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Synaptic propagation in neuronal networks with finite-support space-dependent coupling
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Traveling waves of electrical activity are ubiquitous in biological neuronal networks. Traveling waves in the
brain are associated with sensory processing, phase coding, and sleep. The neuron and network parameters
that determine traveling waves’ evolution are the synaptic space constant, synaptic conductance, membrane
time constant, and synaptic decay time constant. We used an abstract neuron model in a one-dimensional
network to investigate the propagation characteristics of traveling wave activity. We formulate a set of evolution
equations based on the network connectivity parameters. Using a combination of numerical and analytical
approaches, we show that these traveling waves are stable to a series of perturbations with biological relevance.
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I. INTRODUCTION

Waves are physical phenomena observed ubiquitously in
nervous systems across taxa. Traveling waves of electrical
activity are everywhere in the nervous system. For example,
cortical brain waves of activity are found in visual [1–6],
olfactory [7,8], auditory [9,10], and motor [11,12] cortices,
as well as in the cerebellum [13]. Traveling waves may play
roles in working memory [14], sensory processing, phase
coding [15,16], and sleep [17]. In the hippocampus, traveling
waves of synchronization, such as theta and gamma waves,
influence spatial-temporal dynamics [18,19]. Sensorimotor
systems rely on traveling waves; for example, in mammals,
the spinal cord relays afferent and efferent waves [20]; in
fish, the cuttlefish skin pigmentation depends on traveling
waves to apply camouflage [21]; in invertebrates, the mollusk
olfactory network produces waves when presented with an
olfactory stimulus [22]. Understanding the dynamics of trav-
eling waves bridges a gap between observable phenomena and
neuroscience theory.

In the present paper we investigate traveling waves in
a one-dimensional system where the network is a line of
neurons. We restrict the neural dynamics to single-spike
integrate-and-fire neuronal network activity propagation [23].
Our model assumes that synaptic connections between neu-
rons are space dependent: The finite support connectivity
kernel assumes that synaptic coupling does not decay with
distance. One neuron is coupled to all neighboring neurons
within one synaptic space constant (synaptic footprint σ ). For
this system we formulate a system of ordinary differential
equations for traveling wave propagation to study the first,
second, and potentially higher-order derivatives of firing times
as a function of space. The finite support connectivity kernel
and the time evolution of spike-dependent synaptic excitation
allow the computation of evolution equations in an analyti-
cally tractable form. For this work, the evolution equations of
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the traveling wave dynamics depend on local dynamics and
other parameters with a delayed effect. A key characteristic of
our model is that the evolution equations are linear and can be
solved analytically.

The finite support connectivity function is mathematically
and conceptually more straightforward than other connectiv-
ity functions widely used, such as Gaussian [24] or exponen-
tial decay [23]. However, constant speed wave dynamics in
finite support connectivity kernel are more complicated than
waves in networks with exponential decay kernel. Specifi-
cally, for the exponential kernel, wave acceleration depends
quadratically on instantaneous speed plus delayed parameters,
a system with straightforward dynamics [23]. The approach
used in the present paper allows us to solve equations for
speed and acceleration explicitly and therefore to precisely
define how wave speed and acceleration fluctuate as a func-
tion of time and space. Overall, the equations of evolution
are in excellent agreement with the numerical simulations.
The evolution equations predict the traveling wave speed and
acceleration based on the network excitability parameters.
We further investigate the dynamics of traveling waves with
different biologically relevant perturbations; these show that
traveling waves are all-or-none events: Waves can only prop-
agate at the speed solution determined by the excitability
parameters, or fail to propagate and die off.

II. WAVE EVOLUTION IN the INTEGRATE-AND-FIRE
NEURON MODEL

Our theoretical model captures some of the essential
dynamics of activity propagation in neuronal networks;
the framework has simple assumptions about neuronal ex-
citability and network connectivity. In our simulations, for
simplicity, we consider one-dimensional systems where all
neurons form a continuous line. We initiate traveling wave ac-
tivities by applying an external current to a subset of neurons
in the network labeled the “shocked region.” Consequently,
the neurons in the shocked region spike at the same time
(assumed to be t = 0). We assume the wave propagates only
in the positive direction where we monitor the spiking times
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of the neurons in the network. As neurons integrate excitatory
synaptic inputs, they may reach the firing threshold and spike.
Each spike has an excitatory effect on other neurons in the
networks, which is usually modeled via a kernel function
where nearby neurons receive larger amounts of excitation
that vanishes for the ones further apart. Previous research
typically examined Gaussian, exponential, and finite support
kernels [23–29], leading to the equation in V (x, t ) [26],

τ1
∂V

∂t
= −V + Isyn

= −V + gsyn

∫
D

J (|x − y|)
∑

k

α(t − tk (y))dy, (1)

where

α(t ) = e−t/τ2 H (t ).

Here tk (x) is the kth spike of the neuron at location x and

J (x, y) = J (|x − y|) = 1

σ
H (σ − |x − y|),

with H the Heaviside function H (x) = 1 if x > 0 and 0 other-
wise. To permit propagation the synaptic integration constant
τ1 needs to be smaller than the decay time of excitation τ2,
that is, 0 < τ1 < τ2, and the synaptic footprint needs to be
positive, that is, σ > 0.

