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Bifurcations to transient and oscillatory excitations in inhomogeneous excitable media:
Insights into arrhythmogenesis in long QT syndrome

Jianying Lin,1 Zhilin Qu ,2 and Xiaodong Huang 1,*

1Department of Physics, South China University of Technology, Guangzhou 510641, China
2Department of Medicine, University of California, Los Angeles, Los Angeles, California 90095, USA

(Received 1 September 2022; revised 26 December 2022; accepted 21 February 2023; published 10 March 2023)

Ventricular arrhythmias are the leading cause of sudden cardiac death. Understanding the mechanisms of
arrhythmia initiation is important for developing effective therapeutics for prevention. Arrhythmias can be
induced via premature external stimuli or occur spontaneously via dynamical instabilities. Computer simulations
have shown that a large repolarization gradient due to regional prolongation of the action potential duration
can result in instabilities leading to premature excitations and arrhythmias, but the bifurcation remains to be
elucidated. In this study we carry out numerical simulations and linear stability analyses using a one-dimensional
heterogeneous cable consisting of the FitzHugh-Nagumo model. We show that a Hopf bifurcation leads to
local oscillations, which, once their amplitudes are large enough, lead to spontaneous propagating excitations.
Depending on the degree of heterogeneities, these excitations can range from one to many and to be sustained
oscillations, manifesting as premature ventricular contractions (PVCs) and sustained arrhythmias. The dynamics
depends on the repolarization gradient and the length of the cable. Complex dynamics is also induced by the
repolarization gradient. The mechanistic insights from the simple model may help in the understanding of the
genesis of PVCs and arrhythmias in long QT syndrome.
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I. INTRODUCTION

The heart is an excitable media in which regular conducting
electrical excitations in the ventricles result in contractions to
pump oxygenated blood to the whole body. When the electri-
cal excitations become irregular and localized, such as focal
excitations and spiral waves, ventricular arrhythmias occur,
which is the major cause of sudden cardiac death [1,2]. While
the mechanisms of arrhythmias, in particular the dynamics of
abnormal electrical conduction and spiral waves, have been
widely investigated [3–5], how the arrhythmia events are ini-
tiated in the heart remains incompletely understood.

A well-known phenomenon linking to arrhythmia initiation
is called R-on-T on the electrocardiogram (ECG) [6–9]. As
shown in Fig. 1(a), an early R wave is superimposed on the
T wave of the previous beat, leading to ventricular arrhyth-
mias. Two initiation mechanisms of ventricular arrhythmias
linked to the R-on-T phenomenon are known [10,11]. One
is reentry initiation via trigger and substrate interactions. In
this mechanism, a trigger is an R wave that originates locally
in the ventricles before the sinus beat, called premature ven-
tricular contraction (PVC). A substrate is a tissue condition
in which heterogeneities in repolarization are large. When
a PVC occurs early enough, its conduction may be locally
blocked in the heterogeneous region, leading to reentry or
spiral waves. The other one is a spontaneous behavior in
which a tissue-scale instability results in the formation of
PVCs and reentry. In this mechanism, the PVC is caused by an
enhanced repolarization gradient due to regional prolongation
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of the action potential duration [Fig. 1(b)], which can manifest
as focal excitations or degenerate into reentry.

The R-on-T phenomenon is common in arrhythmogenesis
in patients with long QT syndrome (LQTS) [9,12–14]. Long
QT syndrome is a diseased syndrome in which the QT [see
Fig. 1(a)] is longer than the normal values, which is caused
by prolongation of the action potential duration (APD) in the
heart. Recent computer simulation studies have shown that re-
gional prolongation of APD can cause the second mechanism
of arrhythmia initiation, i.e., spontaneous initiation of PVCs
and reentry due to APD gradients [10,15–20]. However, a rig-
orous bifurcation analysis revealing the bifurcations leading
to spontaneous arrhythmogenesis remains to be elucidated.

In this study we perform bifurcation analysis to investigate
the instabilities promoted by repolarization gradients in a
one-dimensional cable using a simple action potential model,
the FitzHugh-Nagumo (FHN) model [21,22]. We carry out
numerical simulations and linear stability analysis and show
that a Hopf bifurcation leads to nonpropagating localized
oscillations and then propagating excitations. Depending on
the degree of heterogeneities, these excitations can range from
one to many and can be sustained oscillations, manifesting as
PVCs and sustained arrhythmias. The dynamics depends on
the repolarization gradient and the length of the cable. Com-
plex dynamics is also induced by the repolarization gradient.
The mechanistic insights from the simple model may help in
the understanding of the genesis of PVCs and arrhythmias
in LQTS.

