

kBT

)
. (32)

Again, applying δ/δTm to Eq. (32), we arrive at

δ〈∂nxn〉 f

δTm
= 〈(∂nxn − 〈∂nxn〉)(∂mxm − 〈∂mxm〉)〉

kBT
. (33)

Recall that the static kernel appearing in the GLE [Eq. (4)] is
defined as a functional derivative of 〈∂nxn〉 with respect
to fm = −∂mTm [i.e., μst(n − m) = δ〈∂nxn〉 f /δ fm =
−δ〈∂nxn〉 f /δ(∂mTm)]. A functional derivative of the
mean trajectory for the GLE (4) given by ∂n〈xn〉 =
− ∫ N

0 dn′ μst(n, n′)∂n′Tn′ is transformed through integration by
parts,11 resulting in δ〈∂nxn〉 f /δTm = ∂mμst(n, m). Substituting
it into Eq. (33) gives

kBT ∂mμst(n, m) = 〈(∂nxn − 〈∂nxn〉)(∂mxm − 〈∂mxm〉)〉. (36)

The resultant equation (36) is the same as FRR Eq. (22).
We emphasize that the above derivation of Eq. (22) does

not use the mode analyses; thus, the above argument does not
rely on the assumption imposed on the mode analyses.

IV. STOCHASTIC ENERGETICS ANALOGY

The notion of heat based on the Langevin dynamics pro-
posed by Sekimoto [30] has critically contributed to the
development of stochastic energetics or stochastic thermo-
dynamics. Here, a question arises: What analogous relations

11A functional derivative with respect to Tm leads to

δ(∂n〈xn〉)

δTm
= −

∫ N

0
dn′ μst(n, n′)

δ(∂n′ Tn′ )

δTm
. (34)

Under integration by parts, it is rewritten as

δ(∂n〈xn〉)

δTm
=
[
−μst(n, n′)

δTn′

δTm

]n′=N

n′=0

+
∫ N

0
dn′ ∂n′μst(n, n′)

δTn′

δTm

= ∂mμst(n, m),

(35)

where the fixed end condition T0 = TN = 0 is used.

do we obtain by replacing the t-axis with the n-axis in these
frameworks? This section is devoted to an analogy of the first
law of thermodynamics.

In discussing the energetics analogy, the form of
the static noise correlation [Eq. (22)] warrants atten-
tion. The static noise correlation 〈ηnηm〉 = kBT ∂mμst(n, m)
[Eq. (22)] is no longer directly proportional to the re-
sponse function μst(n, m) = δ〈dxn/dn〉/δ fm like the dynami-
cal FRR 〈η(t )η(s)〉 = kBT μ(t − s) [Eq. (13)] with μ(t − s) =
δ〈dx(t )/dt〉/δ f (s); it is instead proportional to its derivative
∂mμst(n, m). In addition, the symmetricity between n and m
does not generally hold [i.e., μst(n, m) �= μst(m, n)] and the
causality is absent. Thus, the formalism of the noise charac-
teristics is qualitatively distinct and some modifications are
therefore required.

Sekimoto’s heat definition is consistent with that in the
fluctuation theorem [31,32]. Our present strategy is to find the
analogous Sekimoto heat that is compatible with the mathe-
matical expression appearing in the fluctuation theorem.

We begin by attempting to find the common mathematical
form shared with the fluctuation theorem. When a particle
undergoes a stochastic motion in the presence of thermal
agitation, the fluctuation theorem associates heat with a
logarithmic function of the ratio between the probability of
a forward path and that of a reverse path. We consider, anal-
ogously, a forward path of the polymer configuration x0 →
x1 → · · · → xN and the reverse path xN → · · · → x1 → x0.
We then introduce a logarithmic function of the ratio between
the configurational path probabilities:

B(N ) ≡ ln
P[x(·)|x0]

P[x†
(·)|x†

0]
, (37)

where P[x(·)|x0] represents the conditional probability of the
forward path {x(·)} = {x1 → x2 → · · · → xN−1 → xN } given
x0, and P[x†

(·)|x†
0] denotes the conditional probability of the re-

verse path {x†
(·)} = {xN−1 → xN−2 → · · · → x1 → x0} given

x†
0 ≡ xN .

The next step is to incorporate the Onsager-Machlup ap-
proach into Eq. (37). The probability of the forward path
given one end position x0 is written with a sequence of noise
{η(·)} = {η1, η2, . . . , ηN }:

P[η(·)] ∼ exp

(
−
∫ N

0
dn
∫ N

0
dn′ (∂n′μst )−1(n, n′)

2kBT
ηnηn′

)
,

(38)

where (∂n′μst )−1(n, n′) denotes the Green’s function of
∂n′μst(n, n′) = ∂nμst(n′, n) appearing on the right-hand side
of Eq. (22), preserving the symmetricity (∂n′μst )−1(n, n′) =
(∂nμst )−1(n′, n). Similarly, we have the probability of
the reverse sequence P[η(R)

(·) ], where the sequence of

noise η
(R)
(·) is generated so that we can trace the reverse

sequence xN−1 → xN−2 → · · · → x0. The sequence of
noise in the reverse path is represented by the sequence of
the forward path (see the Appendix). Keeping this in mind,
we then make a logarithmic function of the ratio of these
probability distributions, whose variables are converted from
the sequence of noise {η(·)} to {x(·)} (or {η(R)

(·) } to {x†
(·)}); the
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logarithmic function is found to be

ln
P[x(·)|x0]

P[x†
(·)|x†

0]
= 2

∫ N

0
dn
∫ N

0
dn′ (∂n′μst )−1(n, n′)

kBT

×
(

dxn′

dn′ − ηn′

)
dxn

dn
. (39)

The factor “2” is included in front of the integrals because
of the absence of the causality observed in the temporal
evolution. The right-hand side appears similar to the heat in
Sekimoto’s definition, and we arrive at a possible candidate
for the analogous heat Q = kBT B(N )/2.