Here we consider traveling waves solutions; therefore, the
spiking times of neurons are a monotonic function of their
position x within the network. Furthermore, we restrict the
analysis to single-spike solutions to facilitate analytical re-
sults. Therefore, instead of multiple firing times tk (y), one
only has single spikes across the network, that is, t (y) = t1(y).
Consequently, for a single-spike wave, we can now obtain the
integral-form equivalent

V (x, t ) = gsyn

1 − τ1
τ2

∫ x

x−σ

J (x, y)A(t − t (y))dy, (2)

where

A(t ) = (e−t/τ2 − e−t/τ1 )H (t ).

The neuronal network model (2) describes the membrane
potential V as a function of time- and space-dependent kernels
multiplied by the network excitability parameters gsyn, σ , τ1,
and τ2 (synaptic conductance, synaptic space constant, mem-
brane time constant, and synaptic decay time constant). The
neurons are set to spike when V = VT , and this crossing of the
threshold results in additional excitation sent by the spiking
neuron to other parts of the neural tissue. The parameters of
the finite support kernel, x and x − σ , define the boundaries of
the integral. Integrating Eq. (2), the evolution of the wavefront
can now be computed as the moment t (x) when the neuron
position x spikes, that is, V (x, t (x)) = VT , using the equation

V (x, t (x)) = VT =
gsyn

σ

1 − τ1
τ2

[I2(x, t (x)) − I1(x, t (x))]

=
gsyn

σ

1 − τ1
τ2

(
e−t (x)/τ2

∫ x

x−σ

et (y)/τ2 dy − e−t (x)/τ1

∫ x

x−σ

et (y)/τ1 dy

)
, (3)

where

Ii(x, t (x)) = e−t (x)/τi

∫ x

x−σ

dy et (y)/τi , i = 1, 2.

Taking the first derivative of Eq. (3), we get the traveling wave speed as a function of integrals I1 and I2:

I1

cτ1
− I2

cτ2
+ e−[t (x)−t (x−σ )]/τ1 − e−[t (x)−t (x−σ )]/τ2 = 0. (4)

Taking the second derivative of Eq. (3), we obtain

dt

dx

(
− 1

τ2
+ e−[t (x)−t (x−σ )]/τ2

τ2
+ 1

τ1
− e−[t (x)−t (x−σ )]/τ1

τ1

)
+

(
dt

dx
− dt (x − σ )

dx

)(
e−[t (x)−t (x−σ )]/τ2

τ2
− e−[t (x)−t (x−σ )]/τ1

τ1

)

+ d2t

dx2

(
− 1

τ2
I2 + 1

τ1
I1

)
+

(
dt

dx

)2( 1

τ 2
2

I2 − 1

τ 2
1

I1

)
= 0. (5)

In Eq. (5) we can determine d2t
dx2 as a function of speed and convert d2t

dx2 into the instantaneous acceleration. We used the same
relationship from Zhang and Osan [23]:

a(x) = d2x

dt2
= −c3 d2t

dx2
.

The equations of evolution connect the wave speed and acceleration in a similar way to the ones from the exponential kernel [23],
but with some major differences that will become apparent later on. We now have a system of two equations where the unknowns
are the speed c(x), acceleration a(x), I1(x, t (x)), and I2(x, t (x)). Unfortunately, for these equations we cannot solve the system
explicitly, because the network has memory so the wave acceleration at x depends not only on the speed at x, but also on the
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speed at x − σ and on the difference between the spiking times at these two different spatial locations �t (x). The instantaneous
acceleration of the wave propagation then becomes

a =
(

1

e−�t (x)/τ2 − e−�t (x)/τ1

)[
VT σ

gsynτ2

(
1

τ2
− 1

τ1

)
+ c

(
1

τ1
+ 1

τ2

)
(e−�t (x)/τ1 − e−�t (x)/τ2 )

+ c

(
1

τ1
− 1

τ2

)
+

(
2c − c2

c(x − σ )

)(
e−�t (x)/τ2

τ2
− e−�t (x)/τ1

τ1

)]
. (6)

The theoretical wave speed and acceleration are described by
Eqs. (6) and (4). The objective of our derivations was to accu-
rately describe the wave propagation based on the excitability
parameters and on previous network activity. The system of
equations has the following unknown variables: Eq. (4) has
t (x) and t (x − σ ), the spike time of the neuron at the location
x and the spike time of neuron at the location x − σ ; Eq. (6)
has c(x) and c(x − σ ), the speed of the wave at the location x
and the speed at the location x − σ .

To confirm our approach, we first conducted simulations
to compute the numerical wave speed and acceleration. These
estimates are in excellent agreement with theoretical results
(Fig. 1). For numerical simulations, neurons in the network
are located adjacent to one another and separated by a dis-

FIG. 1. Comparison of analytical solutions and numerical sim-
ulations. The finite support neuronal network of integrate-and-fire
neurons with excitatory coupling is at rest; at t = 0, the neurons
at x = 0–1 receive an additional current that drives them over the
threshold. All shocked neurons spike synchronously because they
receive their input at the same time. The wave evolution shows
damped oscillations with an amplitude that decays exponentially.
The self-propagating wave settles at the constant speed cfast . (a) Wave
speed as a function of space. The red trace is the computer simulation
and the black trace is the speed solution from Eq. (4). (b) Traveling
wave acceleration as a function of space. The blue trace is the
computer simulation and the green trace is the solution from Eq. (6).
The parameters are gsyn = 15, σ = 1, τ1 = 1, τ2 = 2, VT = 1, and
δ = 1 × 10−3.

cretization constant δ. We performed simulations varying the
value of the discretization constant δ. Table I summarizes
the percentage of change between numerical simulations with
varying magnitudes of δ and the percentage of change be-
tween theoretical and numerical speeds.