II. MODEL AND METHODS

The FHN model is a two-variable model, which is a generic
model for excitable systems. Although it lacks the detailed
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FIG. 1. The R-on-T phenomenon in the initiation of arrhythmias
in LQTS. (a) Representative ECG showing R-on-T leading to ven-
tricular arrhythmias. The sharp QRS wave corresponds to wavefront
conduction in the heart. The domed T wave represents the repolar-
ization phase of the heart. The time interval between the Q wave
and the end of the T wave is called the QT interval, which is a
measure of the repolarization of the heart. The red asterisk denotes
an R wave superimposed on the T wave, called R-on-T , which is a
typical ECG pattern preceding arrhythmias. This R wave is a PVC.
(b) Time and space plot of voltage showing spontaneous PVC caused
by regional prolongation of repolarization in a computer model of
rabbit ventricular tissue [15].

physiological properties of cardiac myocytes, such as the ionic
currents, it still captures some generic properties of excita-
tion, repolarization, and recovery of cardiac myocytes. The
one-dimensional cable model is described by the differential
equations

∂u

∂t
= u(1 − u)(u − a) − v

ε
+ D∇2u,

1

γ

∂v

∂t
= u − bv. (1)

The variable u is an analog of the membrane voltage, v con-
trols repolarization and recovery, D is the diffusion constant, a
is a parameter determining the threshold of excitation, ε deter-
mines the excitability, γ controls the excitability and recovery,
and b controls the decay of v, which then controls the speed
of repolarization. When b is smaller than a critical value,
u can repolarize normally, but when b is large enough, the
system becomes bistable [see Fig. 2(a)]. Therefore, we model
the repolarization heterogeneity by setting b as a function of

FIG. 2. The 1D cable model. (a) Nullclines of the FHN model.
The slope of the straight line representing u = bv determines ex-
citable (black, labeled b = bL) or bistable (magenta, labeled b = bH )
property. (b) Spatial heterogeneity of the cable. Unless specified,
bH > 5.9211 in the right magenta region (with a length of LH )
and bL < 5.9211 in the left black region (with a length of LL). For
numerical simulation, the cable is discretized into N grid points as
indicated at the bottom.

space, i.e.,

b(x) =
{

bL, 0 < x � LL

bH , LL < x � L,

where the subscripts H and L stand for high and low, respec-
tively, LL and LH are the lengths of the bL and bH regions,
respectively, and L = LL + LH is the total length of the cable.
The setting is illustrated in Fig. 2(b). This heterogeneous cable
can mimic cardiac tissue under the LQTS condition. First, a
homogeneous stable resting state exists (despite physiologi-
cal heterogeneity, all ventricular myocytes possess a nearly
identical resting voltage). Second, the heterogeneity mimics
the regional difference of repolarization in realistic ventricles.
Note that in the H region of the 1D cable, the FHN model
is bistable when uncoupled. This bistable behavior is equiva-
lent to repolarization failure seen in cardiac myocytes under
diseased conditions, such as heart failure and LQTS [23–27].
In other words, repolarization failure is a consequence of
bistability. Moreover, it has been shown [28] that this same
bistability is responsible for the very long action potential
widely observed in experiments [23–27], which is facilitated
by the slowly repolarizing currents in cardiac myocytes. How-
ever, there is no such slowly repolarizing component in the
FHN model and thus we cannot simulate the very long action
potential as seen in cardiac myocytes. On the other hand, in
the heterogeneous 1D cable, due to diffusive coupling, the
H region can still repolarize with very long action potential
for a certain range of the bH value (see Fig. 3). As shown
in Appendix D, the dynamics of a 1D heterogeneous cable
with the FHN model can well capture the dynamics of that
with a more detailed cardiac action potential model. Hence
the present model could be a proper model for excitation
dynamics in ventricular tissue under the long QT condition.

An explicit Euler method is used to integrate Eq. (1) with
�t = 0.001 and �x = 0.05 and thus the number of the grid
points is N = L/�x (a grid point can be regarded as a cell).
The no-flux boundary condition is used. A single stimulus
(with duration 0.01 and magnitude 30) is delivered to the
bH end [the N th cell; see Fig. 2(b)] to initially excite the
cable. Throughout the paper we fix ε = 0.01, D = 1.0, and
a = 0.1. Except in Secs. V and VI, NH = 50 and NL = 100
(N = NH + NL = 150) are fixed. Linear stability analysis of
the steady state is carried out. The derivation of the steady-
state solutions of an inhomogeneous cable is not a trivial task.
We design a numerical method to search for all the solutions
of the cable, which is demonstrated in Appendix A.

