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Robust formation of metachronal waves in directional chains of phase oscillators
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Biological systems can rely on collective formation of a metachronal wave in an ensemble of oscillators
for locomotion and for fluid transport. We consider one-dimensional chains of phase oscillators with nearest-
neighbor interactions, connected in a loop and with rotational symmetry, so each oscillator resembles every
other oscillator in the chain. Numerical integrations of the discrete phase oscillator systems and a continuum
approximation show that directional models (those that do not obey reversal symmetry), can exhibit instability
to short wavelength perturbations but only in regions where the slope in phase has a particular sign. This causes
short wavelength perturbations to develop that can vary the winding number that describes the sum of phase
differences across the loop and the resulting metachronal wave speed. Numerical integrations of stochastic
directional phase oscillator models show that even a weak level of noise can seed instabilities that resolve into
metachronal wave states.

DOI: 10.1103/PhysRevE.107.034401

I. INTRODUCTION

Models of interacting phase oscillators, such as the
Kuramoto model, have been used to study the dynamics of
synchronization in a wide variety of physical and biological
systems [1–5]. The head or tail of an individual flagellum,
cilium, or nematode moves back and forth with respect to a
mean position. This periodic motion can be described with a
phase of oscillation, with the collective behavior of the system
governed by interactions between neighboring individual bod-
ies. When the interactions are strong, all oscillators can lock in
phase and beat together in a globally synchronized pattern. A
metachronal rhythm or metachronal wave refers to a collective
state where individuals are undergoing periodic motions but
synchronization is only local. The motions of each individual
is the same as that of their neighbors but there is a delay
between these motions, giving the appearance of a traveling
wave.

Perhaps the most common example of emergent travel-
ing waves is in ciliary carpets. Hydrodynamic interactions
between actively beating cilia, spontaneously result in the for-
mation of large-scale metachronal waves [6]. Such organized
waves are critical for the motility of ciliated protists (such as
the Paramecium [7]), mucus clearance in mammalian airways
[8,9], and for fluid transport in the brain [10]. Metachronal
waves can also form in concentrations of swimming nema-
todes known as vinegar eels [11] where they can be mediated
by steric interactions [12].

What fraction of possible initial conditions would converge
onto a wavelike solution? The set of initial conditions that
converge onto a particular solution are called its basin of
attraction. In many models of interacting phase oscillators, the
basins of attraction for traveling wave solutions are smaller
than that of the synchronous state [13–15]. In other words,
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using an ensemble of randomly generated initial phases for
each phase oscillator, a system would be more likely to enter
a synchronous rather than a traveling wave state.

Because many well studied models are more likely to enter
a synchronous than a traveling wave state, or produce waves
traveling in either direction, they do not capture the behav-
ior illustrated by vinegar eels [11,12], or other systems that
exhibit metachronal waves, such as chains of cilia [16], cilia
carpets [17] or flagella on the surface of Volvox carteri alga
colonies [18]. Models for these types of biological systems
should exhibit a larger basin of attraction for traveling wave
states than for the synchronous state. Recently Chakrabarti
et al. [6] showed that in the continuum limit, interactions
between cilia in a one dimensional loop lead to conservation
of a type of topological charge or a winding number. The
conserved quantity implies that initial conditions could set
the wave speed of attracting solutions. To mitigate the role of
the constraint imposed by the conserved quantity, Chakrabarti
et al. [6] proposed that irregularities or gaps in the spacing
between cilia could help account for systems of cilia that
robustly exhibit metachronal waves.

A model with asymptotic behavior dependent upon initial
conditions is inconvenient when trying to model biological
systems. However, fluctuations are likely to be present in
ciliated systems (e.g., Ref. [19]). The presence of noise could
affect or even determine the statistics of long-lived states,
obviating the need to understand the sensitivity to initial con-
ditions. When coupled to a phase oscillator model for ciliated
carpets, white noise can cause stochastic transitions between
synchronized states and disordered states [17].

Interactions between neighboring oscillating organisms or
cilia may not be symmetric. In other words the phase of an
oscillator could affect the nearest oscillator on one side more
strongly than it affects the nearest oscillator on its opposite
side. Steric interactions between undulating nematodes can
be asymmetric [12]. The term planar cell polarity is used to
describe variations in the positioning of cilia that are aligned
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with the direction of driven fluid flow [20]. Asymmetry in
the interactions between neighboring organisms or cilia could
facilitate metachronal wave formation [17].

