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Cell adhesion plays an important role in a wide range of biological situations, including embryonic de-
velopment, cancer invasion, and wound healing. Although several computational models describing adhesion
dynamics have been proposed, models applicable to long-term, large-length-scale cell dynamics are lacking.
In this study we investigated possible states of long-term adherent cell dynamics in three-dimensional space
by constructing a continuum model of interfacial interactions between adhesive surfaces. In this model a
pseudointerface is supposed between each pair of triangular elements that discretize cell surfaces. By introducing
a distance between each pair of elements, the physical properties of the interface are given by interfacial energy
and friction. The proposed model was implemented into the model of a nonconservative fluid cell membrane
where the cell membrane dynamically flows with turnover. Using the implemented model, numerical simulations
of adherent cell dynamics on a substrate under flow were performed. The simulations not only reproduced the
previously reported dynamics of adherent cells, such as detachment, rolling, and fixation on the substrate, but also
discovered other dynamic states, including cell slipping and membrane flow patterns, corresponding to behaviors
that occur on much longer timescales than the dissociation of adhesion molecules. These results illustrate the
variety of long-term adherent cell dynamics, which are more diverse than the short-term ones. The proposed
model can be extended to arbitrarily shaped membranes, thus being useful for the mechanical analysis of a wide
range of long-term cell dynamics where adhesion is essential.

DOI: 10.1103/PhysRevE.107.034406

I. INTRODUCTION

The cell behavior in multicellular organisms is significantly
affected by contacts with other cells or with extracellular
matrices. These contacts involve cell adhesion molecules
(CAMs) via either cadherin, integrin, glycoprotein, or other
molecules. The adhesion plays mechanical roles in sensing
the stiffness of the environment, footing on scaffolds to fix
and move the cell position through space, and jointing cells
to form tissues. These functions of adhesion are indispensable
for the development and maintenance of a multicellular body,
e.g., embryonic development, immune defense, and wound
healing. The disregulation of this adhesion may yield con-
genital diseases and cancer invasion. Much information has
been obtained at the molecular level about the properties of
adhesion molecules, e.g., affinity and lifetime, as well as at
the cell and tissue levels about the contribution and neces-
sity of each molecule to each phenomenon. Adherent cell
behavior is integrated with other elementary behaviors, such
as actomyosin contraction, osmotic swelling, and polarity
formation, and is incorporated into the overall cell behavior.
Because these elementary behaviors are intricately entangled,
it is still unclear how individual elementary behaviors of cells
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involving adhesion are integrated into the dynamics of a whole
cell or cell population.

To quantitatively analyze the dynamics of a whole ad-
herent cell or its population, the time and space scales are
particularly attentive to the scale of the target phenomenon.
Indeed, there is a large-scale gap from the interface between
cells or cell substrate to the whole cell. The interface includes
the cortex, the thickness of which is less than 200 nm [1],
and the gap between cells and cell substrate, the width of
which is about 40 nm [2]. Many CAMs concentrate on the
interface, e.g., cadherin concentration is about 1.6 × 103 ∼
3.6 × 104 molecules/µm2 [3,4]. In the length scale of a whole
cell (about 15 µm), the thickness of the interface and the
individual CAM behavior can be ignored. Moreover, notable
phenomena of a whole cell or population often occur on
timescales of hours to days. Individual CAMs associate and
disassociate with a lifetime from 0.1 to 2 seconds to minutes
[5], which can also be ignored in the long timescale of a whole
cell or cell population dynamics.

From a macroscopic point of view, CAM behaviors can
be simplified into energetic and frictional forces at the in-
terface. Molecular associations generate interfacial energy,
which leads to an adsorptive force to keep the two adhered
surfaces apart in the normal direction of the interface as well
as a negative interfacial tension to extend the interfacial area
in the tangential direction. The excluded volume effect of
the two adhered surfaces generates a repulsive force to repel
the surfaces in the normal direction. In addition, molecular
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associations and dissociations generate a frictional force be-
tween the surfaces. Therefore, at the overall cell-behavioral
level, the CAM behaviors can be described by interfacial
tension and friction in both normal and tangential directions
of the interface.

To analyze complicated deformations of cells in three-
dimensional (3D) space, numerical simulations have been
increasingly utilized. Many methods have been developed,
which can be roughly classified into two types: (i) surface-
discretization types, such as a finite element method [6],
boundary element method [7], boundary-integral method
[8,9], particle-spring models [10–13], and the cell vertex
model [14,15], and (ii) space-discretization types, such as
phase-field method [16–19] and cellular Potts model [19–22].
Since surface-discretization methods explicitly describe the
surface geometry, the stress exerted on the surface can be
directly calculated. On the other hand, surface-discretization
methods require some additional tricks to deal with inter-
facial interactions between contacting surfaces. In contrast,
space-discretization methods implicitly describe the surface
geometry as an interface between different phases and as an
interface between lattice sites with different states, respec-
tively. Space-discretization methods can directly calculate the
movement of surfaces and can easily represent the com-
plicated, large deformation of the cell. However, because
space-discretization methods represent the interface as a con-
tinuous space between pseudophases and as a stochastic
boundary between two states, respectively, the stress exerted
on each surface cannot be directly calculated. In addition, in
phase-field models, the frictional force between contacting
surfaces cannot be explicitly taken into account because the
phase has a viscosity both in the phase and at the interface
which cannot be distinguished. Cellular Potts models have the
same difficulty in taking into account the frictional force in
the state interface. Thus, surface- and space-discretization
methods differ significantly in their descriptions of the inter-
face dynamics.

To address the roles of adhesion in cell dynamics, nu-
merical simulations using surface-discretization methods have
been used which especially utilize either discrete models
based on spring bonds [23–26] or continuum models based on
contacts between elastic bodies [27,28]. The discrete models
explicitly describe individual adhesion molecules by bonds
with certain lengths and the association and dissociation pro-
cess of each molecule by connecting and disconnecting a
bond. However, there is a gap of spatial and temporal scales
from the individual-CAM behavior to the whole cell be-
havior. The pioneering work proposed a continuum model
that describes cell adhesion based on contact mechanics and
successfully reproduces repulsive and adsorptive interactions
between curved surfaces [27]. However, in this continuum
model, the property of each cell is assumed to be an elastic
body and only the normal force to the interface is taken into
account. Therefore, there is a lack of computational methods
based on continuum models that explicitly describe interfacial
energy and friction, which are crucial for properly simulating
adherent cell dynamics at long term and large length scales,
as mentioned above.

In this paper we computationally investigated possible
states of long-term adherent cell dynamics in 3D space

by constructing a simple continuum model of interfacial
interaction between adhesive surfaces. In this model a pseu-
dointerface is supposed between each pair of triangular
elements that discretize cell surfaces. By introducing a dis-
tance between each pair of elements, the physical properties
of the interface are given by interfacial energy and friction.
The proposed model of adhesion was implemented into the
model of a cell membrane that takes into account the dynamic
flow and turnover of the membrane, whose nonconservative
feature is another essential factor in long-term cell dynamics
[29]. Using the implemented model, numerical simulations
of adherent cell dynamics on a substrate under flow were
performed. The simulations not only reproduced several pat-
terns of adherent cell dynamics reported in literature, but
also discovered dynamic states that correspond to behaviors
that occur on much longer timescales than the dissociation of
adhesion molecules.