III. BIFURCATIONS TO TRANSIENT
AND OSCILLATORY EXCITATIONS

This section investigates the bifurcations and differ-
ent excitation behaviors of the 1D heterogeneous cable.
Figure 3(a) shows the excitation behaviors in the bH -bL plane.
Figures 3(b)–3(f) show typical excitation behaviors after a
single stimulation for bL = 1.5 and different bH . When bH

is large [the green region (marked by roman numeral I) in
Fig. 3(a)], repolarization fails in the bH region but repolarizes
normally in the bL region [Fig. 3(b)]. Transient oscillations
occur in the gradient region. When bH is reduced [yellow
region (II) in Fig. 3(a)], the oscillations in the gradient region
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FIG. 3. Oscillatory behaviors induced by a repolarization gradient. (a) The bH -bL phase plane showing excitation behaviors, with γ = 1.
The typical behaviors of different regions (also marked by roman numerals) are shown in (b)–(f). The black dashed curve separating the
green (I) and yellow (II) regions is the Hopf bifurcation line obtained via bifurcation analysis. (b)–(f) Space-time plots of u(x, t ) for different
bH values marked on the vertical line in (a), with bL = 1.5. The upper thicker magenta traces are u(x, t ) in the bH region. The stimulus is
delivered at t = 1 to the bH -end cell. (b) Same as in (a) but with bH = 20 in the stable steady state. (c) Same as in (a) but with bH = 11 for
regional oscillations without excitations. (d) Same as in (a) but with bH = 8 for oscillations leading to propagating excitations. The spontaneous
excitations are marked by the red asterisk. (e) Same as in (a) but with bH = 7.0767 for transient excitations. (f) Same as in (a) but with bH = 6
for normal repolarization in the whole cable.

become stationary; however, these oscillations cannot prop-
agate out of the gradient region to form PVCs [Fig. 3(c)].
When bH is reduced further [red region (III) in Fig. 3(a)], the
oscillations propagate into PVCs [Fig. 3(d)]. In a very narrow
region [gray (IV) in Fig. 3(a)], the bH region can repolarize but
still generates a single PVC [Fig. 3(e)]. When bH is too small
(region V), both the bH and bL regions repolarize normally
[Fig. 3(f)]. The bifurcations leading to these states are detailed
below.

When bH is large enough (greater than 5.9211), there ex-
ist three steady states, as shown in Fig. 4(a), which can be
solved numerically using the method mentioned in Sec. II (or
Appendix A). They are labeled as F (green closed circles),
S (red open circles below F ), and Z (blue closed triangles at
the bottom). Here Z is the trivial homogeneous zero solution
(the resting state). As for F and S, linear stability analysis
reveals that F is a focus, either stable or unstable depending
on the parameters, and S is a saddle focus (see Appendix A for
the calculated eigenvalues). Figure 4(b) shows the real parts
of the largest eigenvalue of the F -associated Jacobian matrix
λF (a complex number) and its complex conjugate vs bH . As
bH is reduced, Re(λF ) crosses zero to become positive [the
critical point is labeled as HB in Fig. 4(b)], indicating that
the F solution undergoes a Hopf bifurcation. This instability
originates from the gradient region bordering the bH and bL

regions [see Fig. 3(c) for the action potential and Figs. 4(c)
and 4(d) for the bifurcation diagrams]. Although oscillations
occur, these oscillations cannot propagate out of the middle
region to form PVCs [see Fig. 4(d); u(1) is quiescent despite

oscillatory u(90)]. The oscillations propagate into PVCs when
bH is smaller than a critical value [labeled Exc in Figs. 4(c)
and 4(d)] at which the amplitude of the limit cycle oscillation
is large enough [see Fig. 3(d)]. As bH is decreased further,
transient excitations occur [see Fig. 3(e)], labeled TrE in
Figs. 4(c) and 4(d). This transient zone [colored gray (region
V) in Fig. 3(a)] is very narrow. When bH becomes too small
(equal to 5.9211), F and S annihilate via a saddle-node bifur-
cation, which is labeled SN in Figs. 4(c) and 4(d). The plots
of steady-state F and S solutions just before annihilation are
shown by the olive (solid) and pink (open) curves (denoted by
F S collide), respectively, in Fig. 4(a). After this bifurcation,
the spatially heterogeneous steady states F and S no longer
exist in the cable. Therefore, for bH < 5.9211 all the cells are
allowed to repolarize and no gradient effect could be seen.