III. CONSTANT SPEED TRAVELING WAVE

We further explore the equations of evolution to estimate
the speed of the traveling wave. We assume two intuitive
features: (i) Self-propagating traveling waves reach constant
speed asymptotically and (ii) traveling waves that do not self-
propagate eventually are extinguished. The acceleration of
constant speed waves is zero; therefore, solving Eq. (6) when
a = 0 yields the consistency equation (7), which describes the
neuron membrane potential as a function of traveling wave
speed:

σVT

1 − τ1
τ2

gsyn
= c(τ2 − τ1 − τ2e−σ/cτ2 + τ1e−σ/cτ1 ). (7)

For a traveling wave that arrives from −∞ at a location x and
with speed c, one can compute the corresponding voltage. If
the voltage is VT then the solution c is consistent with Eq. (7);
otherwise, a traveling wave with speed c cannot exist.

The accuracy of the equations of evolution allows us to
estimate the solutions of traveling wave propagation. Figure 2
illustrates that cfast and cslow are located at the intersection
between VT and V (c). Figure 2 also shows that for waves
initiated through a shocked region the wave acceleration and
speed oscillate while the wave evolves towards the stable state
of activity propagation, where a = 0 and c = cfast.

Our numerical simulations suggest that traveling waves
are all-or-none phenomena, determined by neuronal and net-
work connectivity properties. The parameters gsyn (Fig. 3), VT

(Fig. 4), σ (data not shown), τ1 (data not shown), and τ2 (data
not shown) control traveling wave speed and thus varying any
of these parameters beyond a critical value determines wave
propagation or failure. Figure 3 shows that as gsyn decreases,
cfast and cslow become closer in value before disappearing and
diverge asymptotically as gsyn increases. Figure 4 shows that
as VT increases the wave speed decreases. While Fig. 2 shows
that there is a speed at which a wave can induce a maximum
Vmax voltage, Fig. 4 shows that if VT > Vmax, the wave fails
to propagate. Standard bifurcation analysis is not compatible
with the system at hand, because perturbation of the constant
speed solutions do not decay back to steady states, as showed
by our results in the upcoming sections. In conclusion, our
simulations determined that waves are all-or-none events de-
termined by the excitability parameters.
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TABLE I. Speed and the discretization constant.

Relative change of Relative change of numeric to
δ Numeric speed numeric speed Theoretic speed theoretic speeds

5 × 10−5 6.984 6.984 0.007%
1 × 10−4 6.984 0.006% 6.984 0.012%
5 × 10−4 6.981 0.042% 6.984 0.053%
1 × 10−3 6.977 0.052% 6.984 0.105%
5 × 10−3 6.948 0.416% 6.984 0.519%
1 × 10−2 6.912 0.521% 6.984 1.038%
5 × 10−2 6.622 4.197% 6.984 5.191%

IV. PERTURBATION-BASED STABILITY ANALYSIS

First, we establish the existence of constant speed traveling
waves in neuronal networks of integrate-and-fire neurons with
finite support connectivity kernel. According to the consis-
tency equation (7), the threshold VT constrains the neurons’
membrane potential and traveling wave speed. Figure 2 illus-
trates that above VT activity propagation generates additional
excitation and below VT the traveling wave does not generate
enough excitation. If the wave travels faster than cslow but
slower than cfast , the wave builds a surplus of excitation in
the network. In this case, the membrane voltage is higher than

FIG. 2. Stable and unstable fixed points of the wave propagation
system. (a) Solutions to the consistency equation as intersections
between V = V (c) and the horizontal line at VT . According to the
consistency equation, the neuron membrane potential is a function of
traveling wave speed. These numerical solutions allow one to com-
pute both cfast and cslow. Here Vmax denotes the maximum achievable
voltage as a function of the traveling wave speed. If this value is
less than VT no traveling wave can exist. (b) Results from numerical
simulations where the wave is initiated through shocking the region
(−σ, 0). The attractor graph of acceleration as a function of speed
indicates that the traveling wave settles into a constant speed solu-
tion. The magnitude of the oscillations is consistent with the synaptic
footprint space constant σ . The speed c and acceleration a of the
traveling wave oscillate while approaching the intersection between
c = cfast and a = 0. The parameters are gsyn = 15, σ = 1, τ1 = 1,
τ2 = 2, VT = 1, and δ = 1 × 10−3.

the threshold voltage [Fig. 2(a)]. The surplus of excitation will
speed up the activity propagation until the wave speed reaches
cfast. If the wave is traveling faster than cfast, the network
does not have the resources to sustain activity propagation
and the voltage falls lower than the threshold. Then the wave
slows down and settles at cfast because, in cfast , the voltage
equals VT . If the wave travels slower than cslow, the voltage is
below the threshold and it does not generate enough energy to
self-sustain; the wave speed slows down to zero (propagation
failure). We ran series of simulations that support this notion;
numerically, cfast is stable and cslow is unstable. Next we use a
series of approaches to investigate the stability of the constant
speed traveling wave. Here the stable speed solution cfast is
computed from Eq. (7) as well as determined from numerical
simulations and it represents the speed of the constant speed
traveling wave.