II. BRIEF REVIEW: DESCRIPTION OF LONG-TERM
CELL DYNAMICS WITH MEMBRANE TURNOVER

In this article we first construct the model of long-term
cell dynamics with adhesion by implementing the continuum
model of cell adhesion into the description of long-term cell
surface dynamics with turnover, which we proposed previ-
ously [29]. Before introducing our cell-adhesion model, in
this section we briefly review the description of cell surface
dynamics.

The proposed model of cell adhesion has the advantage of
being able to describe long-term, large-scale behaviors of ad-
hesion. Therefore, we employed a model of cell dynamics that
we previously proposed which can be applied to the long-term
dynamics of a whole cell [29]. This model describes the fluidic
and nonconservative feature of the cell surface membrane,
i.e., the membrane dynamically flows with a turnover such as
polymerization and depolymerization of cortical actin. In this
model the cell surface membrane is discretized by a triangular
mesh, which is a unifying element for describing the 3D shape
of a cell [Figs. 1(a) and 1(b)]. To introduce cell adhesion
into this model, each triangle is further discretized into four
elements of similar triangles [Fig. 1(c)]. In this section we
briefly outline this model.

For long-term cell dynamics over tens of minutes, the
effects of convection and inertia can be ignored due to
the small Reynolds number. By ignoring the inertia term in
the Stokes equation, the governing equation of a membrane
with a velocity vector u is expressed as

μ∇2u = f . (1)

In Eq. (1) the left-hand term indicates viscous force per
area on the membrane. The constant μ indicates the planar
viscous coefficient of the cell surface membrane involving the
cell cortex, i.e., the viscous coefficient in the planar direction
of the membrane. In Eq. (1) the normal viscosity, i.e., the vis-
cosity in the direction along membrane thickness, is ignored,
and the shear and dilational components of the planar viscous
coefficients are assumed to have the same value. The right
term f represents the external force per area.

To discretize the viscous force on the triangular mesh de-
scribing the cell surface μ∇2u, in Eq. (1) the discrete type of
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FIG. 1. Discrete description of cell surface membrane in three dimensions. (a) Single cell shape with a closed membrane, (b) Triangular
mesh describing a cell shape. Vertices and edges are shared with neighboring triangles. (c) Four triangular elements in each triangular mesh
for describing interfacial interactions. The triangle is divided by line segments connecting the bisector points of the edges.

the Laplace-Beltrami operator [30] is applied. By introducing
an arbitrary parameter, represented by φ, the Laplacian oper-
ator at ri is given by

〈∇2φ〉i ≡ 1

2A∗
∑
j �=i

(cot αi j + cot βi j )(φi − φ j ), (2)

where φi is the value of the arbitrary parameter around the
ith vertex. Here, the constant A∗ is the representative surface
area around individual vertices [31]. The variables αi j and βi j

are the diagonal angles to the i jth edge within the triangles
sharing the i jth edge [31]. Moreover, the external force f
in Eq. (1) is discretized into the forces on the vertices. The
external force comprises the energetic force from cell behav-
iors and the viscous force from the environment, which are
defined with an energy function U and a dissipation function
W , respectively. Therefore, Eq. (1) can be rewritten as

μ〈∇2u〉i = −ρ∗
∂U

∂ri
− ρ∗

∂W

∂ui
. (3)

The left-hand side in Eq. (3) indicates the viscous force
around the ith vertex. The first and second terms on the right-
hand side indicate the energetic and viscous forces per area
around the ith vertex, respectively. The constant ρ∗ is the mean
numeric density of vertices on the membrane.

In Eq. (3) energetic forces involving active force that cells
generate described by the function of U , such as the osmotic
pressure, surface tension, bending moment, and cell-cell ad-
hesion, are introduced. By representing the ith vertex location
by ri (ui = ∂ri/∂t) and the active parameter by ai around the
ith vertex, U is given as

U = U ({ri}, {ai}), (4)

where { } indicate a set of values. Viscous forces on the cell
membrane from the environment, such as a viscous resistance
from solvent and other cells, are described by the function of

W . Using ri and ui, W is given as

W = W ({ri}, {ui}). (5)

III. CONTINUUM MODELING OF INTERFACIAL
INTERACTIONS BETWEEN ADHESIVE SURFACES

In this section we propose a coarse-grained model that
describes interfacial interactions between arbitrary elements
such as triangles, which in principle is generally applicable to
the surface-discretization methods. To develop the model, the
total area and energy of the interface between two surfaces
are described as the summations among discrete elements
(Sec. III A). By considering a pseudointerface between each
pair of the elements, normal and tangential distances between
each pair are introduced (Sec. III B). Using these distances,
interfacial energy and dissipation functions can be defined
(Sec. III C). The physical parameters of the interface on the
continuum level can be described by those on the molecular
level (Sec. III D).

A. Interfacial energy between contact surfaces

Surfaces contact each other to form an interface. The αth
and βth surfaces are represented by Sα and Sβ , on which
position vectors are represented by xα and xβ , respectively
[Fig. 1(a)]. By ignoring the thickness of surfaces, the interface
can be defined to be at the position where cell surfaces overlap
(xα = xβ). The area of the interface between the αth and βth
surfaces, represented by Aαβ , can be written by

Aαβ =
∮

Sβ

∮
Sα

δ(xα − xβ )dSαdSβ, (6)

where δ is the Dirac delta function. The interfacial energy
between the αth and βth surfaces, represented by U int

αβ , can
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FIG. 2. Description of interface between adhesive surfaces. (a) Interface between surfaces in a 2D description. The αth and βth surfaces are
represented by Sα and Sβ , on which position vectors are represented by xα and xβ , respectively. These surfaces form an interface at the position
where cell surfaces overlap (xα = xβ ). (b) Interface between elements in a 2D description. The ith and jth elements form a pseudointerface,
represented by Hi j , whose normal vector is represented by pi j . Center vectors and normal vectors of the ith and jth elements are represented
by ci, c j , ni, and n j , respectively. The distance between the ith and jth elements is separated into its normal and tangential components,
represented by d⊥

i j and d‖
i j , respectively. (c) Interaction between elements at the interface between two planar surfaces. Here, the contribution

to the ith element of one surface (red) from the jth elements of the other surface (green) is considered. The distance from the ith is represented
by r.

be written by

U int
αβ =

∮
Sβ

∮
Sα

ε(xα, xβ )δ(xα − xβ )dSαdSβ, (7)

where ε(xα, xβ ) is the interfacial energy density on xα (= xβ).
Cell surfaces are discretized by elements such as triangles.