We carry out simulations in a heterogeneous 1D cable
using a more physiologically detailed model, the Luo-Rudy
(LR) model [29], and the results are presented in Fig. 11 in
Appendix D. The excitation behaviors are almost the same as
those obtained using the FHN model.

IV. COMPLEX EXCITATION DYNAMICS

Although γ does not vary the steady solutions, it affects
the stability of the steady-state solutions and causes complex
behaviors. Figure 5(a) shows the dynamics in the bL-γ plane.
The upper light gray region (VIII) is propagation failure, i.e.,
local excitations can never propagate out as an excitable wave
in the cable. The rest of this plane can be divided into three

034402-3



LIN, QU, AND HUANG PHYSICAL REVIEW E 107, 034402 (2023)

FIG. 4. Bifurcations leading to spontaneous excitations, with
bL = 1.5 and γ = 1. (a) Plot of the spatially heterogeneous steady-
state solutions. The example of bH = 20 is shown. There are three
solutions, i.e., F (focus, green closed circles), S (saddle focus, red
open circles), and Z (zero, blue closed triangles). If bH is reduced
to 5.9211, F and S will collide with each other, represented by
the closed olive and open pink circles. (b) Largest (referring to the
real part) eigenvalues of the F -associated Jacobian matrix vs bH .
Here HB denotes the Hopf bifurcation point. (c) Bifurcation diagram
plotting u vs bH for the 90th cell [denoted by u(90)]. The maximum
and minimum u values of the stationary oscillations are recorded (the
first 100 000 steps are discarded). Here Exc, TrE, and SN correspond
to stationary excitation, transient excitation, and saddle-node bifur-
cation, respectively. (d) Same as in (c) but for the first cell [denoted
by u(1)].

ranges based on the specific behaviors, i.e., small, intermedi-
ate, and large bL, which are detailed below.

For very small bL, i.e., bL < 1.1, the F steady-state solu-
tion is permanently stable for any bL and γ . For bL between
1.1 and 1.65, varying γ can result in complex behaviors, such
as quasiperiodicity, chaos, and multiattractors. A bifurcation
diagram is shown in Fig. 5(b). As γ decreases, the system
evolves continuously following the sequence of dynamics:
stable focus → limit cycle → quasiperiodicity → chaos [see
the black closed circles in Fig. 5(b) and the blowup in
Fig. 5(c)]. These behaviors all bifurcate from the steady-state
F solution. An interesting finding is that another attractor
showing oscillatory excitations suddenly emerges at γ =
0.4168, which coexists with the F -associated oscillations. We
use violet open circles in Figs. 5(a)–5(c) to denote this state.
This type of excitation is associated with the S solution due to
its saddle-focus property. Since F - and S-associated attractors
coexist, a proper perturbation could switch the state between
them, as shown in Fig. 5(d). With the reduction of γ the
two attractors would approach each other and finally collide
to give rise to robust excitations (see Appendix B for the
estimation of the distance between them).

For intermediate bL, the bifurcation to excitation is iden-
tical to that of varying bH as introduced in Fig. 3, i.e., Hopf
bifurcation gives rise to a limit cycle, and once its amplitude

is large enough spontaneous PVCs could be elicited. For
large bL, multistability exists due to newly created steady-state
solutions. Besides F , S, and Z , new steady-state solutions
are created via a saddle-node bifurcation. All the spatially
heterogeneous steady-state solutions are shown in the inset of
Fig. 5(e), where the newly created solutions are named F ′ and
S′. We choose the steady state of the first cell [u∗(1)] vs bL

to show the change of the solution structure in Fig. 5(e), re-
vealing a saddle-node bifurcation. For large bL, the F solution
is always unstable [denoted by the bottom smaller green open
dots in Fig. 5(e)], whereas the stability of F ′ depends on the
parameters. The largest (referring to the real part) eigenvalues
of F ′, i.e., λ(F ′) and c.c., vs γ are shown in Fig. 5(f), which
reveals that F ′ loses its stability via a Hopf bifurcation. This
Hopf bifurcation is subcritical, as shown in Fig. 5(g). Due to
the subcritical property, there is a bistable region in which
the stable steady-state F ′ solution and oscillations coexist.
A space-time plot of u(x, t ) is shown in Fig. 5(h). If bL is
further increased to 5.9211, the excitable part also becomes
bistable. At this point, solutions F and S′ collide with each
other and annihilate via a saddle-node bifurcation [labeled
SN2 in Fig. 5(e)]. For bL > 5.9211, only F ′, S, and Z exist.
In this case, F ′ is just the steady state that connects the upper
fixed point of both bH and bL parts of the tissue.