To proceed further, we need a technical preparation for
the inverse kernel (∂n′μst )−1(n, n′) appearing in Eq. (39). This
kernel is associated with the inverse kernel of μst(n, m) [i.e.,
�st(n, m) ≡ μ−1

st (n, m)]. Applying �st(n, m) to Eq. (4), we
obtain a static GLE expression paired to Eq. (4) as

fn =
∫ N

0
dn′ �st(n, n′)

dxn′

dn′ + η( f )
n . (40)

Recall that the static kernels �st(n, m) are defined such
that

∫ N
0 dm �st(n, m)μst(m, n′) = δ(n − n′) and such that

a simple calculation verifies η( f )
n = − ∫ N

0 dm �st(n, m)ηm
(see the Appendix). In addition, differentiating the defi-
nitional identity

∫ N
0 dm �st(n, m)μst(m, n′) = δ(n − n′) with

respect to n′ and integrating it with respect to n, we
obtain

∫ N
0 dm [− ∫ n

0 dm′ �st(m′, m)]∂n′μst(m, n′) = δ(n − n′).
A comparison of this expression with the definition then
implies12

[∂n′μst]
−1(n, n′) = −

∫ n

0
dm′ �st(m

′, n′). (43)

To utilize this expression, we rephrase the static noise corre-
lation of Eq. (A14) (see the Appendix) as〈[∫ n

0
dm η( f )

m

][∫ n′

0
dm′ η( f )

m′

]〉

= −kBT
∫ n

0
dm′′ �st(m

′′, n′). (44)

Equation (44) is the symmetric form pertinent to the FRR
[Eq. (13)]. Indeed,

∫ n
0 dm �st(m, n′) is interchangeable be-

tween n and n′. Note that, from Eqs. (22), (23), and (43), we
find that

∫ n
0 dm η( f )

m provides the stationary noise in the Rouse
polymer along the n-axis.

We now progress to the final step in the energetics analogy
from the viewpoint of force balance. Recalling the force bal-
ance of Eq. (40), we integrate it with respect to n and organize

12The explicit expressions in the mode space are written as

∂n′μst(n, n′) =
∑
q�1

1

kq

(πq

N

)2
h(s)

q,n′ h(s)†

q,n , (41)

∫ n

0
dm �st(m, n) = −

∑
q�1

kq

(πq

N

)−2
h(s)

q,nh(s)†
q,m . (42)

it as

Tn =
∫ N

0
dn′
[
−
∫ n

0
dm �st(m, n′)

]
dxn′

dn′ −
∫ n

0
dn′ η( f )

n′ ,

(45)

where Tn = − ∫ n
0 dn′ fn′ is used. The right-hand side of

Eq. (45) is then found to be hidden in Eq. (39) because

ln
P[x(·)|x0]

P[x†
(·)|x†

0]

= − 2

kBT

∫ N

0
dn
∫ N

0
dn′
[∫ n

0
dm′ �st(m

′, n′)
]

dxn′

dn′
dxn

dn

− 2

kBT

∫ N

0
dn

[∫ n

0
dm′ η( f )

m′

]
dxn

dn
(46)

with
∫ n

0 dm′ η( f )
m′ = − ∫ n

0 dm′ ∫ N
0 dm′′ �st(m′, m′′)ηm′′ =

− ∫ N
0 dm′′ [∂m′′μst]−1(n, m′′)ηm′′ and Eq. (43). We are

naturally led to the definition of the analogous heat as

d ′Qn ≡ −
(∫ N

0
dn′
[∫ n

0
dm′ �st(m

′, n′)
]

dxn′

dn′

+
∫ n

0
dn′ η( f )

n′

)
dxn. (47)

The kernel part in the first term and the integrated noise
in the brackets on the right-hand side satisfy the symmetric
analogous FRR [Eq. (44)]. Equation (47) is an analogous form
of heat of a Brownian particle defined by Sekimoto [30],
and, to be precise, Eq. (47) is defined like a non-Markov
process, as in Refs. [45,46], with the GLE. In addition, as in
the definition by Sekimoto, the Stratonovich multiplication is
implicitly employed in Eq. (47) although the product notation
is not explicit. Furthermore, the integration Q ≡ ∫ n=N

n=0 d ′Qn

yields Q = kBT B(N )/2 expected before; then, the definition
of B(N ) and the polymer configuration identity13 suggest
T �S = −2Q associated with a difference in Shannon entropy
between the end monomers �S.

A caveat is symmetricity between the forward and re-
verse paths. Recall the dynamical Langevin equation for t ∈
[0, T ] during time interval T , where the context of the fluc-
tuation theorem supposes x†(t ) = x(T − t ) and dx†(t )/dt =

13The joint probability density P (x0, x1, . . . , xN ) indicates

P (x0, x1, . . . , xN ) = P[x(·)|x0]P (x0) = P[x†
(·)|x†

0]P (xN ), (48)

where P (xi ) denotes the probability density for xi for i = 0 or N , and
† represents the reverse configuration path with x†

n = xN−n and f †
n =

− fN−n. For simplicity, the applied force fn or f †
n is not shown in the

arguments (see also the Appendix). One might think nonequilibrium
conditions no longer validate P[x(·)|x0]P (x0 ) = P[x†

(·)|x†
0]P (xN );

however, it always holds because of the characteristics of the one-
dimensional chain structure. A logarithmic function of Eq. (48)
multiplied by the Boltzmann constant kB reads

kBB(N ) = −kB lnP (x0 ) − [−kB lnP (xN )], (49)

which shows the difference in the Shannon entropy of the chain ends.
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−dx(t ′)/dt ′|t ′=T −t with the analogous notation of the reverse
path defined like those around Eq. (37). Similarly, the forward
and the reverse paths along the polymer configuration are as-
sociated through x†

n = xN−n and dx†
n/dn = −dxn′/dn′|n′=N−n.