The focus of this manuscript is to explore properties of in-
teracting phase oscillator systems that allow them to robustly
enter wavelike states. Applications would include improved
modeling of biological systems that exhibit metachronal
waves. Building upon the work by Chakrabarti et al. [6], we
investigate if and how model systems can exhibit changes
in the winding number. In Sec. I A we describe states for
systems of interacting phase oscillators. In Secs. I B and I C
we introduce chains of interacting oscillators and describe
what we mean by a directional model. In Sec. I D we de-
fine how we calculate the phase shift between neighboring
oscillators (following Ref. [15]) and the winding number.
In Sec. II we find a partial differential equation that rep-
resents the continuum limit for a loop of oscillators with
nearest-neighbor interactions. The properties of the associated
continuum equations are relevant for interpretation of our
numerical integrations. In Sec. III we numerically explore
bidirectional, unidirectional and adjustable directional models
to better understand how these models exhibit changes in
winding number. In this section we use initial conditions that
are either sinusoidal or drawn from a uniform distribution.
In Sec. IV and following Solovev and Friedrich [17] who
found that noise could affect the coherence of wavelike states
in ciliary carpets, we explore adjustable directional models
that are perturbed by white noise. We numerically explore
how initial winding number and the number oscillators affect
the coherence of wavelike states. A summary and discussion
follows in Sec. V.

A. Types of states for ensembles of phase oscillators

We denote each phase oscillator with a nonnegative integer
i. The ith oscillator can be described with a phase θi ∈ [0, 2π )
that is a function of time t and a frequency of oscillation or a
phase velocity dθi

dt = θ̇i = ωi.
Collective phenomena of an ensemble of interacting phase

oscillators has been described with different nomenclature.
Following Refs. [16,21], a synchronized state of an ensemble
of N oscillators is one where all oscillators have identical
phases:

Synchronized

θi(t ) = θ j (t ) for all i, j ∈ (0, 1, ...N − 1). (1)

A phase-locked or frequency-synchronized state [22–24] is
one where all oscillators have identical phase velocities:

Phase-locked

θ̇i(t ) = θ̇ j (t ) for all i, j ∈ (0, 1, ...N − 1). (2)

Pairs of oscillators differ by a constant phase difference.
In a periodic entrained state, if the oscillators have iden-

tical mean or average phase velocities, then we call the state
entrained:

Entrained

ω̃i = ω̃ j for all i, j ∈ (0, 1, ...N − 1). (3)

For a periodic state with period T , the phases satisfy θi(t +
T ) = θi for all i. The average phase velocity ω̃i can be com-
puted with an integral over the period T , % ω̃i = 1

T

∫ T
0 θ̇ (t )dt .

For a chain of oscillators, the index i specifies the order in
the chain. One type of traveling wave is a nonsynchronous and
phase-locked state characterized by a constant phase delay or
offset between consecutive oscillators in a chain or loop of
oscillators. In other words,

Constant phase delay

θi+1 = θi + φ, (4)

for consecutive oscillators, where φ is called the phase delay,
phase shift or phase difference, θ̇i �= 0 for all i and typically
|φ| � π .

If individual oscillators undergo similar periodic motions,
then another type of traveling wave is a nonsynchronous and
entrained state characterized by a time delay between the
motions of consecutive oscillators. In other words,

Constant time delay

θi(t + τ ) = θi+1(t ), (5)

with time delay τ . In this case the phase velocities need not be
constant, and typically |τ | is much shorter than the oscillation
period of each oscillator. Both types of traveling waves (con-
stant time or phase delay) involve periodic oscillator motions
and are known in the literature as metachronal waves (e.g.,
Refs. [6,12,18,25]).

B. Local Kuramoto models

The Kuramoto model [2,3,21] consists of N phase oscil-
lators, that mutually interact via a sinusoidal interaction term

dθi

dt
= ωi,0 +

N∑
j=1

Ki j sin(θ j − θi ), (6)

where Ki j are nonnegative coefficients giving the strength
of the interaction between a pair of oscillators. Here i ∈
0, 1, 2, ...., N − 1 and each angle θi ∈ [0, 2π ]. In the absence
of interaction, the ith oscillator would have a constant phase
velocity ωi,0 which is called its intrinsic frequency. The intrin-
sic frequencies for each oscillator need not be identical.