A. Analytical argument for the stability of traveling wave speed

We introduce a small-parameter ε perturbation at t =
0. This theoretical perturbation consists of imposed initial
conditions that force the wave to travel from x = −∞ to x = 0

FIG. 3. Traveling wave speed as a function of gsyn. This graph
represents cfast and cslow as a function of the global excitability
parameter, in logarithmic scale. For this set of simulations, we sys-
tematically varied gsyn and kept all other parameters constant. Our
results show there is a critical value gcrit where global excitation
is so small that traveling wave activities are not sustainable. These
curves also illustrate the dependence of the traveling wave dynamics
on global excitability: As gsyn grows, cfast increases while cslow de-
creases, both asymptotically. The parameters are δ = 1 × 10−3 σ =
1, τ1 = 1, τ2 = 2, and VT = 1.
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FIG. 4. Traveling wave speed as a function of VT . For this set
of simulations, we systematically varied VT and kept all other pa-
rameters constant. Our results show that as VT increases, the wave
speed decreases. The critical value Vmax critical is the critical value be-
tween activity propagation and failure, determined by the consistency
equation (7) (see Fig. 2). Intuitively, when Vmax critical is found the
voltage threshold is greater than the voltage as a function of speed
[VT � V (c)]. The parameters are δ = 1 × 10−3 σ = 1, gsyn = 15,
τ1 = 1, τ2 = 2, VT = [1, 6.125], and Vmax critical = 6.125.

(practically from −σ to 0) at a constant speed faster than cfast.
The initial wave speed is defined by

c0 = cfast + c1 = cfast + εcfast,

where c1 � cfast, with a typical value for ε ≈ 0.01. In this
context, the consistency equation becomes

c0(τ2 − τ1 − τ2e−σ/c0τ2 + τ1e−σ/c0τ1 ) = σ
1 − τ1

τ2

gsyn
(VT + εV1).

(8)

For small values of the parameter ε, we can look at so-
lutions that are correct in the first order of ε by linearizing
Eq. (8) to obtain the first-order correction in voltage for V0 =
VT + εV1:

εV1 = gsync1

(1 − τ1
τ2

)

(
− e−σ/cfastτ2 − e−σ/cfastτ1

cfast

+ τ2 − τ1 − (τ2e−σ/cfastτ2 − τ1e−σ/cfastτ1 )

σ

)
. (9)

Intuitively, this means that since the wave is traveling faster
than cfast, the neuron at position x = 0 will not cross the
threshold at t = 0, stopping the propagation of the wave tem-
porarily. Therefore, the sign of V1 is negative and the neuron
needs more time to integrate the synaptic currents before
potentially crossing the threshold and spiking at a later time,
allowing for the wave propagation to restart. The computation
of this delay is done next.

In addition to the correction in voltage, the synaptic current
also has an order ε correction as I0 + εI1, with its derivation
as follows:

I (x, t ) = gsyn

∫ x

x−σ

e−t−t (y)/τ2 dy. (10)

Since firing times are described by the constant speed travel-
ing wave, it follows that t (y) = y/c0 and

I (0+, t ) = Isyne−t/τ2 = gsyn

∫ 0

−σ

ey/c0τ2 dy e−t/τ2 , (11)

Isyn = I0 + εI1

= gsyn

σ
[(cfast + c1)τ2(1 − e−σ/(cfast+c1 )τ2 )]. (12)

Finally, we obtain

I0 = gsyn

σ
[cfastτ2(1 − e−σ/cfastτ2 )],

εI1 = −c1gsyn

(
e−σ/cfastτ2

cfast
− τ2

1 − e−σ/cfastτ2

σ

)
. (13)

The voltage evolution at x = 0 follows this explicit formula:

V (t ) = V0e−t/τ1 + Isyn

1 − τ1
τ2

(e−t/τ2 − e−t/τ1 ). (14)

We can compute the delay in firing for the neuron at x = 0+ by
computing the moment when V (t ) = VT in Eq. (14). Again,
by focusing only on the first-order Taylor expansion, we ob-
tain the following expression for the delay �t = t0:

t0 = εV1
VT
τ1

− gsynτ2

σ (1− τ1
τ2

)
cfast (1 − e−σ/cfastτ2 )

(
1
τ1

− 1
τ2

) . (15)

To summarize, we investigated how the traveling wave
behaved near x = 0. We determined that there is a delay
once the perturbation is removed. The delay is a function of
perturbation speed c1 and network parameters. In addition to
the delay to restart the wave at x = 0, namely, t0, our methods
also allow us to estimate the dynamics of the resuming activity
propagation. By using the fact that prior to x = 0 we have con-
stant propagation with t (y) = y/c0, we can now use Eqs. (5)
and (6) to obtain the restarting speed c(0+) and acceleration
acceleration a(0+) at x = 0+:

c(0+) = −cfast
e−t0/τ2 (1− e−σ/cfastτ2 ) − e−t0/τ1 (1− e−σ/cfastτ1 )

e−t0/τ2 e−σ/cfastτ2 − e−t0/τ1 e−σ/cfastτ1
,

(16)

a(0+) =
(

1

e(σ+cfastt0 )/τ2 − e−(σ+cfastt0 )/τ1

)[
VT σ

gsynτ2

(
1

τ2
− 1

τ1

)