However, inspecting the tension reveals the manifestation
of the distinct symmetricity inherent to the static Langevin
equation, where the tension is not altered under the label-
ing conversion (i.e., T †

n = TN−n). This result indicates odd
symmetricity of the applied force f †

n = − fN−n because fn =
−dTn/dn. If the reverse paths were considered in Figs. 1 and
2, f †

n = − fN−n would be introduced to keep the tension T †
n =

TN−n unchanged. Also, q-dependent symmetricity is hidden
in the kernel �st(n, n′) [see Eq. (A12) in the Appendix]. Thus,
the different symmetry among fn and

∫ N
0 dn′ �(n, n′)dxn′/dn′

coexists in Eq. (40) under the labeling conversion n ↔ N − n,
which implies that sequences of forward and reverse noise are
not generally identical (i.e., η( f )(R)

n �= η
( f )
N−n).

A remaining issue is how to interpret Tn∂nxn = Tn(dxn/dn)
under the first law of thermodynamics. Two definitions are
discussed here. The first definition considers a source of
Tn∂nxn as an external origin, and the analogous infinitesimal
work is defined as

d ′W n ≡ Tn
dxn

dn
. (50)

The total work is also obtained by W ≡ ∫ n=N
n=0 d ′W n. Note that

the analogous work done by the exterior is assigned to be
positive because the direction of the conventional work done
is arbitrary. We then arrive at the analog of the energy balance
equation:

W − Q = 0. (51)

The internal energy in Eq. (51) appears absent, although
Langevin Eq. (7) at the outset explicitly includes the conser-
vative force produced by the potential U [{xn}]. The effective
elasticity created by the polymer chain is, however, implicitly
embedded into the static kernel �st(n, n′) in the analogous
generalized Langevin Eq. (40).

Under the other definition, Tn∂nxn is considered part of the
interior. This picture defines the internal energy:

UT ≡ −
∫ N

0
dn Tn

dxn

dn
, (52)

which appears as the second term in U [{xn}] − ∫ N
0 dn Tn∂nxn

of exponential Eq. (28). We then arrive at the analog of the
energy balance equation:

�UT = −Q, (53)

where �UT ≡ UT − UT |{∂1x1=∂2x2=···=∂N xN =0}. Similarly to the
first definition, the conservative force produced by the poten-
tial U [{xn}] is incorporated into the static kernel �st(n, n′),
which results in the analogous heat.

V. NONEQUILIBRIUM-STEADY-STATE ANALOGY

A last main issue addressed in this article is to find
the analog to the steady-state fluctuation theorem [32–36].
The preceding sections, as illustrated in Figs. 1(b) and 2(b),
have thus far implicitly considered that a near-equilibrium

shape is obtained by pulling both chain ends with Tn =
f 
(n − ε) − f 
(n − N + ε). However, we now apply suf-
ficient force to induce a large deformation expressed by
a sequence of tensile blobs [8,47,48], where the interac-
tion range is finite even in the presence of the SA effects.
This approach enables us to proceed toward the steady-state-
fluctuation analogy. However, we need to grasp the physical
differences. The monomer indices n run along the chain back-
bone, which is largely deformed under “equilibrium” although
the steady-state fluctuation theorem discusses the temporal
evolution of the system under a “nonequilibrium” steady state.
Nonetheless, a basic mathematical construction is shared by
simply replacing time t appearing in the context of the steady-
state fluctuation theorem by a chain length N in the polymer.

Recall the analogous energy balance equa-
tion

∫ N
0 dn Tn∂nxn = Q. The tension serves as the driving

force to maintain the nonequilibrium steady state in the
conventional steady-state fluctuation theorem.

The following analytical procedure mainly refers to the lit-
erature related to the steady-state fluctuation theorem [35,36],
although other important works are not cited here. Using the
fluctuating quantity B(N ), we consider a generating function
with parameter λ:14

C(λ) = − lim
N→+∞

1

N
ln 〈e−λB(N )〉lc, (55)

where 〈(·)〉lc is defined as the average taken over the chain
configuration paths {x(·)} for a sufficiently “long chain” with

〈e−λB(N )〉lc ≡
∫

Dx(·) P[x(·)|x0]e−λB(N ). (56)

Notably, Eq. (55) considers the average of the negative
logarithmic function of Eq. (56) over N , whereas the conven-
tional nonequilibrium steady state takes the temporal average
over time period T . Symmetricity embedded in the generating

14Note that the probability density for the end configuration x0 is
assumed to be irrelevant to the resultant divided by N for sufficiently
large N such as

1

N
ln 〈e−λB(N )〉 ≡ 1

N
ln

[∫
Dx(·)

∫
dx0 P[x(·)|x0]P (x0 )e−λB(N )

]

→ 1

N
ln

[∫
Dx(·) P[x(·)|x0]e−λB(N )

]

= 1

N
ln [〈e−λB(N )〉lc]. (54)

The integrating variables in
∫

Dx(·) P[x(·)|x0]e−λB(N ) are tentatively
converted from position {xn} to the displacement {�xn} in the first
line on the right hand side so that the integrations with respect to
x0 and

∫
D�x(·) can be separated. In the second line, the limit of

N → +∞ eliminates N−1 ln
∫

dx0 P (x0 ) and we again recover the
variables from the displacement to the positions.
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function is found as