The surfaces of the ith and jth elements are represented by Si

and S j , on which position vectors are represented by xi and
x j , respectively. The area of the interface between the ith and
jth elements, represented by Ai j , is written by

Ai j =
∮

S j

∮
Si

δ(xi − x j )dSidS j . (8)

Assuming that the energy density is homogenous within
each interface between two elements, the interfacial energy
density between the ith and jth elements, represented by εi j ,
can be written by

εi j ≡ ε(xα ∈ Si, xβ ∈ S j ). (9)

Using Eqs. (8) and (9), the interfacial energy between the
αth and βth cells, U int

αβ , can be rewritten by

U int
αβ ≈

elmnt∑
j(β )

elmnt∑
i(α)

εi jAi j, (10)

where the summation is for all elements within each cell.
Therefore, the interfacial energy is described by the energy
density and area of the interface.

B. Pseudointerface between discrete surfaces

While the interface was defined to be at the location where
surfaces overlap (xα = xβ), this definition is too rigorous to

express the interface between discrete surfaces such as tri-
angular meshes. To deal with the interface in the discrete
description, the position of the pseudointerface is defined.
That is, we consider a pseudointerface between the ith and jth
elements, represented by Hi j , whose effects on each element
are expressed as dependences on the distance in Hi j between
the ith and jth elements [Fig. 2(b)]. Here, we introduced
normal vectors of the ith and jth elements, represented by
ni and n j . The normal vector of Hi j , represented by pi j , is
defined as

pi j ≡
⎧⎨
⎩

ni−n j

|ni−n j| ni �= n j
c j−ci

|c j−ci| ni = n j
. (11)

Using Eq. (11), the distance between the ith and jth ele-
ments is separated into its normal and tangential components,
represented by d⊥

i j and d‖
i j , respectively. The components d⊥

i j

and d‖
i j are given by

d⊥
i j = pi j · (c j − ci ) (12)

and

d‖
i j = |(c j − ci ) − (pi j · [c j − ci])pi j |, (13)

where ci and c j are the center vectors of the ith and jth
elements. Using Eqs. (12) and (13), each of εi j and Ai j was
given by a function of each of d⊥

i j and d‖
i j , respectively. The

variable d⊥
i j is positive when the ith and jth elements are apart

and is negative when they penetrate each other. When ni and
n j are facing each other, pi j is oriented in the intermediate
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direction between the ith and jth element surfaces. As ni

becomes closer to n j , pi j approaches along c j − ci, leading

to d⊥
i j = |c j − ci| and d‖

i j = 0.

C. Energy and dissipation functions of the pseudointerface

The energy density of the interface between the ith and jth
elements, εi j , was given by

εi j (d
⊥
i j ) ≡ εintψ

E
i j, (14)

where the constant εint is the characteristic energy density of
the interface, i.e., the adhesion energy density between cell
surfaces. The function ψE

i j is a dimensionless scalar function
of d⊥

i j , indicating the strength of the energetic interaction be-
tween the ith and jth elements. By borrowing the formulation
of the Lennard-Jones potential, the function ψE

i j was given by

ψE
i j ≡

(
d⊥

0

d⊥
i j + d⊥

0

)12

− 2

(
d⊥

0

d⊥
i j + d⊥

0

)6

, (15)

where the constant d⊥
0 indicates the depth of the interface. The

interfacial energy density becomes −εint, when the normal
component of the distance between the ith and jth elements is
zero (d⊥

i j = 0). The function ζ is set to zero when d⊥
i j exceeds

a cutoff length of 5d⊥
0 .

The area of the interface between two elements is ex-
pressed by introducing a weight function of the tangential
distance between elements, d‖

i j . The weight of the interface
between the ith and jth elements, represented by w, was given
by

w
(
d‖

i j

) ≡
⎧⎨
⎩1 − d‖

i j

d‖
0

, d‖
i j < d0

0, d‖
i j � d0

, (16)

where the constant d‖
0 indicates the representative width of in-

dividual elements. That is, the interaction between the ith and
jth elements decreases as their tangential distance increases
and disappears when it is greater than d0. Furthermore, to
estimate the total weight for each element, we considered a sit-
uation where two planar surfaces were in parallel contact and
focused on the contribution from the elements of one surface
to an element of the other surface [Fig. 2(c)]. By expressing
the representative surface area of individual elements in terms
of Ae, the average number density of elements distributed
on the surface is 1/Ae. By denoting the distance from the
element by r, the average weight density at r can be written
by w(r)/Ae. Therefore, by integrating the weight density on
the surface, the total weight for each element, represented by
wt , can be estimated as

wt ≡ ∫+∞
0 2πr

(
w(r)

Ae

)
dr. (17)

Using Eqs. (16) and (17), the area of the interface between
the ith and jth elements, Ai j , was given by

Ai j ≡ Ae

w
(
d‖

i j

)
wt

. (18)

By substituting Eq. (14) into Eq. (10) and integrating it for
all elements in the system, the total interfacial energy in the

system, represented by U int, can be written by

U int ≡
elmnt∑

i

elmnt∑
j(>i)

εintζi jAi j . (19)

Similarly, the dissipation function in the system can be
written by

W int ≡ −
elmnt∑

i

elmnt∑
j(>i)

ξintψ
D
i j

2
Ai j (ui − u j )

2, (20)

where the constant ξint is the characteristic friction coefficient
density.

The function ψD
i j is a dimensionless scalar function of d⊥

i j ,
indicating the strength of the frictional interaction between
the ith and jth elements. By borrowing the formulation of the
Lennard-Jones potential, the function ψD

i j was given by

ψD
i j ≡

(
d⊥

0

d⊥
i j + d⊥

0

)7

, (21)

where the exponent 7 is derived from the first term of the
derivative of Eq. (15). The effective friction density coefficient
in Eq. (20) becomes ξint when the normal component of the
distance between the ith and jth elements is zero (d⊥

i j = 0).
The relationship between the exponents in Eqs. (15) and (21)
leads to the effect that the vertex velocity, which is determined
by the balance between energetic and dissipative forces, de-
creasing as d⊥

i j becomes shorter. This effect is similar to that
used in the model of particle interactions in the dissipative
particle dynamics (DPD) method [32].

D. Relation from molecular to continuum properties

To clarify the CAM behaviors that determine the contin-
uum property of the interface, we consider the association-
dissociation of the process of CAM. Based on the general
definition of an equilibrium constant, given the αth and βth
surfaces have CAM concentrations of cα and cβ , respectively,
the concentration of associated molecules, represented by cαβ ,
is written by

cαβ ≡
(

Kon

Koff

)
cαcβ, (22)

where Kon and Koff are the association and dissociation con-
stants. Interfacial energy is the summation of the association
energy of individual associated molecules. Thereby, interfa-
cial energy is given by

εint = cαβg, (23)

where g is the free energy gap of individual molecules
before and after association. In addition, by assuming the dis-
sociation rate of each molecule is independent of its strain, the
friction density coefficient between the αth and βth surfaces
is approximately given by

ξint = cαβE

Koff
, (24)

where E is the spring constant of individual molecules [33].
Using Eqs. (22)–(24), the constant for the interface property
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specific to each type of cross-linking CAMs, represented by
ϕint, can be defined as the ratio of εint to ξint:

ϕint = εint

ξint
= gKoff

E
. (25)

IV. INTRODUCING INTERFACIAL INTERACTIONS INTO
THE LONG-TERM CELL DYNAMICS MODEL

The novelty of the proposed model lies in the continuum
description of both energetic and frictional interactions at
the interface, which can be applied to the long-term, large-
length-scale dynamics of cell adhesion. To demonstrate the
applicability of the proposed model, we performed numerical
simulations of adherent cell dynamics on a substrate under
shear flow. For this purpose, the proposed model, described
in Sec. III, was introduced into the model of cell dynamics,
described in Sec. II (Sec. IV A). In addition, initial and bound-
ary conditions, including a solid substrate and shear flow, are
introduced (Sec. IV B). This integrated model can be applied
to the long-term dynamics of an adherent cell, and the physical
parameters of the interface can be varied based on those of
CAMs (Sec. IV C). The integrated model can be implemented
for numerical simulations (Sec. IV D).