With only nearest-neighbor interactions, a well studied
model, sometimes called a local Kuramoto model, is de-
scribed by

dθi

dt
= ωi,0 + K[sin(θi+1 − θi ) + sin(θi−1 − θi )] (7)

[14,15,22–24,26]. Each oscillator only interacts with its near-
est neighbors so the model approximates the dynamics of
phase oscillator systems with short-range interactions. The si-
nusoidal interaction function is a simple smooth and periodic
function that reduces the interaction strength when neighbor-
ing oscillators have the same phase. At low values of positive
interaction parameter K , the oscillators are not affected by
their neighbors. At higher K , the oscillators cluster in phase
velocity, and the number of clusters decreases until they fuse
into a single cluster that spans the system. At and above a
critical value of K = Ks the entire system must enter a global
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phase-locked state [27]. Above the critical value K > Ks,
there can be multiple stable phase-locked attractors, each with
its own value of global rotation rate � = 1

N

∑
i ωi [14,28].

Instead of considering chains of oscillators that have differ-
ent intrinsic frequencies, (ωi,0 �= ω j,0 for i �= j) a number of
studies have focused on chains that have rotational symmetry.
In these systems, each oscillator has the same equation of
motion as the previous oscillator in the chain, but with in-
dex shifted by 1. For example, Tilles et al. [14], Dénes
et al. [15], and Niedermayer et al. [16] studied loops with
nearest-neighbor interactions. We refer to a chain of N phase
oscillators that has a periodic boundary condition, θ0 = θN ,
θN+1 = θ1, as a loop.

For loops with rotationally symmetric interactions and
identical intrinsic frequencies [15] the linearized system (lin-
earized about a stable synchronous or phase-locked state) has
Jacobian that is a circulant matrix. (This is a matrix where
each row is a cyclic permutation of the previous row). This
gives a closed form for the eigenvalues, which can be used to
study the stability of synchronous or phase-locked states (e.g.,
Ref. [16]). Ottino-Löffler and Strogatz [29] considered chains
and loops of nearest-neighbor coupled oscillators that differ
in intrinsic or natural oscillator frequency. They found that for
both topologies, stable phase-locked states exist if and only if
the spread or “width” of the natural frequencies is smaller than
a critical value called the locking threshold. By studying a
system with the coupling strength of a given link varying from
zero (a chain with free ends) to one with a periodic boundary
(a ring), Tilles et al. [14] investigated the birth of phase-locked
solutions.

C. Loops of identical oscillators—Rotational symmetry

We consider the class of loop systems that has only nearest-
neighbor interactions,

dθi

dt
= ω0 + H+(θi, θi+1) + H−(θi, θi−1), (8)

which is rotationally symmetric because each oscillator re-
sembles every other oscillator in the loop. Here intrinsic
oscillator frequencies are the same for each oscillator and
equal to ω0. The functions H+ and H− are periodic in
both arguments so H+(ψ1 + 2π,ψ2) = H+(ψ1, ψ2 + 2π ) =
H+(ψ1, ψ2) and similarly for H−(). Because we do not specify
the functions H+, H−, the model is more general than the local
Kuramoto model [Eq. (7)] with sinusoidal interactions, and
where all oscillators have the same intrinsic frequency (ωi,0 =
ω0 for all i). Examples of systems with models that can be
written in the form of Eq. (8) include chains of cilia with
hydrodynamic interactions between neighboring cilia [16] and
concentrations of vinegar eels with steric interactions between
neighboring organisms [12].

The dynamical system of Eq. (8) need not be symmetric to
inversion ( j → N − 1 − j for j = 0, ..., N − 1), also known
as mirror symmetry [17]. Equivalently, we need not require
that the function H+() be the same as H−(). In other words,
if H+ differs from H−, then the loop has a directionality. If
the system is symmetric to inversion, then we refer to it as
bidirectional otherwise we refer to it as directional. If one of
the functions H− or H+ is zero, then we refer to the model

as unidirectional. For examples of directional models, see
the coupling called “telescopic coupling” by Ottino-Löffler
and Strogatz [29], the unidirectional model by Quillen et al.
[12] and interactions with “odd coupling” by Solovev and
Friedrich [17]. A directional model, with H+ �= H−, can arise
if the phase of an oscillator affects the nearest oscillator on
one side more strongly than it affects the nearest oscillator on
its opposite side.