〈e−λB(N )〉lc =
∫

Dx(·) P[x(·)|x0]

(
P[x(·)|x0]

P[x†
(·)|x†

0]

)−λ

=
∫

Dx(·) P[x†
(·)|x†

0]

(
P[x†

(·)|x†
0]

P[x(·)|x0]

)−(1−λ)

=
∫

Dx†
(·) P[x†

(·)|x†
0]

(
P[x†

(·)|x†
0]

P[x(·)|x0]

)−(1−λ)

= 〈e−(1−λ)B(N )〉lc, (57)

which leads to the symmetricity for a long chain:

C(λ) = C(1 − λ). (58)

The first derivative of the generating function gives the first
moment, and then Eq. (58) yields

dC

dλ

∣∣∣∣∣
λ=0

= −dC

dλ

∣∣∣∣∣
λ=1

= lim
N→+∞

1

N
〈B(N )〉lc. (59)

Equation (59) is analogous to the mean heat rate balanced
with the energy input rate in the conventional steady-state
fluctuation theorem. From Q = kBT B(N )/2 and Eqs. (45) and
(47), the analogous first moment of Eq. (57) yields

lim
N→+∞

kBT

2N
〈B(N )〉 = lim

N→+∞
1

N
〈Q〉

= lim
N→+∞

1

N

∫ N

0
dn

〈
Tn

dxn

dn

〉

= lim
N→+∞

f

N
(〈xN 〉 − 〈x0〉), (60)

where
∫ N

0 dn 〈Tndxn/dn〉 appearing in the second line is con-
sidered to be that originating from the external source from the
viewpoint of the analogy. We also arrive at this consequence
[Eq. (60)] by recalling the additional factor

∫ N
0 dn Tn∂xn in the

argument of the partition function [Eq. (28)] or f �x appear-
ing in Eq. (30).15 The positive extension 〈xN 〉 − 〈x0〉  0 for

15This note directly finds kBT 〈B(N )〉/2 = f [〈xN 〉 − 〈x0〉] without
passing through the mean analogous heat 〈Q〉, whereas 〈Q〉 appears
in the first line of Eq. (60). Let P (x0, xN ) denote the joint probability
density for x0 and xN . Using the probability density P�(�x; T ) of
�x = xN − x0 under the applied tension T , we rewrite it in two
ways from the symmetricity between x0 and xN as P (x0, xN ) =
P (x0)P�(�x; T ) = P (xN )P�(−�x; T ), and then the probability
density for x0 or xN is P (x0 ) = P (x0, xN )/P�(�x; T ) or P (xN ) =
P (x0, xN )/P�(−�x; T ), respectively. Substituting these probability
densities into B(N ) leads to

B(N ) = lnP (xN ) − lnP (x0 )

= lnP�(�x; T ) − lnP�(−�x; T ). (61)

Recalling Eqs. (28) and (30), we discover that P�(�x; T ) ∼ eT �x =
e f �x , with T being the applied tension. Similarly, the reverse config-
uration path has P�(−�x; T ) ∼ eT (−�x) = e− f �x . Substituting these
expressions into Eq. (61), we obtain

B(N ) = 2 f �x. (62)

This average over infinitely large N becomes Eq. (60).

f > 0 indicates that limN→+∞ N−1〈B(N )〉lc > 0; thus, C(λ)
is implied to be an upwardly convex function from Eqs. (58)
and (59).

In a subsequent step, we introduce the large-deviation
function:

C∗(θ ) = − lim
N→+∞

1

N
ln

(
Plc

[
B(N )

N
∈ (θ, θ + dθ )

]
dθ

)
,

(63)

where the probability density that the fluctuating quantity
B(N )/N is between θ and θ + dθ with an infinitesimal inter-
val dθ for a long chain N  1 is denoted by Plc[B(N )/N ∈
(θ, θ + dθ )]. For a very long chain N  1, we write Plc, as in
the expression

Plc

[
B(N )

N
∈ (θ, θ + dθ )

]
= A(θ, N )e−C∗(θ )N dθ, (64)

where A(θ, N ) is implied to be a normalization factor that
satisfies N−1 ln [A(θ, N )] → 0 as N → +∞. Using Eq. (64),
we rewrite Eq. (56) as

〈e−λB(N )〉lc =
∫

dθ Plc

[
B(N )

N
∈ (θ, θ + dθ )

]
e−Nλθ

=
∫

dθ A(θ, N )e−NC∗(θ )−Nλθ . (65)

In Eq. (65), the maximum of the argument of the exponential
function appearing in the integrand has a major contribution
to the integration, which suggests that

C(λ) = C∗[θ (λ)] + λθ (λ), (66)

where θ = θ (λ) is a function of λ through

λ = −dC∗(θ )

dθ
. (67)

In addition, inverting λ into θ , we obtain the function

C∗(θ ) = C[λ(θ )] − θλ(θ ), (68)

which is also found from the Legendre transforma-
tion function. Furthermore, noting the symmetricity in
Eq. (58), we obtain C(λ) = C(1 − λ) = C∗(−θ ) − (1 −
λ)θ with θ (λ) = dC(λ)/dλ = dC(1 − λ)/dλ = −dC(1 −
λ)/d (1 − λ) = −θ (1 − λ). Combining this equation with
Eq. (66), we obtain

C∗(θ ) − C∗(−θ ) = −θ. (69)

From this equation, we discover the other analogous form to
the fluctuation theorem, which shows asymptotic behavior for
N → +∞ growing as

Plc
[B(N )

N ∈ (θ, θ + dθ )
]

Plc
[B(N )

N ∈ (−θ,−θ + dθ )
] � eθN . (70)

Note that θ is interpreted as the reduced analogous heat
2Q/(NkBT ). The analogous heat rate Q/N = kBT B(N )/(2N )
is equal to the local change in the thermodynamic potential
(or the Landau free energy) per monomer as a result of pulling
both ends, which falls into a static description. However, the
corresponding quantity in the conventional steady-state fluctu-
ation theorem is the rate of heat transfer into the surrounding

034502-9



TAKUYA SAITO PHYSICAL REVIEW E 107, 034502 (2023)

media, which is associated with the dissipation mechanism.
Also, we note that Eq. (70) for the long chain is expressed
without the specific polymer structures.