In the more physiologically detailed model (the LR model
[29]), by altering the maximum conductance and the time
constant of the time-dependent potassium current, we can
reproduce the same complex behaviors (compare Figs. 3 and 5
with Fig. 11 in Appendix D). The similarity indicates that the
bifurcation mechanisms leading to PVC using the FHN model
can be extended to ventricular tissue.

V. EFFECTS OF CABLE LENGTH

The dynamical behaviors also depend on the cable length
as well as the lengths of the two heterogeneous regions.
Figure 6 shows the dependence of the dynamics on the cable
length. Here NH = 50 and NL = 100 are the control lengths
of the two regions. As shown in Fig. 6(a), as long as the cable
is long enough, the dynamical behaviors are size independent.
However, when either NH or NL is short, the dynamical be-
haviors become length dependent [e.g., the bifurcation point
for NL = 15 is different from those for longer cables; see
Fig. 6(a)]. Figures 6(b) and 6(c) show the effects of NH and
NL. Figure 6(b) reveals that NH has little effect on the dynam-
ics until NH is too small, at which point F and S annihilate
via a saddle-node bifurcation (indicated by the white dotted
line). Figure 6(c) shows that the bifurcations depend on NL

to a greater degree. For NL � 12, the F ′ solution no longer
exists and only the F solution is present. Under this condition,
as bL is increased from small to large, the steady-state F
solution would undergo a Hopf bifurcation twice, between
which oscillatory excitations are present. For 8 < NL � 12 the
Hopf bifurcation of F (indicated by the upper black dashed
line bordering regions I and III) is subcritical, whereas for
NL � 8 it becomes supercritical. We show the two bifurca-
tions in Appendix C. Figure 6(d) shows the dependence on the
total length. Here NL = 2NH is fixed, which presents a mixed
effect of NH and NL. We can see that oscillations as well as
PVCs could never occur in a short cable (N � 18). Therefore,
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FIG. 5. Complex bifurcations and dynamics. Here bH = 20 unless specified. (a) The bL-γ phase plane. Based on the specific behaviors,
the plane is divided into three regions, small, intermediate, and large bL (separated by the vertical dash-dotted lines). Green (region I), yellow
(II), and red (III) correspond to the same behaviors as in Fig. 3(a). Light gray (VIII), violet (VI), and olive (VII) represent propagation failure,
S-associated oscillations, and stable steady-state F ′, respectively. The left black dashed curve is the Hopf bifurcation line of F , while the right
light gray one is that of F ′ obtained via bifurcation analyses. (b) Bifurcation diagram showing u(90) vs γ for small bL (bL < 1.65), with
bL = 1.5. The black closed circles are oscillations arising from the instability of the steady-state F solution, while the violet open circles are
oscillations arising from the instability of the steady-state S solution. (c) Blowup of (b) for γ ∈ (0.4, 0.42) showing the details of the F - and
S-associated oscillations. At γ = 0.4073, the largest Lyapunov exponent of the F -chaos state is 6.13 (calculated by the method from [30]).
(d) Space-time plot of u(x, t ) switching from the S-associated excitation state to the F -associated chaotic excitation state after a perturbation,
with γ = 0.4073. The propagated excitations (or PVCs) are indicated by the red asterisk. (e) Solution structure vs bL , with γ = 1. The
steady-state u value of the first cell is shown. When bL = 4.94, new steady-state solutions F ′ and S′ are created via a saddle-node bifurcation,
as indicated by SN1. An increase of bL stabilizes F ′ via an inverse Hopf bifurcation, as indicated by HB. The inset shows the steady-state
solutions for bL = 5.2. At bL = 5.9211, F and S′ annihilate via a saddle-node bifurcation, labeled SN2. (f) Largest (referring to the real part)
eigenvalues of the F ′-associated Jacobian matrix vs γ . (g) Bifurcation diagram showing u(90) vs γ for bL = 5.2. The red open circles close to
the olive solid F ′ branch are due to the small oscillations between successive PVCs, as shown in (h). (h) Space-time plot showing switching
from the stable F ′ state to oscillatory excitation states after a perturbation, with bL = 5.2 and γ = 1.3.
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FIG. 6. Effects of the cable length, with bH = 20 unless specified
otherwise. (a) Dependence of the bifurcations on the cable length.
Shown are the Hopf bifurcation points of F (left) and F ′ (right)
on the bL-γ plane for different cable lengths labeled as NL + NH .
(b) Effect of NH , with NL = 100 fixed. The white dotted line indicates
the annihilation of F and S. (c) Effect of NL , with NH = 50 fixed.
Green (region I) is for stable F , while olive (region VII) is for stable
F ′. (d) Dependence on total length N = NH + NL , with NL = 2NH