+ c(0+)

(
1

τ1
+ 1

τ2

)

× (e−(σ+cfastt0 )/cfastτ1 − e−(σ+cfastt0 )/cfastτ2 )

+ c(0+)

(
1

τ1
− 1

τ2

)
+

(
2c(0+) − c(0+)2

cfast

)

×
(

e−(σ+cfastt0 )/cfastτ2

τ2
− e−(σ+cfastt0 )/cfastτ1

τ1

)]
. (17)

We now have the initial conditions at x = 0+ to use in
conjunction with the system of equations (5) and (6) to de-
termine the wave evolution without resorting to full-network
numerical simulations. Figure 5 shows that this approach is
in excellent agreement with the numerical simulations from
perturbation-imposed initial conditions where the wave prop-
agates from x = −∞ to x = 0 at speed greater than cfast. The
perturbation is removed at x = 0 and the wave further evolves
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FIG. 5. Faster wave speed perturbation. This graph shows the
stability test of the wave speed solution cfast . At x = 0, there is no
external drive and the wave is free to evolve due to the dynamics
defined by network and neuron parameters. Removal of the external
drive creates a delay between the spiking time of the last neuron
(with external drive) and the first neuron (without external drive).
We obtain the following series of estimates: delay from numerical
simulation, 8.625 3 × 10−4; delay from Eq. (15), 8.9347 × 10−4;
initial speed after the break from simulation, 7.0253; initial speed
from Eq. (16), 7.0225; initial acceleration from simulation, −0.2914;
and initial acceleration from Eq. (17), −0.3095. V1 = −0.928 915.
(a) Traveling wave speed as a function of space. The red trace is the
computer simulation and the black trace is the result from Eq. (16).
(b) Traveling wave acceleration as a function of space. The blue trace
is the computer simulation and the green trace is the solution from
Eq. (17). Note that acceleration is initially negative (the wave slows
down), but then becomes positive because of the oscillations. The
parameters are gsyn = 15, σ = 1, τ1 = 1, τ2 = 2, VT = 1, ε = 0.012,
and δ = 1 × 10−3.

due to the dynamics determined by the neuron and network
parameters. Not surprisingly, the traveling wave stops and
then restarts with a lower speed than c0 = cfast + c1, but at
a velocity still higher than cfast.

Together, Figs. 1 and 5 demonstrate that the theoretical
framework is in excellent agreement with the numerical simu-
lations. However, as mentioned earlier in the text, the accuracy
of the equations depends on the magnitude of ε. How ac-
curate are the delay, initial speed, and initial acceleration of
the wave from Eqs. (15)–(17) compared to their numerical
counterparts? We computed series of simulations with varying
magnitudes of ε ranging from 0.001 to 0.1, as shown in Fig. 6.
We performed linear regression and polynomial regression for
these data. The linear and quadratic regressions we performed
were both quite accurate, with R2 > 0.99, with marginal im-
provements by the quadratic method in some cases.

Overall, these results support an argument for the stability
of the waves as follows. If the wave travels with a speed c

FIG. 6. Accuracy of estimated delays as a function of ε. For
these graphs, we performed multiple simulations with varying mag-
nitudes for ε and saved the delay, speed, and acceleration after the
break. Here we summarize the numerical and theoretical values of
relevant wave characteristics after removing perturbation: numeri-
cal and theoretical t0, c+

0 , and a+
0 . These numerical and theoretical

delays, speeds, and accelerations after perturbation removal show
consistent trends dependent on the control parameter ε. The range
of relative error of t0 [Eq. (15)] compared to the numerical delay is
[6.2 × 10−6, 0.0011], c0 [Eq. (16)] relative to the initial speed from
simulations is [2.5 × 10−4, 0.065], and a0 [Eq. (17)] relative to the
numerical acceleration is [7.2 × 10−4, 0.35]. For small values of ε,
our approximations from Eqs. (15)–(17) are accurate, but as ε in-
creases, the system loses accuracy. (a) Delay computed from Eq. (15)
and the delay from numerical simulations. (b) Speed computed from
Eq. (16) and the speed from numerical simulations. (c) Accelera-
tion computed from Eq. (17) and the acceleration from numerical
simulations.
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that is faster than cfast until x = 0, the tissue at x > 0 has a
voltage V < VT at t = 0. Consequently, the firing stops for t+

0
to allow the neuron at x = 0 to further increase its voltage and
spike at a later time. Due to additional excitation in the system,
the waves still restarts with a new speed cfast < cnew < c, that
is, the wave still travels faster than needed for stability. As
shown by the results in Fig. 6, acceleration a+

0 is negative for
all values of ε considered here, effectively acting as a restoring
dynamic toward the constant speed traveling wave.

The discontinuity at the spatial boundary of the finite sup-
port connectivity kernel complicates solving analytically the
evolution of the wave. This is in contrast to the exponential
connectivity kernel where the absence of discontinuity within
the connectivity kernel (one-way propagation) allows for ex-
plicit solutions [23].