For a directional model in the form of Eq. (8) it is conve-
nient to define two functions

Hs(ψ1, ψ2) ≡ H+(ψ1, ψ2) + H−(ψ1, ψ2),

Ha(ψ1, ψ2) ≡ H+(ψ1, ψ2) − H−(ψ1, ψ2). (9)

A bidirectional model (with mirror symmetry) has
Ha(ψ1, ψ2) = 0 and a directional model has Ha(ψ1, ψ2) �= 0.

D. Phase differences and the winding number

It is convenient to describe the state of the system with
phase shifts or differences between neighboring oscillator
phases. We follow Dénes et al. [15] and define the phase
difference between two consecutive oscillators with phases θi

and θi−1,

φi ≡ θi − θi−1 − 2π floor

[
θi − θi−1 + π

2π

]
, (10)

where the function floor (x) gives the largest integer that is
less than x. The phase difference φi ∈ [−π, π ]. See Fig. 1 by
Dénes et al. [15] for a figure illustrating the phase shift φ when
the difference between the two angles is large, near π or −π .

To characterize the slope of a state we define a winding
number

w ≡ 1

2π

N−1∑
i=0

φi. (11)

It is convenient to compute a quantity that is proportional to
the cumulative sum of the phase differences

w j = 1

2π

j∑
i=0

φi, (12)

where the winding number w = wN−1. The periodic boundary
condition and Eq. (10) implies that the sum of the phase
differences must be a multiple of 2π . This implies that the
winding number w must be an integer, with negative integers
or zero allowed [15]. Because the phase shifts are between −π

and π , the winding number −N/2 � w � N/2 with w ∈ Z.
For phase-locked or entrained states, phase shifts remain

near a particular mean value and the standard deviation of
the phase shift remains low. It is convenient to compute the
standard deviation of the phase shift

σφ ≡
√

〈(φ − φ̄)2〉. (13)

Here the mean phase shift

φ̄ = 〈φ〉 = 1

N

∑
i

φi = 2πw

N
(14)

is proportional to the winding number w.
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If the system is in a phase-locked or entrained state, then
how is winding number related to the wave speed? The
metachronal wave speed vMW ∼ ω̃ dx/φ̄, where ω̃ ∼ ω0 is
the average angular velocity and dx is the separation between
oscillators. This gives vMW ∼ Nω̃ dx

2πw
, thus winding number w

and mean phase shift φ̄ are related to wave travel speed vMW.
For positive winding number, waves appear to travel in the
clockwise direction on the loop.

II. ASSOCIATED CONTINUUM EQUATIONS

If N is large and there are no large jumps in phase between
neighboring oscillators, then the dynamical system of Eq. (8)
can be approximated with a partial differential equation (e.g.,
Refs. [4,6]).

We approximate our system of oscillators with a contin-
uous function θ (x, t ) and with coordinate x ∈ [0, 2π ) in an
interval. The boundary condition is periodic, so θ (0, t ) =
θ (2π, t ). We associate a position in the interval x ∈ [0, 2π )
for each oscillator in the loop with x j = 2π j/N giving a sep-
aration dx = 2π/N between each oscillator. The continuum
variable θ (x, t ) is related to oscillator phases with θ j (t ) ≈
θ (x j, t ), where x j are the coordinate positions of each oscil-
lator.

To third order in dx, where dx is the separation between
neighboring oscillators

θ j+1 ≈ θ j + dx
∂θ

∂x

∣∣∣∣
x j

+ dx2

2!

∂2θ

∂x2

∣∣∣∣
x j

+ dx3

3!

∂3θ

∂x3

∣∣∣∣
x j

,

θ j−1 ≈ θ j − dx
∂θ

∂x

∣∣∣∣
x j

+ dx2

2!

∂2θ

∂x2

∣∣∣∣
x j

− dx3

3!