fixed. If NL � 18 the system stays stably on either F (green, I) or the
homogeneous resting state (blue, V) and thus neither oscillations nor
PVCs can occur.

the spontaneous PVCs or oscillations need a minimal length,
indicating that these dynamics are a result of instabilities in a
spatial system.

VI. ROLE OF the SPATIAL GRADIENT
OF REPOLARIZATION

In a real biological system, the parameter change may not
be so abrupt as we used above. Therefore, in this section we
investigate the effect of the spatial gradient of the parameter.
We set a gradient-adjustable region within the cable [Fig. 7(a)]
in which b increases linearly from bL to bH within Ng points
and thus the slope (bH − bL )/Ng denotes the spatial gradient
of b. We explore the behaviors in the bL-Ng plane, as shown
in Fig. 7(b). Increasing either bL or Ng promotes the Hopf
bifurcation of the steady-state F solution, but Ng has little
effect on the stability of the steady-state F ′ solution. This
indicates that reducing the gradient of b promotes oscillations,
which agrees with the observation that reducing bH promotes
oscillations [Fig. 3(a)].

VII. SUMMARY

In the present paper we investigate the bifurcations leading
to spontaneous excitations in an inhomogeneous FHN cable.
The mechanistic insights from the bifurcation analysis may
help in the understanding of the mechanisms for the genesis
of PVCs and arrhythmias in LQTS. Our major findings are as
follows.

FIG. 7. Effects of the spatial gradient of parameter b, with bH =
20 and γ = 1. (a) Configuration of the setting. The total length and
the bH region length are fixed at N = 150 and NH = 50, respectively.
The parameter b increases linearly from bL to bH within Ng cells.
(b) Dynamical behaviors in the bL-Ng plane. The lower black dashed
curve indicates the Hopf bifurcation of the F solution obtained via
stability analyses and the upper light gray dashed line is that of the
F ′ solution.

(i) The mechanism of oscillatory excitation is via a Hopf
bifurcation in a spatial system. The oscillations occur when
bH (the source) and bL (the sink) are properly matched. The
instability occurs in the gradient region via a supercritical
Hopf bifurcation, first resulting in small-amplitude oscilla-
tions in the gradient region but no propagating PVCs. As the
oscillation amplitude grows to a certain value, the oscillations
propagate out of the gradient region to form PVCs.

(ii) More complex behaviors may occur depending on bL

and γ . Chaotic dynamics and multiple attractors occur for
small bL and γ , where excitations arise from instability of
the steady-state S solution. On the other hand, large bL gives
rise to additional steady-state solutions (i.e., F ′ and S′) via
saddle-node bifurcation. The bifurcation of F ′ is a subcritical
Hopf bifurcation.

(iii) The dynamics is also affected by the tissue size. The
NH (length of the source) maintains the repolarization gradient
but has little effect on the dynamics, while NL (length of the
sink) influences the stability of the system. A minimum size
is needed for the instability and spontaneous PVCs.

(iv) The spatial gradient of repolarization affects the sta-
bility of the F solution. Reducing the gradient promotes
instability and spontaneous PVCs.

Note that in this simple FHN model, we can only have
repolarization failure which mimics ultralong APD and re-
polarization failure in the cardiac system. As shown in our
simulations, although the FHN model fails to repolarize when
uncoupled, it can repolarize normally when coupled in tissue
and can result in one or more PVCs or sustained oscillations.
Furthermore as shown in many simulation and experimental
studies [31–37], early afterdepolarizations (EADs) are a hall-
mark of LQTS, which cannot be modeled by the simple FHN
model. Simulation studies have shown two mechanisms of
PVC genesis [19,38]: An EAD-mediated one and an APD-
gradient-mediated one. The EAD-mediated one occurs when
the APD gradient is small, but the APD-gradient-mediated
one is promoted by a large APD gradient. However, in the
latter, whether EADs are present or not, the APD gradient
is responsible primarily for the instabilities for PVC genesis.
Therefore, although the FHN model cannot exhibit EADs,
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instabilities caused by the repolarization gradient can still pro-
vide valuable mechanistic insights into the genesis of PVCs
for LQTS, which need to be further investigated in more
physiologically detailed models.