While we have examined perturbations with speeds ex-
ceeding cfast, the same analysis cannot be performed in a
similar way for c < cfast for the following reasons. The current
framework assumes that propagation is monotonic from −∞
to +∞. Waves can accelerate or decelerate but not jump over
any region. There is a delay for the fast wave case because
the neuron at position x = 0+ needs time to integrate inputs
before firing. However, if we implement a slower wave per-
turbation −ε, the neuron at position x = 0+ would fire before
the wave arrives and creates a second traveling wavefront. The
equations and implementation of nonmonotonic propagating
waves with two wavefronts are beyond this paper’s scope.

B. Traveling wave stability: Effect of synaptic perturbations
such as synaptic inhomogeneity, demyelination, and cell death

We are now set to investigate how perturbations to the
microstructure of the neuronal network affect traveling wave
propagation. In the synaptic inhomogeneity perturbation, the
synaptic coupling parameter gsyn is allowed to oscillate sinu-
soidally as a function of space in a subsection of the network;
the result is a sudden increase followed by a sharp decrease in
synaptic conductance (Fig. 7) over one period of the sine func-
tion. In the demyelination perturbation, the synaptic coupling
parameter decreases in a subsection of the network; here the
synaptic coupling is relatively weak (Fig. 8). Finally, in the
cell death perturbation, the synaptic coupling is completely
turned off for a subsection of the network; it emulates the
network’s activity when the coupled neurons do not spike
(Fig. 9). If the subsection is not too large activity can jump
over the dead region due to the longer-range connections that
can extend over this region. We investigate how the traveling
wave speed depends on the synaptic coupling parameter and
space constant. Our results are numerical evidence of the
stability of the traveling wave solution.

1. Synaptic inhomogeneity perturbation

Synaptic inhomogeneity refers to the media microstruc-
ture; it represents periodic variation of strengths of synaptic
coupling. We assume gsyn is equal throughout the network,
except for one synaptic space constant σ , where gsyn oscillates
sinusoidally with wavelength λ = σ . Here the connections be-
tween neurons are stronger, followed by weaker connections
than baseline (Fig. 7). These synaptic coupling patterns are
common in neuronal networks where neurons from different

FIG. 7. Wave speed oscillation as a function of both the synap-
tic coupling and the wave’s state. In both panels the wave travels
from x = 0 to x = 12. The blue line at the bottom of the graph
represents how gsyn(x) oscillates as a function of space and the
sinusoidal perturbation; gsyn is constant everywhere else. If x > 6
and x < 7, gsyn(x) = g[1 + ε sin( 2πx

σ
)]; otherwise gsyn(x) = g. The

traveling wave speed fluctuates dramatically while the synaptic in-
homogeneity perturbation is present. Because of the effect of the
delayed parameters of the finite support kernel, this perturbation
produces a peak of traveling wave speed after the perturbation is
removed. Interestingly, the magnitude of the second peak is greater
than the first peak. (a) The speed of the wave at x = 7 affects the
speed of the wave at x = 8, although the perturbation is totally
removed at x > 7. The wave speed peaks twice: The increase in
local excitability gsyn(x) causes the first peak. The delayed effect of
wave speed, i.e., t (x − σ ) [Eq. (3) and c(x − σ ) [Eq. (4)], causes the
second peak. This phenomenon exemplifies some of the complicated
dynamics of the finite support connectivity kernel compared to the
exponential. (b) The traveling wave speed at any given x affects
the instantaneous acceleration of the wave of subsequent x + σ .
The instant acceleration oscillates transiently in a sinusoidal fashion
while gsyn perturbation is present. The parameters are g = 15, σ = 1,
τ1 = 1, τ2 = 2, VT = 1, δ = 1 × 10−3, and ε = 0.0943.

populations coexist, such as optical preference columns in the
visual cortex and the barrel cortex [30]. In our simulations,
these synaptic arrangements show interesting transient phe-
nomena while also supporting the stability of the traveling
wave speed cfast (Fig. 7).

The traveling wave propagates at a constant speed before
the perturbation. The wave speed oscillates at the perturbation
location; the speed and acceleration drift away from the sta-
ble baseline state. After removing the perturbation, the wave
speed continues to oscillate. The oscillations damps while
approaching cfast (Fig. 7); while the wave speed approaches
cfast , the wave acceleration approaches zero. The wave reaches
a constant speed when speed equals cfast and acceleration
is 0. Interestingly, the effects of the perturbation are more
pronounced during the next two synaptic footprints to the right
of the perturbation region.

2. Demyelination perturbation

Synaptic demyelination is a neurodegenerative condition
in which neurons lose their myelin sheath. Demyelination
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FIG. 8. Neuronal traveling wave phenomena are all-or-none
events: One small change in the control parameter separates activ-
ity propagation from propagation failure. In both panels the wave
travels from x = 0 to x = 12. The blue line at the bottom of the
graph represents how gsyn(x) oscillates as a function of space and
the demyelination perturbation. At the perturbation, gsyn decreases
sharply; the gsyn decay is determined as follows: If x > 6 and x < 7,
gsyn(x) = g[1 + 10ε sin( πx