A. Energy and dissipation functions for overall cell behavior

To apply the proposed model to cell adhesion dynamics, U
in Eq. (3) was expressed as

U ≡ 1

2
K

(
V

Vref
− 1

)2

+
vertex∑

i

�Ai +
elmnt∑

i

elmnt∑
j(>i)

εintζi jAi j .

(26)
The first term indicates the energy of cell volume elasticity,

where the constant K is the volume elastic modulus. V and Vref

are the current and reference volumes of the cell, respectively.
The second term in Eq. (26) indicates the surface energy of the
cell membrane, where the constant � is the surface tension
and the variable Ai is the local surface area around the ith
vertex, given by Ai = ∑triangle

j(i) a j/3, where a j is the area of
the jth triangle that comprises the ith vertex. The third term
in Eq. (26) indicates the adhesion energy between the cell and
substrate, where εint is the adhesion energy density between
the cell and the substrate. Moreover, W in Eq. (3) is expressed
as

W ≡
vertex∑

i

ξe

2
(ui − ue )2 +

elmnt∑
i

elmnt∑
j(>i)

ξint

2
ψi jAi j (ui − u j )

2.

(27)
The first term indicates the viscous dissipation between the

cell and the solvent, ξe is the friction density coefficient, and
ue is the velocity of the solvent on the cell surface. The second
term indicates the viscous dissipation between the cell and the
substrate, where ξint is the friction density coefficient.

B. Condition for cell adhesion on substrate under shear flow

To demonstrate the applicability of the proposed model,
numerical simulations of cell dynamics on a solid substrate
under a steady flow were performed. The system box was con-
sidered, which is rectangular within 0 � x � Lx, 0 � y � Ly,

x

y
z

x

z

x

z

FIG. 3. Adherent cell on substrate under shear flow. The system
box was considered, which is rectangular within 0 � x � Lx , 0 �
y � Ly, and 0 � z � Lz in the orthogonal xyz coordinates. Periodic
boundary conditions were applied to the boundary planes. A solid
substrate was located at z = 0 in the xy plane, whose vertex locations
were fixed in the coordinates. Under the initial condition, a single cell
with a spherical shape was located on the substrate.

and 0 � z � Lz in the orthogonal xyz coordinates (Fig. 3).
Periodic boundary conditions were applied to the boundary
planes. Additionally, a solid substrate was located at z = 0 in
the xy plane.

Under the initial condition, a single cell with a spherical
shape was located on the substrate with a slight gap. Both the
cell and the substrate were expressed by a triangular mesh,
which was prerandomized and optimized before the simu-
lations. During the simulations, vertex locations and mesh
topologies of the cell were dynamically changed, whereas
those of the substrate were fixed in coordinates.

A simple shear flow was introduced along the x axis whose
velocity linearly increases with the distance from the substrate
along the z axis, i.e., the environmental velocity was given
by ūe = γ̇ez, where the constant γ̇e is the shear strain rate.
For simplification, the flow field of the solvent around the cell
was approximately given by the tangential component of ūe

on the cell surface, i.e., the solvent velocity on the cell surface
in Eq. (27) was simply set to ue = ūe − (ūe · ni ) ni, where ni

is the normal vector of the cell surface at the ith vertex. To
analyze the effects of solvent flow on cell dynamics, the shear
strain rate of solvent γ̇e was replaced by the capillary number,
represented by Ca, which was introduced as

Ca ≡ ξeγ̇ed

�
, (28)

where d is the characteristic diameter of the cell, given by
d = (6V/π )1/3.

C. Nondimensionalization and physical parameter values

By considering a regular triangle with the average area of
the triangular mesh, the length of each edge composing the
regular triangle is represented by l . Using l , the representa-
tive surface area of individual vertices and the representative
vertex density per area are written by A∗ = √

3l2/2 and ρ∗ =
2/

√
3l2, respectively. The physical parameters were non-

dimensionalized by length l , energy �l2, and time τ = μ/�,
by fixing the values of l , �, and μ. Physical parameters used
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TABLE I. Physical parameters for numerical simulations.

Parameter Unit Explanation

l – Edge length (set to be a unit)
� – Cortical tension of cell membrane (set to be a unit)
μ – Planar viscosity of cell membrane (set to be a unit)
Lx, Ly, Lz l System box size (= 50, 52, 30)
Vref l3 Reference cell volume (= 103)
ξe μ Friction density coefficient from solvent (= 10−3)
K �l2 Cell volume elasticity (= 105)
ϕint l2/τ Constant for interface property (= 10−2)
Ca − Capillary number
εint � Interfacial energy
u l/τ Membrane velocity
γ̇ a

i l2/τ Area strain velocity
Ac l2 Contact area
Vc l/τ Cell velocity
V ave

m l/τ Average membrane velocity
V min

m l/τ Minimum membrane velocity
t τ Time step of vertex displacements (= 2.0 × 10−3)
tR τ Time step of topological operations (= 10−2)
d⊥

0 l Depth of interface (= 1/2)
d‖

0 l Width of interface (= 1/2)
max l Maximum value of drift (= 10−2)
th l Drift threshold (= 10−3)
V min

m l/τ Minimum membrane velocity

for the simulations are listed in Table I and denoted by dimen-
sionless values in figures. The representative surface area of
elements in Eq. (17) is given by the average area of triangular
elements as Ae = √

3l2/16.
Unit length l was determined based on the reference cell

volume Vref . Because cell volumes widely vary with cell types
and states, we considered the typical size of HeLa and MDA
MB231 cells with about 15 ∼ 17 µm as examples [34]. Hence,
the cell volume was set to about Vref = 4 × 103 µm3. By fixing
Vref = 103l3, the unit length was set to l = 1.6 µm.

Unit energy �l2 was determined based on the cortical
tension �. Cortical tension widely varies with cell types and
states at 30 ∼ 4000 pN/µm (summarized in [35]); for ex-
ample, HeLa cells increase their surface tension from 0.2 ×
103 pN/µm during interphase to 1.6 × 103 pN/µm during
metaphase [36]. By considering the property in the interphase,
the surface energy density was set to � = 102 pN/µm.