∂3θ

∂x3

∣∣∣∣
x j

. (15)

We expand the two interaction functions of Eq. (8), keeping
only terms to third order in the phase difference

H+(θ j, θ j+1) = H+(ψ1, ψ2)|ψ1,ψ2=θ j

+
3∑

i=1

∂ (i)H+(ψ1, ψ2)

∂ψ i
2

∣∣∣∣∣
ψ1,ψ2=θ j

1

i!
(θ j+1 − θ j )

i.

(16)

H+(θ j, θ j+1)

= H+(ψ1, ψ2)|ψ1,ψ2=θ j

+ ∂H+(ψ1, ψ2)

∂ψ2

∣∣∣∣
ψ1,ψ2=θ j

(
dx

∂θ

∂x
+ dx2

2

∂2θ

∂x2
+ dx3

3!

∂3θ

∂x3

)

+ ∂2H+(ψ1, ψ2)

∂ψ2
2

∣∣∣∣
ψ1,ψ2=θ j

1

2

[(
dx

∂θ

∂x

)2

+ dx3 ∂θ

∂x

∂2θ

∂x2

]

+ ∂3H+(ψ1, ψ2)

∂ψ3
2

∣∣∣∣
ψ1,ψ2=θ j

1

3!

(
dx

∂θ

∂x

)3

. (17)

In Eq. (17), the derivatives of θ are evaluated at x = x j . With
the same type of expansion, we derive similar expressions for
H−(θ j, θ j−1).

It is convenient to compute derivatives

c0s(θ ) = Hs(θ, θ ),

cis(θ ) = ∂ (i)Hs(ψ1, ψ2)

∂ψ i
2

∣∣∣∣
ψ1,ψ2=θ

,

cia(θ ) = ∂ (i)Ha(ψ1, ψ2)

∂ψ i
2

∣∣∣∣
ψ1,ψ2=θ

. (18)

In the subscript, the integer index specifies the order of the
derivative and the letter a or s specifies which function is used
from Eq. (9).

We insert the expansions of Eq. (17) and a similar one for
H− into Eq. (8) and use short hand θxx = ∂2θ

∂x2 and θt = θ̇ , and
similarly for other partial derivatives, giving

θt = ω0 + c0s(θ ) + c1a(θ )dx θx + c1s(θ )
dx2

2
θxx

+ c2s(θ )
dx2

2
(θx )2 + c1a(θ )

dx3

3!
θxxx

+ c2a(θ )
dx3

2
θxθxx + c3a(θ )

dx3

3!
(θx )3. (19)

If the system is bidirectional, then the functions
H+(ψ1, ψ2) = H−(ψ1, ψ2) and the asymmetric coefficients
c1a = c2a = c3a = 0. The partial differential equation in
Eq. (19) becomes (expanding to third order in dx)

θt = ω0 + c0s(θ ) + c1s(θ )
dx2

2
θxx + c2s(θ )

dx2

2
(θx )2. (20)

Following Pikovsky et al. [4] (their chapter 11), the con-
tinuum or large N limit is taken by multiplying the interaction
functions with a strength ε and then rescaling the strength of
the interaction functions in the continuum equation so that
they depend on dx2. If the interaction functions depend on
phase differences, then the coefficients are independent of
angle. With a bidirectional equation of motion

dθi

dt
= ω0 + ε[H (θi − θi+1) + H (θi − θi−1)], (21)

Eq. (20) becomes

θt = ω′
0 + αθxx + β(θx )2, (22)

with ε̃ = ε dx2 (via the continuum limit where dx → 0 but ε̃

remains constant) and coefficients α = ε̃H ′(0), β = ε̃H ′′(0),
and ω′

0 = ω0 + 2H (0) [4].
Equation (22) is the one-dimensional version of Eq. (11.4)

by Pikovsky et al. [4], has been previously discussed in
the context of the nonlinear phase equation (Eq. (10.24) by
Ref. [30]), and is related to the Complex Ginzburg Lan-
dau equation. With the addition of an additional stochastic
term, this equation becomes the Kardar-Parisi-Zhang equa-
tion [4,17] that is used to describe theory of roughening
interfaces [31].

Henceforth, we do not take the continuum limit, rather we
use the associated continuum partial differential equation of
Eq. (19) as an approximation to the more general discrete di-
rectional system of Eq. (8). Henceforth, we allow the model to
be directional. The terms in Eq. (19) with coefficients c1a, c2a

and c3a are only present (nonzero) if the model is directional
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(i.e., Ha(ψ1, ψ2) �= 0). An example is the steric interaction
model for oscillating vinegar eels [12] (see Sec. III B below).
In this model an organism’s undulation phase influences the
motion of the nearest organism to its left more strongly than
it affects the motion of the organism to its right (or vice versa;
for an illustration of why the interactions are asymmetric see
Fig. 8 by Ref. [12]).