In conclusion, our results reveal that the spontaneous ex-
citations that give rise to PVCs are a result of instabilities
of a heterogeneous spatial system. The mechanistic insights
from bifurcation analysis of the simple FHN model will pro-
vide a nonlinear dynamics foundation for the analysis of
the genesis of PVCs in more realistic cardiac tissue models
of LQTS.
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APPENDIX A: DERIVATION AND PROPERTIES OF THE
INHOMOGENEOUS STEADY STATES

We employ linear stability analysis to investigate the dy-
namical behaviors of the cable model. For stability analysis,
we need to numerically obtain the steady-state solutions. The
discretized version of Eq. (1) is

du1

dt
= f (u1, v1) + D

u2 − u1

�x2
,

dv1

dt
= g(u1, v1),

du2

dt
= f (u2, v2) + D

u3 + u1 − 2u2

�x2
,

dv2

dt
= g(u2, v2), (A1)

...

duN

dt
= f (uN , vN ) + D

uN−1 − uN

�x2
,

dvN

dt
= g(uN , vN ),

where f (u, v) = [u(1 − u)(u − a) − v]/ε, g(u, v) = γ [u −
b(x)v], and the no-flux boundary condition is used. Setting
dui/dt = dvi/dt = 0 (i = 1, 2, . . . , N), we obtain a set of
algebra equations. We use the method shown in Fig. 8 to
numerically solve all the steady-state solutions.

After obtaining the steady-state solutions, we substitute
them into the associated Jacobian matrix and calculate the
eigenvalues numerically. Here we show the eigenvalues of F ,
F ′, S, and S′ for bH = 20 and γ = 1 (bL = 1.5 for F and S,
and 5.4 for F ′ and S′) to reveal their nature (only part of the

FIG. 8. Workflow for numerically solving the inhomogeneous
steady-state solutions. Starting with a proper u1 and solving the
equations in sequence, one can finally get uN . Substituting this uN

into the last equation would yield u′
N . If uN = u′

N , the solution is
self-consistent and the acquired u1, v1, u2, v2, . . . , uN , vN is the de-
sired steady-state solution. If not, change another u1 and repeat the
process. By finely scanning u1 (set the increment δ to be very small)
we can numerically solve all the solutions.

FIG. 9. Estimation of the distance between the F - and S-
associated attractor for bL = 1.5 and bH = 20. The minimum δu(t )
enabling the switch from the F -associated attractor to the S-
associated attractor is shown. The black closed circles are for γ =
0.4073 and the red open circles are for γ = 0.416.
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FIG. 10. Bifurcation types altered by NL: (a) NL = 10 for sub-
critical Hopf bifurcation and (b) NL = 6 for supercritical Hopf
bifurcation.

spectrum is shown and the largest ones are in bold font):

F :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · ·
−29.04791
− 0.45563 − 8.71363i
−0.45563 + 8.71363i
−5.80655 − 9.02384i
−5.80655 + 9.02384i
−6.25686 − 8.78508i
−6.25686 + 8.78508i
−7.98882

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · ·
15.84393

−38.79375
−33.07309
−23.98613 − 6.72988i
−23.98613 + 6.72988i
−25.80644 − 1.59644i
−25.80644 + 1.59644i
−22.11294

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

F ′ :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · ·
−31.19967
−2.46743 − 9.56032i
−2.46743 + 9.56032i
−2.92411 − 9.68853i
−2.92411 + 9.68853i
−3.80936 − 9.87226i
−3.80936 + 9.87226i
−22.13624

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, S′ :

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · ·
21.83322

−43.36554
−34.66603
−2.69446 − 9.62698i
−2.69446 + 9.62698i
−3.57067 − 9.83087i
−3.57067 + 9.83087i
−22.29721

· · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

As the parameters are changed, F and F ′ undergo Hopf bifur-
cation [as shown in Figs. 4(b) and 5(f)], while S and S′ retain
their saddle-focus properties.