VI. DISCUSSION

We verify here the analogy of a response function to a
susceptibility in the Langevin representation. Although there
are various definitions of response functions to fit into the ob-
servables, one of the most frequently used response functions
is defined as a response of the mean velocity to external force,
formulated as

R(t, s) ≡ δ

δ f (s)

〈
dx(t )

dt

〉
. (71)

When this function is substituted into the conventional GLE
[Eq. (3)], the mobility kernel is associated as R(t, s) = μ(t −
s)
(t − s). By contrast, we consider the static analog to
Eq. (71). The susceptibility can be defined as

χ (n, m) ≡ δ

δ fm

〈
dxn

dn

〉
. (72)

Notably, we find that the static kernel μst(n, m) corresponds to
the above susceptibility by referring to the static GLE [Eq. (4)]
[i.e., χ (n, m) = μst(n, m)]. Substituting Eq. (25) into Eq. (21)
and focusing on the smallest wave-number mode with q =
1, we find the scaling χ = μst ∼ N2ν . As expected, then, a
comparison of χ ∼ N2ν with a conventional definition χ ∼
Nγ leads to a known consequence in the framework of the
Flory’s mean-field theory:16

γ = 2ν, (73)

which coincides with the expression obtained using survival
probability and reported in the literature [49]. Equation (73)
may not be exact but offers a good approximation.

Another issue of the analogy is fluctuations of conjugate
variables. In the dynamical fluctuations with �p(t ) being the
time integral of the applied force at the controlled position,
�p(t ) is considered a conjugate variable to �x(t ) in the
action (dimensions of [energy] × [time] = [displacement] ×
[momentum transfer]) or in the GLE [Eq. (3)]; it undergoes
superdiffusion 〈�p(t )2〉 ∼ tα(p)

with α(p) > 1 [38–40]. The in-
dex for the MSD is rewritten here with α → α(x) to make dual
expressions appear symmetric; the exponents of subdiffusive
α(x) and superdiffusive α(p) are then associated through

α(x) + α(p) = 2. (74)

However, in the static GLE-like form discussed thus far,
the tension Tn serves as a conjugate variable to xn in

16We conventionally use γ as a universal exponent associated with
the susceptibility; however, the same notation “γ ” is used for the
frictional coefficient in dynamics unless the identifications between
them are ambiguous.

the energy (dimension of [displacement]×[force]) (see the
Appendix). We specifically consider here a system that fixes
both chain-end positions by imposing the applied force
f ∗
n (t ) = f ∗

0 (t )δ(n − ε) + f ∗
N (t )δ(n − N + ε), where the ap-

plied tension is found to be T ∗
n (t ) = − f ∗

0 (t )
(n − ε) −
f ∗
N (t )
(n − N + ε). Recall that imposing the constant force

f0 = − f and fN = f in Figs. 1(b) and 2(b) does not fix the
chain-end positions but provides a way to observe the posi-
tion fluctuations. By contrast, the applied force f ∗

0 (t ), f ∗
N (t )

to fix the positions temporally varies and the force fluctu-
ation is observed. A caveat is that the force f ∗

n (t ) applied
to fix the positions has two components: (i) the center of
mass and (ii) the internal structure. To discover a static
counterpart to Eq. (74), we need to subtract the center-of-
mass component. Indeed, this case does not always satisfy
the balance of the applied force, i.e., generally, T ∗

N (t ) =
− ∫ N

0 dn f ∗
n (t ) = −[ f ∗

0 (t ) + f ∗
N (t )] �= 0, unlike that in Sec. II.

The fluctuation of the total applied force is offset by 〈[ f ∗
N (t ) +

f ∗
0 (t )]2〉 so that 〈T2ε (t )2〉 = 〈T ∗

2ε (t )2〉 − 〈[ f ∗
N (t ) + f ∗

0 (t )]2〉 =
〈[−2 f ∗

0 (t ) f ∗
N (t ) − f ∗

N (t )2]〉 serves as the internal-mode fluctu-
ations. Note that the tension is technically monitored for ε <

n < N − ε, like the tension in Figs. 1(b) and 2(b), and that, for
example, the near-end points at n = 2ε or n = N − 2ε can be
chosen as representative observation points. The fluctuations
〈�T2ε (t )2〉 = 〈�TN−2ε (t )2〉 exhibit the power law character-
ized by index ν ( f ) in an analogous form to Eq. (1):

〈
�T 2

2ε

〉 = 〈�T 2
N−2ε

〉 ∼ N2ν ( f )
. (75)

Although the spatial fluctuations are associated with the
inverse spring constants as 〈�x2

N 〉 � kBT/(Nk1) ∼ N2ν (x)
in

Eq. (1) with the Flory exponent rewritten as ν → ν (x) to make
the notation symmetric, the force fluctuations in Eq. (75) are
converted as 〈�T 2

2ε〉 = 〈�TN−2ε (t )2〉 � kBT Nk1 ∼ N−2ν (x)
.