2σ
)]; otherwise gsyn(x) = g The cyan and

purple wave speeds demonstrate how a small increase in the parame-
ter ε (±1 × 10−6) determines whether the perturbation terminates the
wave or the wave continues to propagate after removing the perturba-
tion. The amplitude of the perturbation controls the breaking point of
the traveling wave. Here two simulations with the same initial condi-
tions and parameters but with one difference in ε (±1 × 10−6) differ
qualitatively. The cyan wave continues to propagate, at wave speed
cfast ; the purple wave fails to propagate. The parameters are g = 15,
σ = 1, τ1 = 1, τ2 = 2, VT = 1, ε1 = −0.094 289, ε2 = −0.094 288,
and δ = 1 × 10−3.

may be caused by aging [31], Huntington’s disease [32],
and ALS [33]. We model the effects of demyelination as a
quadratic function; within two synaptic space constants σ , the
synaptic coupling between neurons gsyn sharply and continu-
ously decreases until reaching a minimum value and returns
to the baseline value (Fig. 8). In the demyelination pertur-
bation, the strength of the neuronal connections decreases
dramatically in a network subsection. The decrease in gsyn

synaptic coupling represents the decay of synaptic coupling
that is common in demyelinating and neurodegenerative dis-
eases [31–33]. We performed simulations to investigate the
traveling wave speed and acceleration with varying magni-
tudes of perturbations. Consistently with previous sections of
the paper, our results strongly suggest that for this class of
models, neuronal traveling wave phenomena are all-or-none
events (Fig. 8).

The traveling wave propagates at a constant speed before
reaching the location of the perturbation. At the perturbation
location, gsyn decays drastically for one σ ; in the subsequent
σ , gsyn rapidly recovers the baseline (Fig. 8). The wave travels
at a constant speed when it arrives at the perturbation location.
Our simulations show a critical value of ε (Fig. 8) that sepa-
rates the waves that recover from those that die off. The waves
that recover after removing the perturbation oscillate while
approaching cfast; however, the waves that die off approach
cslow (Fig. 8). In conclusion, we demonstrate that extremely

FIG. 9. Dynamics of the traveling wave induced by a noncon-
ducting gap. The simulation consists of a wave traveling at a constant
speed cfast . Located at x = 6 there is the nonconducting gap of “dead
neurons,” which do not spike or synapse. The gap is relative to
the synaptic space constant σ and determined by the ratio α:σ .
Waves typically recover from smaller nonconducting gaps; the wave
speed oscillates transiently but eventually settles back to a constant
speed value, namely, cfast (α < αcritical, green curves). However, larger
perturbations break traveling wave propagation (α � αcritical, ma-
genta curves). The traveling wave’s speed is slower than cfast right
where synaptic coupling returns to the baseline; the speed after the
break decreases monotonically as α grows and approaches αcritical.
To compute αcritical, we uniformly sampled 100 points between
0 and 1 and then iterated between 0.8 and 0.86 to find αcritical with
four-point decimal accuracy. (a) The wave travels at a constant speed
arriving at x = 6 (black trace). The green and magenta traces show
the speed of the wave after the nonconducting gap results from
multiple simulations; green curves represent α < αcritical and magenta
represent α > αcritical. As the nonconducting gap becomes larger, the
wave speed after the break decreases. Larger gaps induce propagation
failure. (b) Speed after the gap for the simulations with α near αcritical.
The green and magenta traces show a critical qualitative change in
traveling wave evolution as a result of a small parameter change.
(c) The speed after the gap is a monotonically decreasing function of
the gap size.

small parameter changes could induce dramatic changes in
the dynamics of wave evolution; when ε < εcritical, the wave
recovers, and when ε > εcritical, the wave dies off.

3. Cell-death perturbation

We assume synaptic coupling is equal throughout the net-
work, except for a subsection where neurons are not coupled
and do not spike. As the wave travels from −∞ toward posi-
tive values for x it encounters a nonconducting gap for a finite
region, then synaptic coupling returns to baseline values. The
gap’s size is determined by the ratio α:σ , where the value
of α ranges from 0 to 1. In the cell-death perturbation, a
gap of synaptic nonconductance represents the area of dead
neurons. The perturbation methods emulate acute events of
neural cell death that may result from cerebral infarction [34]
or traumatic brain injury [35,36]; these sorts of insults

034403-8



SYNAPTIC PROPAGATION IN NEURONAL NETWORKS … PHYSICAL REVIEW E 107, 034403 (2023)

FIG. 10. Smallest gap lengths that induce propagation failure,
σα. Networks with strong excitatory coupling allow for robust wave
propagation. The data above show the critical value of α as a
function of network global excitability. The trend demonstrates that
with greater excitability, the network’s ability to sustain propagating
traveling waves is more resilient to nonconducting gaps (areas of
dead tissue). Intuitively, this indicates that when overall network
excitation is larger, more drastic reduction in the nonconducting gap
is needed to produce propagation failure. Curve fit analysis of αcritical

as a function of gsyn demonstrated the power function was a good
fit for the curve. Here f (x) = axb + c. The coefficients (with 95%
confidence bounds) are a = −2.336 (−2.357, −2.315), b = −0.982
(−0.9904, −0.9736), and c = 1.005 (1.003, 1.007) [sum of squares
error (SSE) equal to 0.00284, R2 = 1, adjusted R2 = 1, root mean
square error (RMSE) equal to 0.002918, and p < 0.1]. Interestingly,
the exponent is so close to −1 that other curves such as f (x) = a

x + c
are also a relative good fit (SSE equal to 0.003 18, R2 = 1, adjusted
R2 = 1, RMSE equal to 0.00317, and p < 0.01).

produce neuronal cell death at the location of the accident,
while adjacent neurons may survive the insult.