APPENDIX B: ESTIMATION OF DISTANCE BETWEEN F-
AND S-ASSOCIATED ATTRACTORS

In Sec. IV we showed that there are coexisting F - and
S-associated attractors for small bL. With the reduction of γ

they approach each other and finally merge to form robust
PVCs. The approaching of the attractors could be indicated by
the distance between them, which is estimated in the following
way. In the multiattractor parameter range, if we perturb all
u simultaneously at a certain time, i.e., u(x, t ) = u(x, t ) +
δu(t ), the system would switch between the attractors. The
minimum δu(t ) enabling the switch could roughly estimate
the distance between the attractors. Figure 9 shows that the
minimum δu(t ) on γ = 0.4073 is very close to 0 at certain
time moments, much less than that of a little bit larger γ . This

FIG. 11. Excitation dynamics in a heterogeneous 1D cable us-
ing the LR model, with Gsi = 0.2 mS/cm2. The stimulus (pulse
duration of 2 ms and magnitude of 50 µA/cm2) is delivered to
the upper GK,H -end cell at t = 10 s. (a) Dynamical behaviors
on the 1/GK,L-1/GK,H plane, with α(τX ) = 10. The colors and
numbers are the same as in Fig. 3(a). The space-time plots of
voltage for the parameter values marked on the gray dashed ver-
tical line are shown in (c)–(f). (b) Dynamical behaviors on the
1/GK,L-α(τX ) plane, with GK,H = 0.01 mS/cm2. The colors and
numbers are the same as in Fig. 5(a). The space-time plots for the
parameters marked by the square and circle are shown in (g) and
(h), respectively. (c) Plot of (1/GK,L, 1/GK,H ) = (0.2, 50). (d) Plot
of (1/GK,L, 1/GK,H ) = (0.2, 15). (e) Plot of (1/GK,L, 1/GK,H ) =
(0.2, 9). (f) Plot of (1/GK,L, 1/GK,H ) = (0.2, 6). (g) Space-time
plot of the voltage of multiple solutions, similar to Fig. 5(d),
with GK,H = 0.01 mS/cm2, GK,L = 2.5 mS/cm2, and α(τX ) = 1.7.
(h) Bistable states of F and oscillatory excitations, similar to
Fig. 5(h), with GK,H = 0.01 mS/cm2, GK,L = 0.37 mS/cm2, and
α(τX ) = 1.1.
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means that as γ is reduced, the distance between the attractors
is reduced.

APPENDIX C: BIFURCATION TYPES ALTERED BY NL

In Sec. V we found that the length of the bL region (NL)
can alter the bifurcation type when it is small. Here we show
more details about this by showing the bifurcation diagram
plotting u vs bL, as shown in Fig. 10. For NL = 10 [Fig. 10(a)],
there exists a range where stable F and oscillatory excitation
can both be stably present, which is a typical characteristic
of subcritical Hopf bifurcation. For NL = 6 [Fig. 10(b)], the
situation is different: A supercritical Hopf bifurcation occurs.

APPENDIX D: SIMILAR RESULTS USING THE LR MODEL

In order to extend the FHN results to a more realistic
cardiac model, we employ a more detailed physiology model,
i.e., the LR model [29], to study the PVC behaviors. This
model describes the action potential of guinea pig ventricular
myocytes and has been widely used to investigate fundamen-
tal mechanisms of arrhythmias. The setting of the 1D cable is
similar to the one with the FHN model and the heterogeneity
is modeled by changing GK (the maximum potassium current

conductance) as follows [15,38]:

GK (x) =
{

GK,L, 0 < x � LL (excitable)
GK,H , LL < x � L (bistable).

We also alter the maximum conductance (Gsi) of the slow
inward current and the time constant of the X gate [using
α(τX ) as the multiplied factor]. The other parameters are set
at their default values in the original model (see [29]).

We investigated the behaviors in the 1/GK,L-1/GK,H and
1/GK,L-α(τX ) planes [see Figs. 11(a) and 11(b)]. The pictures
are similar to Figs. 3(a) and 5(a). This further indicates that
the parameter b corresponds to the conductance of potassium
current and γ plays a similar role of repolarizing kinetics.
However, note that the multiattractor ranges are much nar-
rower in the LR model. Figures 11(c)–11(f) are space-time
plots of voltage from different regions in Fig. 11(a), showing
almost the same behaviors as in Fig. 3. Figures 11(g) and
11(h) show complex excitation behaviors of the LR model,
where the multiple solutions and F ′-associated PVCs are
present, similar to the ones shown in Fig. 5. These complex
behaviors occur at large 1/GK,H , meaning that the potassium
current is small.
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