We discuss each of the terms in the third order (in dx)
continuum equation of Eq. (19).

The term in Eq. (19) with coefficient c1a, that is first order
in dx, is ∝ θx so it is an advective term. It is only present if the
model is directional. The c1a coefficient could be dependent
upon θ . If the time average of c1a is nonzero, then there would
be an advection speed associated with perturbations. The term
∝ θxxx, also with coefficient c1a, is dispersive and only relevant
(nonzero) for directional models.

The term in Eq. (19) with coefficient c1s that is ∝ θxx is a
diffusive term. If this is positive, then the system should be
stable to small perturbations. Its coefficient could be depen-
dent upon θ in which case its time average would be relevant
for stability.

The term in Eq. (19) with coefficient c2a that is proportional
to θxθxx can be considered a diffusive term with sign that
depends on the winding number or local slope. This term is
only present in directional models. If this term exceeds the
term proportional to θxx, then only regions where the slope
gives a positive term would be stable to growth of small
perturbations. If c2a > 0 is positive, then a monotone contin-
uous solution with negative slope θx < 0 could be unstable
to growth of small perturbations. The direction of long-lived
wavelike states could be set by the sign of this term.

A. A condition for stability of a smooth initial condition

Suppose we have a state described with a smooth function
θ (x, t ) at time t in a directional model. An approximate condi-
tion for local stability is that the diffusive terms (those ∝ θxx)
in the continuum equation [Eq. (19)] are positive so that short
wavelength perturbations are damped diffusively. This implies
that a local and slope-dependent condition for stability

c1s(θ ) + c2a(θ )dx θx � 0. (23)

As instability might be slow, the above condition should be
satisfied on average, for example, averaged over a few oscil-
lation periods if the state is approximately periodic or over
a few times the period T0 = 2π/ω0. We denote the averaged
coefficients as c̄1s and c̄2a. As the condition for instability is
dependent upon slope, if there is a sinusoidal perturbation,
stability would depend upon the product of its amplitude and
wave number.

We can relate the stability condition of Eq. (23) to that
of the oscillator chain model by relating the phase shift φ

between oscillators to the slope; φ ≈ θxdx where dx is the
separation between oscillators. Eq. (23) becomes

c̄1s + c̄2aφ � 0. (24)

In a region where phase shifts between oscillators are similar
and equal to φ, Eq. (24) gives a condition on the phase shift
for stability.

B. The conserved topological charge

If the continuum system has periodic boundary conditions,
then the integrated quantity

Q = 1

2π

∫ 2π

0
dx θx, (25)

sometimes called a topological charge, must be equal to an
integer [4]. The topological charge Q measures the phase
shift through the loop. This charge is analogous to the wind-
ing number w that we computed for the loop of oscillators
[Eq. (11)] and it measures the phase shift across the loop. Fur-
thermore, for the continuum model with a periodic boundary,
the topological charge is a conserved quantity. This follows
because

Q̇ = θ̇ (2π ) − θ̇ (0) = 0. (26)

Because of the periodic boundary condition in the equations of
motion, the right-hand side must vanish.

Conservation of the topological charge Q in the contin-
uum model [Eq. (19)] implies that initial conditions set the
slope of asymptotic solutions [6]. This means that whether an
asymptotic state is synchronous or a wavelike state would be
determined by initial conditions. A biological system could
still tend to form metachronal waves if it does not have pe-
riodic boundary conditions. For example, Chakrabarti et al.
[6] proposed that gaps in ciliated carpets could facilitate
metachronal wave formation. Alternatively, the continuum
approximation may fail if discontinuities or short wavelength
perturbations are present or develop in the system. The con-
tinuum approximation should not hold if there is power at
wave vector k ∼ 1/dx. For example, Niedermayer et al. [16]
showed that a rotationally symmetric bidirectional model sim-
ilar to the local Kuramoto model [Eq. (7)] was unstable if
the phase differences between oscillators were large, with
|φ| > π/2.