Thus, the static indices have an analogous but not identical
relation to Eq. (74):

ν (x) + ν ( f ) = 0, (76)

where ν ( f ) < 0 is negative, or said to be “ultrasubdiffusive”
because the exponent is less than zero, let alone less than ν =
1/2 for the normal diffusion. Both Eqs. (1) and (75) allude to
the greater susceptibility that embodies the “soft” description
of soft matter because a long chain becomes flexible with a
small spring constant irrespective of constraints or boundary
conditions. The difference in the sum of the indices (= 2 or
= 0) arises from the dynamical FRRs [Eqs. (13) and (A7)]
and the static FRRs [Eqs. (22) and (A14)].

Thus far, we have mainly discussed the analogy formalism.
Final arguments are devoted to considering possible applica-
tions to experiments. An interesting candidate is a crumpled
globule [50] used as a chromatin model [51]. Although
chromatin exhibits dynamical evolution, the static analy-
ses can be developed if the dynamics are sufficiently slow
for chromatin to be considered a thermally stable structure.
An assignment with ν = 1/3 in GLEs (4), (40) and FRRs
(22), (A14) enables us to apply the present basic formulation.
Using bold font to represent vectors, e.g., xn = (xn, yn, zn) in
a Cartesian coordinate system, we modify the static Langevin
equation from one to three dimensions to represent the steric
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configurations:

dxn

dn
=
∫ N

0
dn′ μst(n, n′) f n′ + ηn, (77)

where the noise components are assumed to have independent
Cartesian components that satisfy the FRR as 〈ηn · ηn′ 〉 =
3kBT ∂n′μst(n, n′), with the numerical coefficient 3 accounting
for three dimensions. The assumption of a Gaussian distribu-
tion in Eq. (77) provides the conditional probability density
given x0:

P(xn|x0) = 1√
2π
〈
�x2

n

〉
0

× exp

(
−
(
�xn − ∫ n

0 dm
∫ N

0 dn′ μst(m, n′) f n′
)2

2
〈
�x2

n

〉
0

)
,

(78)

where the variances appearing in the denomina-
tors are determined by 〈�x2

n〉0 = 〈(∫ n
0 dn′ ηn′ )2〉 =

3kBT
∫ N

0 dn
∫ N

0 dn′ ∂n′μst(n, n′) in the absence of force { f n}.
Equation (78) provides the number density of monomers at x
given x0 through ρ(x|x0) = ∫ dn

∫
dxn δ(xn − x)P(xn|x0) [�∑

n

∫
dxn δ(xn − x)P(xn|x0)]; thus, we encounter

ρ(x|x0) =
∫ N

0
dn

1√
2π
〈
�x2

n

〉
0

× exp

(
−
(
�x − ∫ n

0 dm
∫ N

0 dn′ μst(m, n′) f n′
)2

2
〈
�x2

n

〉
0

)

(79)

with �x ≡ x − x0. Notably, ρ(x|x0) is written with the
kernel μst (m, n′), 〈�x2

n〉0, and { f n}. The first two quantities
are a priori obtained by supposing a mean uniform internal
structure, whereas the force map { f n} is deduced from the
heterogeneous distribution found in the experimental data.
A comparison of the analytical ρ(x|x0) with the observation
could be interesting for estimating a map of force acting on the
chromatin. Note, however, that the above simple arguments do
not take into account boundaries to confine the polymer.

We further add perspectives to boundary effects. Recent
studies [27–29] have investigated a family of stochastic pro-
cess models classified into fractional Brownian motion or
fractional Langevin equation in a finite space with reflect-
ing boundaries under anti- or persistent-correlation noise.
If the noises satisfy the fluctuation-dissipation relation like
the dynamical FRR Eq. (13), the distribution in the finite
space approaches that in an equilibrium state. On the other
hand, if not, the anti- or persistent correlations enhance or
deplete the existence probability near the boundaries, respec-
tively. These features have also been applied and discussed in
serotonergic fibers in vertebrate brains [27,28]. Recall now
that the present article proposes the static FRR [Eq. (22)]
along monomer index n as the equilibrium condition for the
static noise. It would be interesting to develop the present
study towards the serotonergic fibers while mechanical ex-
periments to measure elasticity are required. In addition, the

same idea may be employed for a polymer confined to a finite
space with reflecting boundaries. An issue about the reflecting
boundary effects under the static FRR would give new insights
into the polymer distributions confined in cells.

VII. CONCLUDING REMARKS

We have discussed the static GLE-like expression that de-
scribes an individual polymer configuration. The static kernel
μst(n, m) for the SA polymer corresponds to “superdiffusive”
in the language of anomalous diffusion. The formulation also
covers the subdiffusion represented by a crumpled globule,
although care is taken to note the difference [e.g., the sign of
1 − 2ν in Eq. (27)].

There are similarities and differences between the static
and the dynamical GLEs. As required in equilibrium statis-
tical physics, the response function and the noise satisfy the
static FRR with the monomer index variable; however, the
form differs from that of the dynamical FRR appearing in
the GLE. The remarkable differences are the translational or
reversal symmetricity in the FRR and the sum of the fluctu-
ation indices [Eqs. (74) and (76)]. In addition, guided by the
distinct form in the FRR, we considered the analogy with the
stochastic energetics and the steady-state fluctuation theorem.