Similar to the other section results, the outcomes from the
cell-death perturbation support the idea that constant speed
neural waves are all-or-none events and that a small parameter
change results in a qualitative difference in wave propaga-
tion dynamics (Fig. 9). Computer simulations determine the
smallest αcriticalσ gap that breaks traveling wave propagation
(Fig. 10). Here αcritical represents the ratio of the synaptic
space constant σ in the borderline between traveling wave
propagation and failure. Simulations with varying values of
gsyn demonstrate that αcritical is relatively low at low synaptic
conductances, but αcritical increases rapidly and approaches
asymptotically σ as synaptic coupling grows. This indicates
that as excitation in the network increases propagation failure
is less likely to be triggered, as it requires larger perturbations
to suppress the activity in some propagation regions. Figure 10
shows an accurate fit between αcritical as a function of gsyn and
the power function.

V. CONCLUSION AND FUTURE DIRECTIONS

We have presented an extensive analysis of traveling waves
in neuronal networks with finite support synaptic coupling. In
neuronal networks with exponential or Gaussian connectivity
kernels [23], neurons are connected to neighbors up to infinity,

although the connections decay with distance. In contrast,
these model networks represent a simplification in network
topology by assuming that synapses are strictly space de-
pendent. Connections are only between neighboring neurons
within a synaptic footprint σ and zero elsewhere; this simpli-
fication is based on the assumption that synaptic coupling is
strictly space dependent. However, the finite support kernel
introduces discontinuities in the network. The finite support
neuronal network proposes a more straightforward mathe-
matical function and biological structure compared to other
connectivity functions, such as Gaussian or exponential. De-
spite the inherent simplicity in the finite support function, the
mathematical model is complicated and has no analytical so-
lutions. However, we managed to describe wave propagation
as a set of evolution equations that predict wave dynam-
ics without the need to run the entire computer simulation
[Eqs. (4), (6), (16), and (17)].

In order to investigate the stability of the wave, we pre-
sented a number of perturbations. First was a traveling wave
going from −∞ to 0 at a constant speed c0 = cfast + εcfast.
Simulations and analytical studies showed there is a delay to
spike once the perturbation is removed. We computed the de-
lay, speed, and acceleration after the break in Eqs. (15), (16),
and (17), respectively. We then presented perturbations rel-
evant to a biological context, resembling the effects of
demyelinating disorders and cell death. Demyelinating disor-
ders were presented as continuous perturbations (Fig. 8) in the
topology of the parameter gsyn in a subsection the network.
These results were consistent with the notion that synaptic
coupling facilitates traveling wave propagation: In the cases
in which the introduced perturbation increased coupling, the
wave accelerated; in the cases in which the perturbation de-
creased coupling, the wave decelerated (Fig. 7). If the wave
decelerates slower than cslow, propagation fails to continue
(Figs. 8 and 9). The last perturbation we presented was a
nonconducting gap, which resembles a small section of dead
tissue (Fig. 9). The gap was defined as ασ and represented
the ratio α:σ . For any given gsyn there is a corresponding
critical value εcritical between activity propagation and failure
(Fig. 10). The demyelination and dead tissue perturbations
(Figs. 8 and 9, respectively) show remarkable stability of
the system because despite how much the perturbation de-
celerated the wave, all the waves that continued to propagate
evolved back to the steady state cfast.

Altogether, the present work has demonstrated that waves
respond robustly in neuronal networks with finite support
coupling and that network parameters influence traveling
wave propagating speed. Waves in neuroscience are ubiqui-
tous and unraveling population dynamics can inform us of
underlying mechanisms that give rise to neuronal function
and dysfunction. For example, the inhomogeneity perturba-
tion (Fig. 7) shows how the speed of neuronal activity can
fluctuate if there is a subsection of tightly coupled neurons. On
the other hand, the demyelination perturbation suggests that
because waves are all-or-none phenomena, they represent a
resilient mechanism for neuronal communication. Demyelina-
tion is common in myelination diseases, such as Huntington’s
disease and multiple sclerosis. In this framework, it is intu-
itive to understand why many symptoms are not expressed
until demyelination reaches a critical point, at which neuronal
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function falls apart. Likewise, the nonconducting gap of dead
tissue (Fig. 9) may be an example of postinfarction neuronal
tissue. This hypothesis could explain the impairment of neu-
ronal functions in the context of the local characteristics and
the topology of the network where the cerebral infarction took
place.

The exponential connectivity kernel imposes the longest-
reaching connections e−x [23]. The finite support kernel
imposes the shortest-ranging connections. Future studies
could focus on the Gaussian kernel, which imposes midrange
connections e−x2

. However, the derivation of the evolution
equations becomes more complicated for the Gaussian kernel
inside the integral. For example, the first derivative of the
Gaussian kernel e−x2

results in some integral terms that did
not exist before, such as xe−x2

. Furthermore, for additional

derivatives, while some terms revert to existing factors, others
correspond to higher-order polynomials, such as x2e−x2

for the
second-order derivative. As a result, it is impossible to fully
solve this infinite system of equations, although it could be
possible to attempt to solve a finite system of equations that
approximate the full one.
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