Unit time τ was determined based on the planar viscous
coefficient of the membrane μ. The timescale of cortex flow
is of the order of tens of seconds, for example, cortical actins
typically turn over within a few tens of seconds [37,38], which
gives an expected planar viscosity of μ = 103 pNs/µm for the
cortex [35]. The main component of the solvent for cells is wa-
ter, whose viscosity is 0.69 pNs/µm2, from which the friction
density coefficient of a triangular element with the length size
of l in the solvent was approximately set to ξe = 1 pNs/µm
(10−3 µ), much lower than the other viscous effects.

Volume elasticity of cells widely varies with cell states; for
example, HeLa cells increase their internal hydrostatic pres-
sure from 40 pN/µm during interphase to 400 pN/µm during
metaphase [36], whereas cell volumes are maintained to some
extent. For simplification, by assuming the incompressibility
of cytoplasm, the elastic modulus of the cell volume was set

to K = 2.6 × 107pN µm (105�l2), much higher than the other
energetic effects. The remaining parameters in the system
were εint, ξint, and Ca.

The adhesion energy density εint can be written by εint =
cg using Eq. (23), where c is the number density of asso-
ciated adhesion molecules and g is the association energy.
Both c and g vary with the CAM type; for example, the
adhesion energy of each cadherin bond is about g = 2 ∼
8kBT [39]. Cadherin density is estimated from experiments,
where the reported values are about c = 1.4 × 104 ∼ 3.6 ×
104 molecules/µm2 on adherens junctions [3] and 1.6 ×
103 ∼ 1.2 × 104 molecules/µm2 on migrating cell surfaces
[4], giving the adhesion energy density of εint = 110 ∼
1200 pN/µm (1.1 ∼ 12 �) and εint = 0.16 ∼ 0.38 pN/µm
(0.0016 ∼ 0.0038 �). Hence, in our simulations the adhesion
energy density was varied in the range of 10−3 � � εint �
10 �.

The constant for the interface property specific to each
type of cross-linking CAMs ϕint can be written by Eq. (25).
The spring constant of each cadherin is about E = 35 pN/µm
[40], and the dissociation rate is about 0.2 ∼ 1.6 s−1 or much
lower [5,41–43]. Using Eq. (25), the constant ϕint is roughly
estimated as ϕint = 0.05 × 10−3 ∼ 1.5 × 10−3 µm2/s (0.2 ×
10−3 l2/τ ∼ 6 × 10−3 l2/τ ) or much lower. For simplifica-
tion, the constant ϕint was set to ϕint = 10−2 l2/τ (2.56 ×
10−3 µm2/s). In this situation, the characteristic relaxation
time of the adhered interface can be estimated to range from
roughly 1/cϕint = 0.02 s for typical CAM densities to in-
finitely large values in the absence of CAMs, whereas the
relaxation time of the cell membrane lined by actomyosin
cortex can be roughly estimated to μ/� = 10 s. Thus, the
adhesion interface can be relaxed on both much faster and
slower timescales than the cell membrane.

D. Numerical procedures

In the numerical simulations, vertex velocities ui are calcu-
lated by solving the simultaneous equations of Eq. (3) for all
vertices. The time evolution of the vertex locations ri is cal-
culated by numerically integrating Eq. (3) using the classical
Runge–Kutta method with a time step represented by t . Step
t is variable and set within a range of 2.0 × 10−3τ or less,
depending on the maximum velocity of vertices. The depth
and width of the interface were set to the average length of
the sides of the triangular elements for interfacial interaction
(d⊥

0 = l/2, d‖
0 = l/2). Interfacial areas and interactions were

computed by describing the cell surfaces and system box in
octrees in order to only compare neighboring vertices.

During large deformation of the membrane, the vertex
distributions can be scattered by vertex movements. To op-
timize the distribution, the mesh structure was dynamically
rearranged using the modified remeshing algorithm [29]. The
algorithm comprises three steps: (1) elimination and insertion
of edges, (2) regularization of edge connectivity, and (3) cen-
tering of vertex locations. The details of the algorithm are
similar to those used in our previous work [29]. The centering
operation is applied to the system before every time of evolu-
tion of vertex locations. The other operators are applied before
the time evolution of vertex locations at every time step, tR
(= 10−2τ ).
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The operation of elimination and insertion of edges was
performed to keep the average vertex density per area around
ρ∗. The centering operation of vertex locations was slightly
modified from our previously reported algorithm [29]. In this
operation the spatial distribution of the vertices was opti-
mized by centering their locations around each vertex. To
conserve the surface profile, the vertex moves only on the
tangential plane through the vertex, where the drift vector
of the ith vertex is represented by �i. The length of the
drift vector is limited so that its norm is less than a certain
value, |�i| � max. The operator is iteratively applied to each
vertex to optimize the mesh structure until the drift vectors sat-
isfy max

i
(|�i|) < th, where constant th represents the drift

threshold. The maximum drift and the drift threshold were set
to be enough small as max = 10−2l and th = 10−3l , respec-
tively. Energy gaps caused by the topological operations are
small enough to be ignored [29].

The numerical algorithm was implemented in C++ pro-
gramming language, where OpenMP was used for parallel
computations. All numerical experiments were performed on
workstations with 3.2-GHz Intel Xeon dual processors and
64-GB RAM. Under the above condition, each simulation
was performed over a time range of 300τ , which involved
1.5 × 105 or more steps, and the average running time was
about 50 min.

V. NUMERICAL SIMULATION OF LONG-TERM
ADHERENT CELL DYNAMICS UNDER SHEAR FLOW

Using the integrated model in Sec. IV, in this section
numerical simulations of the adherent cell dynamics on a
substrate under shear flow were performed. In this situation
cell adhesion caused a large variety of cell movements, in-
cluding different patterns of dynamics, i.e., cell slipping and
membrane flow patterns, found in this study (Sec. V A). The
observed cell movements can be quantitatively classified into
five distinct patterns according to cell and membrane move-
ments (Sec. V B). The cell shape and movement highly varied
by the adhesion energy and solvent velocity (Secs. V C and
V D). By defining each pattern, we obtained the diagram of
cell dynamics patterns, indicating that the long-term cell dy-
namics exhibited a large variety depending on the adhesion
energy and solvent velocity (Sec. V E). These results showed
that the proposed model enabled us to simulate the long-term
dynamics of an adherent cell (Sec. V F). For the patterns of
dynamics mentioned above, the features characteristic to the
long-term dynamics, such as the nonelastic but frictional na-
ture of cell-substrate adhesion and nonconservative fluid cell
membrane accompanied by expansion and contraction flows
[29], are essential. We analyze the simplified model in the
Appendix and confirm that such nonelastic frictional adhesion
and the membrane expansion and contraction flow can indeed
explain some features observed in our numerical simulations.