In the present article, we discussed a static formalism that
enables us to deal with the nonlocal interaction. This approach
will hopefully contribute to the development of analyses of
the distribution of the force acting on a single polymer, e.g.,
in a cell.
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APPENDIX

1. Asymptotics in SA polymer

We consider the asymptotic behaviors of Eq. (27) without
the mathematically rigorous arguments. To be succinct, only
the factor relevant to the asymptotics for 0 < n, n′ < N is
extracted and transformed as

ψ (n, n′) ≡
N∑

q=1

1

N

( q

N

)1−2ν

cos

(
πq(n − n′)

N

)

�
∫ 1

0
du u1−2ν cos [π (n − n′)u]

�
{∫ 1

0 du u1−2ν � 1 |n − n′| � 0,

|n − n′|2ν−2 |n − n′|  1,
(A1)

where u = q/N is introduced. At the first step,
− cos (πq(n + n′)/N ) in Eq. (27) is ignored because it
oscillates faster than cos (πq(n − n′)/N ) unless either n or n′
sits at the chain end. In the second line, N is sufficiently large
that the lower bound in the integral 1/N is replaced with 0.

The two cases on the last line are not trivial, and we
consider them as follows:

For |n − n′| � 0, we use an approximation
cos [π (n − n′)u] � 1 for 0 � u � 1.
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For |n − n′|  1, the integrand u1−2ν cos [π (n − n′)u] os-
cillates with respect to u, where the amplitude u1−2ν becomes
smaller as u → +∞. We then apply an approximation:

ψ (n, n′) �
∫ 1

0
du u1−2ν cos [π (n − n′)u]

= |n − n′|2ν−2
∫ 1/2

0
ds s1−2ν cos [πs]

+ |n − n′|2ν−2
|n−n′|−1∑

j=1

∫ j+1/2

j−1/2
ds s1−2ν cos [πs]

+ |n − n′|2ν−2
∫ |n−n′|

|n−n′|−1/2
ds s1−2ν cos [πs] (A2)

� |n − n′|2ν−2

(
1

2

)2−2ν

+ |n − n′|2ν−2

×
∞∑
j=1

j1−2ν

∫ j+1/2

j−1/2
ds cos [πs] (A3)

= |n − n′|2ν−2

⎡
⎣(1

2

)2−2ν

−
∞∑
j=1

(−1) j−1 j1−2ν

⎤
⎦
(A4)

� |n − n′|2ν−2. (A5)

From the first line of Eq. (A2), we change the variable
as s = |n − n′|u and break the integral down depending on
the signs of the cosine function cos [πs]. In Eq. (A3), we
approximate the upper bound in the sum by +∞; in addi-
tion, the jth values of a factor of the integrand s1−2ν are
represented by the midpoint value j1−2ν over each integral
range. The alternating series appearing in the brackets of
Eq. (A4) is associated with the Riemann zeta function ζ (λ) as∑∞

j=1(−1) j−1(1/ j)λ = (1 − 21−λ)ζ (λ). Numerical computa-
tion indicates positive values [(1/2)2−2ν − (1 − 22−2ν )ζ (2ν −
1)] > 0 for ν = 3/4, 3/5 and the order of unity. We then arrive
at the other for |n − n′|  1 in the last line.

2. Force fluctuations

The dynamical GLE expression with Eq. (3) is convenient
for observing the displacement �x(t ) when applying force
f (t ). In addition, there exists a paired expression that might be
helpful in tracing the momentum transfer �p(t ) = ∫ t

0 ds f (s)
when controlling the velocity v(t ) = dx(t )/dt [or the posi-
tion x(t )]. Using the Laplace transform and organizing it, we
rewrite Eq. (3) as

d p(t )

dt
=
∫ t

0
ds �(t − s)v(s) + η(p)(t ), (A6)

where the Laplace transform is defined as φ̂(ω) ≡∫∞
0 dt φ(t )e−ωt and the kernels retain the relation

μ̂(ω)�̂(ω) = 1 in the Laplace domain. Instead of Eq. (13),
the FRR is converted with �(t ) into

〈η(p)(t )η(p)(t ′)〉 = kBT �(t − t ′). (A7)

Note that the superdiffusive kernel �(t ) creates α(p) > 1
on the mean-square “momentum transfer” 〈�p(t )2〉 ∼ tα(p)

,
whereas the subdiffusive μ(t ) creates α(x) < 1 on the “mean-
square displacement” 〈�x(t )2〉 ∼ tα(x)

.
We here analogously consider the static counterparts to

Eqs. (4) and (22). Applying �st(n, m) to Eq. (4), we obtain

fn =
∫ N

0
dm �st(n, m)

dxm

dm
−
∫ N

0
dm �st(n, m)ηm. (A8)

Comparing Eq. (A8) with Eq. (40), we have

η( f )
n = −

∫ N

0
dm �st(n, m)ηm. (A9)

As in the FRR [Eq. (22)], we relate η( f )
n to �st(n, m). To dis-

cover the FRR with η( f )
n and �st(n, m), we assume a constant

applied force (i.e., Fq = const) because Eq. (40) should be
maintained if either fn or dxn′/dn′ is chosen as the controlled
parameter. Using a solution to Xq(t ) in Eq. (7) under the
time-independent Fq, we find that

Fqh†
q,n =

(πq

N

)−1
kq

(πq

N

)
Xq(t )h†

q,n

−
∫ t

−∞
ds

kq

γq
Zq(s)e−(t−s)(kq/γq )h†

q,n (A10)

such that the summation of the left side becomes
∑

q Fqh†
q,n =

fn = −∂Tn/∂n. Extracting the first term on the right-hand side
and implementing a similar calculation around Eq. (19),17 we
discover the kernel in the mode expression as

�st(n, n′) = −
∑
q�1

kq

(πq

N

)−1
h†

q,nh(s)
q,n′ . (A12)

The noise correlation for η( f )
n is obtained by modifying the

calculation in Eq. (20),〈
η( f )

n η
( f )
n′
〉 = ∑

q�1

cqkBT kq

N
h†

q,n′h†
q,n. (A13)