A. Variety of long-term adherent cell dynamics with
membrane turnover

Figure 4 shows the typical results of the numerical simula-
tions for various parameter values, including solvent velocity
and adhesion energy. Cell dynamics varied with the solvent

velocity and adhesion energy, which can be classified into
several patterns based on cell and membrane motions (Fig. 4).
Detachment, rolling, and fixation patterns have been reported
in the previous study [25], but membrane motions in these
patterns differ from those in the previous study due to the
nonconservative feature of the membrane as follows. In the
detachment pattern [Fig. 4(a)], the cell detached from the sub-
strate and was swept forward in the solvent without adhesion.
In this pattern, while the cell maintains a spherical shape,
the cell membrane expanded at the rear, flowing from the
rear to the front and contracting at the front. To evaluate the
membrane expansion and contraction, the area strain velocity
of the membrane at the ith triangle, represented by γ̇ a

i , was
calculated by

γ̇ a
i = 1

Ai

vertex∑
j(i)

∂Ai

∂r j
· u j , (29)

where the summation is for all vertices composing the ith
triangle. In the cell rolling pattern [Fig. 4(c)], the cell moved
forward while rolling on the substrate. In this pattern the cell
was distorted and attached to the substrate at the rear-bottom
region, where the cell membrane flowed at the cell-solvent
boundary but not at the cell-substrate boundary. Along with
this biased flow, the cell membrane expanded in the rear-top
and front-bottom regions and contracted in the rear-bottom
and front-top regions. This spatial pattern of cell membrane
expansion and contraction is a natural consequence of the
shear flow and the solvent friction, as studied in the Appendix
with an analytical calculation of a simplified model. In the
fixation pattern [Fig. 4(e)], the cell and membrane did not
move while maintaining a semispherical shape.

Importantly, our simulations discovered two patterns of
adhesive dynamics, which we named cell slipping and mem-
brane flow patterns, respectively. In the cell slipping pattern
[Fig. 4(b)], the cell moved forward without rolling while
maintaining the attachment with the substrate. During the
cell movement, the cell maintained a spherical shape, and
the area of attachment to the substrate was small. The cell
membrane hardly flowed on the whole cell surface, including
the location near the substrate. Indeed, the existence of such
slipping between the cell and substrate surfaces is guaranteed
also by the simplified model analysis, as long as the cell sur-
face has nonzero viscosity and only finite strength of friction
with the substrate (Appendix). In the membrane flow pattern
[Fig. 4(d)], the cell did not move, whereas the cell membrane
expanded at the rear, flowing from the rear to the front on the
cell-solvent boundary, and contracting at the front.

Area strain varies depending on capillary number and ad-
hesion energy. In the detachment state, where adhesion energy
is low and capillary number is high, the rapid solvent flow
causes the unidirectional flow of the cell membrane, leading
to area strain. When the capillary number is lower, the cell
slipping state appears, where the membrane flow becomes
lower with lower area strain. When adhesion energy is higher,
the rolling state appears, where the membrane flow is lo-
cally suppressed by the friction on the substrate, leading to
increasing area strain. Therefore the area strain is relatively
low in the cell slipping state compared to the detachment and
rolling states. When either the capillary number is further
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FIG. 4. Distinctive pattern of adherent cell dynamics on substrate under flow. Five distinctive patterns of cell dynamics were observed,
i.e., detachment, cell slipping, rolling, membrane flow, and fixation. (a) Detachment, where the cell detached from substrate. (b) Cell slipping,
where the cell moved as sliding on substrate. (c) Rolling, where the cell moved on substrate while rolling on substrate. (d) Membrane flow,
where the cell was fixed on substrate while the membrane flowed. (e) Fixation, where the cell was fixed on substrate without membrane
flow. The left panels side indicate the time evolution of cell shape, where arrows indicate local membrane velocities and their colors mean
the velocity magnitudes, as indicated by the color code shown at the bottom. The right panels indicate area strain velocities at the steady
state (t = 200) using the color code shown at the bottom. The parameters were set to Ca = 10−1.2 and εint = 10−3 �l2 in (a), Ca = 10−1.2 and
εint = 101 �l2 in (b), Ca = 10−1.7 and εint = 10−2 �l2 in (c), Ca = 10−2.2 and εint = 10−3 �l2 in (d), and Ca = 10−2.2 and εint = 101 �l2 in (e).

lowered or the adhesion energy becomes even higher, the
membrane flow state appears, where the membrane flow is
locally fixed, leading to increasing area strain. When this ten-
dency is further enhanced, the fixation state appears, where the
membrane is entirely fixed, leading to the suppression of area
strain.

It is to be noted that these patterns of dynamics are found as
a consequence of the proper treatments of long-term behavior.
In fact, these patterns of dynamics require either a nonelastic
frictional cell-substrate adhesion or a nonconservative fluid
cell membrane accompanied by expansion and contraction
flow (for cell slipping or membrane pattern, respectively),

which are features characteristic specifically to the long-term
behavior.

B. Quantitative characterizations of cell- and
membrane-dynamics patterns

To quantitatively assess the observed patterns of adherent
cell dynamics, we calculated the contact area, and cell and
membrane velocities as functions of time in each pattern
(Fig. 5). In order to quantify the cell adhesion to the substrate,
the contact area, represented by Ac, was calculated, which was
defined as the area of the cell-substrate boundary [Fig. 5(a)].
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FIG. 5. Time evolution of adherent cell movement under flow.
(a) Contact area of the cell on substrate Ac, (b) cell velocity along
the x axis Vc, (c) membrane velocity along the x axis V ave

m , and (d)
minimum membrane velocity along the x axis V min

m as functions of
time. The parameters used for these simulations were set to those
used in Fig. 4.

While the contact area became zero in the detachment pat-
tern, it converged into a positive value in the other patterns.
To quantify the cell motion, cell velocity, represented by Vc,
defined as the velocity of the geometric center of the cell, was
calculated [Fig. 5(b)]. While the cell velocity became zero in
the membrane flow and fixation patterns, it converged into
positive values in the other patterns.

To quantify the membrane flow, membrane velocity, de-
fined as the velocity of the cell membrane along the x axis, was
calculated. The average membrane velocity, represented by
V ave

m , became zero in the fixation pattern, whereas it converged
into positive values in the other patterns [Fig. 5(c)]. To analyze
whether the cell slipped or firmly adhered to the substrate, the
minimum membrane velocity, represented by V min

m , was also
calculated. The minimum membrane velocity corresponded
to the velocity of the membrane around the closest location
to the substrate, reflecting whether the cell slipped or firmly
adhered to the substrate. The minimum membrane velocity
became zero in the fixation and membrane flow patterns,
whereas it converged into positive values in the other patterns
[Fig. 5(d)]. These results indicated that the obtained patterns
of cell dynamics can be quantitatively distinguished based on
the cell and membrane movements.

C. Dependence of cell shape and contact on adhesion energy
and solvent velocity

To investigate the influence of the cell adhesion and sol-
vent flow on cell shape, we calculated the contact area and
cell sphericity as functions of the adhesion energy εint and
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FIG. 6. Dependence of cell shape and contact on capillary num-
ber and adhesion energy. (a), (b) Contact area Ac as a function of
adhesion energy and capillary number. Blue, red, and green lines
in (b) indicate the conditions with Ca = 10−2.2, 10−1.7, and 10−1.2,
respectively. (c) Sphericity of the cell on the substrate as a function
of adhesion energy and capillary number. (d) Tearlike shape of the
cell. The panel on the left-hand side indicates the cell shape, where
arrows indicate local membrane velocities. The panel on the right-
hand side indicates area strain velocities. The parameters were set to
Ca = 10−1.2 and εint = 10−0.5 �l2 in (d).

the capillary number Ca (Fig. 6). The contact area depends
strongly on εint and slightly on Ca, i.e., the area drastically
increased with εint and slightly decreased with increasing Ca

[Fig. 6(a)]. The area became zero under the condition of small
εint and high Ca, corresponding to the detachment pattern, and
nonlinearly increased with either increasing εint or decreasing
Ca [Fig. 6(b)]. The cell sphericity also depends strongly on εint

and slightly on Ca, i.e., the sphericity drastically decreased
with increasing εint and also decreased under the condition
with high Ca [Fig. 6(c)]. Under the condition with middle
εint and high Ca, corresponding to the rolling pattern, the
cell shape became tearlike, as reported in the previous study
[25] [Fig. 6(d)]. These results indicate that the cell shape
can become semispherical, depending on the adhesion to the
substrate, and it can be distorted by the solvent velocity.

D. Dependence of cell and membrane movements on adhesion
energy and solvent velocity

To investigate the influence of the cell adhesion and sol-
vent flow on cell and membrane movement, we calculated
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FIG. 7. Dependence of cell and membrane movements on capil-
lary number and adhesion energy. (a), (b) Cell velocity along the x
axis Vc as a function of adhesion energy and capillary number. (c),
(d) Average membrane velocity along the x axis V ave

m as a function of
adhesion energy and capillary number. (e), (f) Minimum membrane
velocity along the x axis V min

m as a function of adhesion energy and
capillary number. Blue, red, and green lines in (b), (d), and (f) indi-
cate the conditions with Ca = 10−2.2, 10−1.7, and 10−1.2, respectively.
The white regions in (a), (c), and (e) indicate those with values above
the maximums of the legend colormaps.

the cell and membrane velocities as functions of adhesion
energy εint and capillary number Ca (Fig. 7). The cell velocity
became zero under the condition with high εint and low Ca,
corresponding to the fixation pattern [Fig. 7(a)]. The velocity
increased with decreasing εint and increasing Ca, and became
drastically high under the condition with small εint and high
Ca, corresponding to the detachment pattern. The velocity in-
creased from zero with decreasing εint, whose slopes became
steeper with increasing Ca [Fig. 7(b)].

Moreover, the average and minimum membrane velocities
became zero under the condition with high εint and low Ca

[Figs. 7(c) and 7(d)]. They increased with decreasing εint and
increasing Ca, and became extremely high under the condition

TABLE II. Classification of adherent cell dynamics patterns.

Pattern Contact area Cell velocity Membrane velocity

Detachment Ac = 0 – –
Cell slipping V min

m � δV
Vc � δV

Rolling V min
m < δV

Ac > 0
Membrane flow V min

m � δV
Vc < δV

Fixation V min
m < δV

with small εint and high Ca, corresponding to the detachment
pattern. Notably, the minimum membrane velocity is rela-
tively high under the condition with small εint and middle
Ca, corresponding to the cell slipping pattern. The average
and minimum membrane velocities converged to zero with in-
creasing εint, and their slopes became steeper with increasing
Ca [Figs. 7(e)–7(f)]. Importantly, the cell and average mem-
brane velocities were accelerated by both the decrease in εint

and increase in Ca, whereas the minimum membrane velocity
was increased only under the condition with low adhesion,
corresponding to the cell slipping pattern.

E. Pattern diagram of cell dynamics with respect to adhesion
energy and solvent velocity

To assess the dependence of cell dynamics patterns on
cell adhesion and solvent flow, we quantitatively defined each
pattern, based on the results given in Sec. V B, in terms of
the contact area Ac, cell velocity Vc, and minimum membrane
velocity V min

m (Table II). The detachment pattern is defined as
the condition when the contact area is zero (Ac = 0). The cell
slipping pattern is defined as the condition that both the cell
velocity and minimum membrane velocity are positive (Ac >

0, Vc � δV , V min
m � δV ). The rolling pattern is when the cell

velocity is positive and the minimum membrane velocity is
almost zero (Ac > 0, Vc � δV , V min

m < δV ). Moreover, the
membrane flow is when the cell velocity is almost zero and
membrane velocity is positive (Ac > 0, Vc < δV , V min

m � δV ),
and the fixation pattern is when both cell velocity and mem-
brane velocity are almost zero (Ac > 0, Vc < δV , V min

m < δV ).
Here, δV indicates a small threshold velocity, which was set
to δV = 0.2 l/τ .

Based on these definitions of each pattern, the pattern
diagram of cell dynamics was obtained (Fig. 8). While the
fixation pattern was obtained under the condition with high
εint and low Ca, the detachment pattern was obtained under the
condition with low εint and high Ca. The other patterns were
obtained between these two conditions as follows: The cell
slipping pattern was obtained under the condition with low
εint and intermediate Ca. When increasing εint from the cell
slipping pattern, the cell dynamics transited to the rolling. For
further increase in εint, membrane flow and fixation patterns
appear in that order. While either the membrane flow or rolling
pattern was beside the fixation pattern, either the cell slipping
or rolling pattern was sided by the detachment pattern. Thus,
these results show that long-term cell dynamics are highly
variable, depending on cell adhesion and solvent flow.

Various quantitative features of the resultant cell shape and
dynamics showed only smooth dependencies on εint and Ca

(Figs. 6 and 7), suggesting that all these crossovers between
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FIG. 8. Diagram of adherent cell dynamics patterns. The pattern
diagram of adherent cell dynamics was calculated as a function of
capillary number Ca and adhesion energy εint . White circles corre-
spond to the results in Figs. 4 and 5.

individual patterns, except for the detachment pattern, are not
a bifurcation but a gradual crossover. In particular, the gradual
crossover between cell slipping and rolling was also supported
by the simple-model analysis (Appendix).

F. Mechanisms of long-term adherent cell dynamics under flow

Cell states were determined by the balance between adhe-
sion force on the substrate and friction force from the solvent
shear flow, i.e., adhesion generates friction and adsorption on
the cell bottom, whereas solvent shear flow generates drag
and lift force. In particular, in the simplified flow field of this
study (Sec. IV B), the lift force is generated by the asymmetry
of the cell shape along the solvent flow direction. For exam-
ple, when the cell is spherical, the friction force is balanced
across the entire cell surface, generating no lift force. On
the other hand, as an extreme example, when the cell has a
linear shape aligned in a frontal lifted direction, the friction
force is imbalanced to generate a lift force. Remember that
our model takes into account membrane viscosity; hence, the
competition between membrane viscosity and solvent friction
generates not only upward flow of the membrane, but also a
lift force across the membrane. Because the cell is aligned in
a frontal lifted direction by the solvent shear flow, the cell is
thus subject to lift force.