Note that h†
q,n or h(s)†

q,n in Eqs. (A12) and (A13) substitutes for
h(s)†

q,n or h†
q,n in Eqs. (21) and (20), respectively. Comparing

Eq. (A13) with Eq. (A12), we find an exact FRR relation:〈
η( f )

n η
( f )
n′
〉 = −kBT ∂n′�st (n, n′), (A14)

17The first term on the right side of Eq. (A10) is transformed as∑
q

(πq

N

)−1
kq

(πq

N

)
Xq(t )h†

q,n

=
∑

q,q′,m

(πq

N

)−1
kqh†

q,nh(s)
q,m

(
πq′

N

)
Xq′ h(s)†

q′,m

=
∑

m

⎛
⎝−

∑
q

(πq

N

)−1
kqh†

q,nh(s)
q,m

⎞
⎠
⎛
⎝−

∑
q′

(
πq′

N

)
Xq′ h(s)†

q′,m

⎞
⎠,

(A11)

where ∂nxn = −∑q′ (πq′/N )Xq′ (t )h(s)†
q′,n in the last line. Comparing

Eq. (A11) with
∫ N

0 dm �st(n, m)∂mxm of Eq. (40), we arrive at
Eq. (A12).

034502-12



LANGEVIN ANALOGY BETWEEN PARTICLE … PHYSICAL REVIEW E 107, 034502 (2023)

where ∂n′h(s)
q,n′ = (πq/N )(cq/N )h†

q,n′ . In addition, comparing
Eq. (A13) with Eq. (20) leads to the static complementary
relation Eq. (76).

Partition function

If the positions are controlled and the tension is observed,
then

Z f [{xn}] =
∫

DTn Zx[{Tn}] exp

(
−
∫ N

0 dn xn∂nTn

kBT

)
(A15)

substitutes for Eq. (28) as a partition function. Accord-
ingly, the thermodynamic potential can be defined as F f ≡
−kBT ln Z f . An issue is to derive Eq. (A14) from F f , which
is found by applying a similar approach to obtaining Eq. (36).

3. Derivation of Eq. (39)

In this section, we derive Eq. (39). One of the forward
configurational paths in the polymer {x0 → x1 → · · · → xN }
is generated by the static GL Eq. (4) with a sequence of
noise {η0 → η1 → · · · → ηN }. However, the reverse con-
figurational path {x†

0 → · · · → x†
N−1 → x†

N } = {xN → · · · →
x1 → x0} should be generated by the same form as Langevin
Eq. (4) as

dx†
n

dn
=
∫ N

0
dn′ μst(n, n′) f †

n′ + η(R)
n , (A16)

but with a sequence of noise {η(R)
0 → η

(R)
1 → · · · → η

(R)
N }.

The controlled external parameters are analogously scheduled
as T †

n = TN−n and also as f †
n = − fN−n obtained with fn =

−∂nTn.
We observe Eq. (A16) here at the mth monomer:

dx†
m/dm = ∫ N

0 dn′ μst(m, n′) f †
n′ + η(R)

m . The first term on

the right-hand side is found to be
∫ N

0 dn′ μst(m, n′) f †
n′ =

− ∫ N
0 dn′ μst(m, n′) fN−n′ = ∫ N

0 dn′ μst(N − m, N − n′) fN−n′

= ∫ N
0 dn′ μst(N − m, n′) fn′ with antisymmetricity μst(m, n′)

= −μst(N − m, N − n′) [see Eq. (21)]. The left-hand side
is sign-inverted as dx†

m/dm = −dxm′/dm′|m′=N−m. Keeping
these equations in mind, we organize Eq. (4) into

−dxm′

dm′

∣∣∣∣∣
N−m

=
∫ N

0
dn′ μst(N − m, n′) fn′

+
(

−2
∫ N

0
dn′ μst(N − m, n′) fn′ − ηN−m

)
(A17)

such that the left-hand side and the first term on the right-
hand side in Eq. (A16) correspond to those in Eq. (A17). Thus,
the noise term in Eq. (A16) is found to be the last term in
Eq. (A17):

η
(R)
N−n = −2

∫ N

0
dn′ μst(n, n′) fn′ − ηn. (A18)

Note that m = N − n has been substituted.
In the same manner as Eq. (38), the probability of the

reverse sequence of noise is obtained through

P
[
η

(R)
(·)
]

∼ exp

(
−
∫ N

0
dm
∫ N

0
dm′ (∂m′μst )−1(m, m′)

2kBT
η(R)

m η
(R)
m′

)
.

(A19)

Focusing on the fact that (∂m′μst )−1(m, m′) is unchanged un-
der the variable transformation (m, m′) → (N − m, N − m′),
we replace the integration variables with n = N − m and n′ =
N − m′. The ratio between the forward and reverse configura-
tional paths is then considered as

ln
P[x(·)|x0]

P[x†
(·)|x†

0]
= ln

P[η(·)]

P[η(R)
(·) ]

=
∫ N

0
dn
∫ N

0
dn′ (∂n′μst )−1(n, n′)

2kBT

[
4
∫ N

0
dm μst(n, m) fm

∫ N

0
dm′ μst(n

′, m′) fm′

+ 2
∫ N

0
dm μst(n, m) fmηn + 2

∫ N

0
dm′ μst(n

′, m′) fm′ηn′

]

= 2
∫ N

0
dn
∫ N

0
dn′ (∂n′μst )−1(n, n′)

kBT

[
dxn′

dn′ − ηn′

]
dxn

dn
, (A20)

where Eq. (4) is used from the second to the last equations. Note that the Jacobian that appears in the conversion from {x(·)} to
{η(·)} or from {x†

(·)} to {η(R)
(·) } is eliminated.
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