Mechanisms that cause the fixation, rolling, and detach-
ment patterns can be explained basically as in the previous
study [25], i.e., the increase in Ca corresponds to the increase
in lift force with increasing solvent velocity, leading to the
detachment pattern [44]. Less Ca with middle εint generates
low lift force but enough high drag force, leading to the rolling
pattern [25,45,46]. Either lower Ca or higher εint suppresses
drag force, leading to the fixation pattern [25]. In the pre-
vious study, where relatively short-term cell dynamics were
calculated by assuming an elastic membrane, cell dynamics
patterns transited from the fixation to either the detachment
or rolling [25]. In contrast, in this study, where long-term
cell dynamics were calculated by assuming a nonconservative
fluid membrane and nonelastic frictional adhesion, the cell

slipping and membrane flow appeared at the interface among
the fixation, detachment, and rolling (Fig. 8).

Mechanisms that cause the cell slipping and membrane
flow can be explained by frictional interactions at the cell-
substrate interface. The cell slipping can be provided under
the condition with low εint, since the cell-substrate friction
can be much lower than the cell membrane viscosity. Un-
der this condition, both the cell-substrate and cell-solvent
interfaces can move faster than the membrane flow, leading
to the cell slipping. Membrane flow can be provided near
the fixation pattern, where both the lift and drag forces are
fully suppressed by adhesion. Either when Ca is relatively
high or εint is relatively low, the drift force can barely move
the membrane. However, because the cell-substrate friction
is much lower than the cell membrane viscosity, the mem-
brane can move only partially at the cell-solvent interface,
leading to the membrane flow. In principle, the cell slip-
ping could be provided by the elastic membrane but not the
membrane flow, since the membrane flow requires the non-
conservative feature. These results illustrate that adherent cell
dynamics are more diverse on the long-term than on the short-
term scale, where frictional interfacial interactions play a key
role.

VI. DISCUSSION

In this paper we aimed to computationally investigate the
possible patterns of long-term adherent cell dynamics oc-
curring in a whole cell or in multicellular systems. We first
developed a continuum model of energetic and frictional in-
terfacial interaction between discrete surfaces for numerical
simulations. We then integrated this interaction model with
the model of nonconservative fluid cell membrane [29] and
performed numerical simulations of adherent cell dynamics
on substrate under flow. The simulations showed that adherent
cell dynamics exhibited five distinct patterns, i.e., detachment,
cell slipping, rolling, membrane flow, and fixation.

Importantly, while the detachment, rolling, and fixation
patterns were also observed in the previous study [25], the
membrane flow and cell slipping patterns were found in this
study. This stark difference in the results provides us with
the following important lessons. The membrane flow and cell
slipping patterns correspond to the cell behaviors occurring
in the long term, where the cell membrane can dynamically
turnover via endocytosis and exocytosis and CAMs frequently
bind and unbind, i.e., the cell membrane is nonconserva-
tive and the cell and substrate do not firmly adhere but can
move with the friction derived from the CAMs remodel-
ing. On the other hand, in most previous studies, relatively
short-term cell behaviors were focused on, where the cell
membrane is an elastic body and CAMs can firmly fix a
cell on substrate [25]. This is why the simulations in this
paper succeeded in simulating the wider varieties of long-
term adherent cell dynamics, including the membrane flow
and cell slipping patterns, while the simulations in previous
studies did not. This implies that it is pivotal to use the model
reflecting the scale of time properly, i.e., the model taking
into account nonconservative cell membrane and frictional
adhesion, when one simulates the long-term adherent cell
dynamics.
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In the proposed model, interfacial interactions between
surfaces are expressed by energetic and frictional interactions,
and their parameters are given as those in the continuum
level, i.e., adhesion energy and friction. Importantly, these
parameters in the continuum level can be quantitatively
translated into those at the molecular level such as CAM
density, individual-CAM adhesion energy, and association
and dissociation rates, which are experimentally measurable
parameters. Therefore, the proposed model enables us to pre-
dict realistic adherent cell dynamics in a quantitative manner.
Importantly, the friction is explicitly described in the proposed
model, whereas it was implicitly taken into account in the
previous studies [27]. In the previous studies, adhesion was
modeled by the association and dissociation behaviors of the
spring bonds linking two surfaces. The explicit description in
the proposed model enables us to quantitatively analyze the
long-term cell dynamics. Note that although we derived the
effects of the friction via CAM behaviors as the strain rate
φint, its detailed influence, i.e., how interfacial frictions affect
the adherent cell dynamics, is not yet known, and this is a
challenging question for the future.

The proposed model has several avenues for application
and further improvement. One of the most fascinating applica-
tions is multicellular dynamics. While the model was applied
to cell-substrate adhesion in this study, in principle, it can also
be applied to cell-cell adhesion. This application enables us
to analyze how individual cell behaviors are integrated into
multicellular dynamics through their adhesive interactions in
tissues or multicellular assemblies like organoids. To analyze
multicellular dynamics in 3D space, recently, several simpler
coarse-grained models have been used, such as vertex models
[14,15,47,48]. In addition, a recent pioneering work reported
the analysis of adhesive multicellular dynamics, where indi-
vidual cell membranes are represented as elastic bodies [28].
The proposed model, applicable to the long-term dynamic
process in the subcellular resolution, enables us to analyze
long-term multicellular phenomena such as embryogenesis,
carcinogenesis, immune defense, and wound healing. More-
over, because cytoskeletal dynamics play important roles in
cell dynamics, combining cytoskeletal dynamics with cell
adhesion is an expected direction to improve the proposed
model. For example, actin cytoskeletons can be bonded with
CAMs, which can be stabilized by exerted tension [49,50].
These improvements enable us to simulate cell dynamics in
realistic scenarios, such as cell spreading and migration on a
substrate.

VII. CONCLUSION

Cell adhesion plays key roles in development, immune
defense, wound healing, and cancer invasion, which have
timescales ranging from tens of minutes to days. This pa-
per reported, primarily, the development of a computational
model applicable to simulate such long-term dynamics of
adherent cells and, secondly, the numerical discovery of
the patterns of adherent cell dynamics characteristic to the
long-term dynamics. The model is based on a continuum
description of the cell surface and incorporates the energetic
and frictional interactions between adhesive surfaces. With
this model, the adherent cell dynamics on a solid substrate
under shear flow were numerically simulated. The simulations
reproduced several patterns of adherent cell dynamics corre-
sponding to the behaviors occurring in the timescale much
longer than that of the dissociation of adhesion molecules.
These results imply that to simulate the long-term adherent
cell dynamics, a model properly dealing with the nonconser-
vative fluid cell membrane and nonelastic frictional adhesion
is necessary. The model developed in this paper can be applied
to further realistic phenomena by introducing the dynamics of
cytoskeletal components and extracellular matrices, and has
the potential to be applicable to simulating the dynamics of
tissues or multicellular assemblies like organoids.
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