In the subsequent section we investigate the possibility that
jumps in phase (discontinuities) between neighboring oscilla-
tors in a loop of phase oscillators do not conserve the winding
number and so allow wavelike states to develop, independent
of the winding number of the initial condition.

III. NUMERICAL EXPLORATION

We illustrate two models that have been used to de-
scribe systems exhibiting metachronal waves, a bidirectional
model by Niedermayer et al. [16], and a unidirectional model
by Quillen et al. [12]. Numerical integration of the equa-
tion, in the form of Eq. (8) is done with a fixed timestep
fourth-order Runge Kutta integrator where each step has
duration dt .

A. A bidirectional model by Niedermayer et al. [16]

The model by Niedermayer et al. [16], shown in their Fig. 4
and given by their Eq. (35) with identical intrinsic frequencies
and periodic boundary conditions, is described by

dθi

dt
= ω0 + μc[cos(θi − θi+1) + cos(θi − θi−1)]

− K[sin(θi − θi+1) + sin(θi − θi−1)]. (27)
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We relate this model to Eq. (8) with functions

H+(ψ1, ψ2) = H−(ψ1, ψ2)

= μc cos(ψ1 − ψ2) − K sin(ψ1 − ψ2). (28)

This model is bidirectional as it has H+ = H− and it reduces to
the local Kuramoto model of Eq. (7) with μc = 0. Computing
the coefficients for the continuum model with Eqs. (18),

c0s = 2μc,

c1a = c2a = c3a = 0,

c1s = 2K,

c2s = −2μc. (29)

The related continuum model [using Eq. (19), accurate to third
order in dx] is

θt = ω0 + 2μc + Kdx2θxx − μcdx2(θx )2. (30)

The terms proportional to dx3 vanish. We note that the contin-
uum model has a diffusive term (that proportional to θxx) that
causes perturbations to diffusively decay when K > 0. Due
to the mirror symmetry (bidirectionality) of the model, the
continuum equation lacks a term proportional to θxθxx which
could cause a slope-dependent instability.

With initial conditions chosen from a uniform distribution
(and containing large phase differences) Niedermayer et al.
[16] showed that the large phase differences decay, and the
system develops a smooth wavelike state. The model is bidi-
rectional so the resulting metachronal waves could be in either
direction.

B. The unidirectional model by Quillen et al. [12]

We also consider the unidirectional model by Quillen et al.
[12] which is

dθ j

dt
= ω0 − ω0Ku

2

[
tanh

(
cos θ j−1 − cos θ j − β

h

)
+ 1

]
.

(31)

Here real parameters β, h > 0. The model was motivated
by steric interactions between nematodes that reduce the
phase velocity for parameter Ku > 0. In this system, sta-
ble long-lived wavelike states are entrained states, as the
phase velocities vary periodically [12]. Because the interac-
tion function was motivated by preventing an overlap between
neighboring nematode bodies, we sometimes refer to this
model as the overlap model.

We relate the unidirectional model in Eq. (31) to Eq. (8)
with functions

H+(ψ1, ψ2) = 0,

H−(ψ1, ψ2) = −ω0Ku

2

[
tanh

(
cos ψ2 − cos ψ1 − β

h

)
+ 1

]
.

(32)

The coefficients for the continuum model, computed using
Eq. (18) are

c0s(θ ) = −ω0Ku

2

[
tanh

(
β

h

)
− 1

]
,

c1a(θ ) = −ω0Ku

2
sech2

(
β

h

)
sin θ

h
,

c1s(θ ) = −c1a(θ ),

c2a(θ ) = −ω0Kusech2

(
β

h

)
1

h2

×
[
−2tanh

(
β

h

)
sin2 θ + h cos θ

]
,

c2s(θ ) = −c2a(θ ),

c3a(θ ) = −ω0Kusech2

(
β

h

)
sin θ

h

×
[

2 tanh2

(
β

h

)
sin2 θ

h2
− sech2

(
β

h

)
sin2 θ

h2

− 2 tanh

(
β

h

)
cos θ

h
− 1

2

]
. (33)

If Ku is not large, then we can assume that the oscillator phases
advance at a nearly constant rate. We can approximately aver-
age over an oscillation cycle by integrating over θ . We define
an averaged coefficient with

c̄ ≈ 1

2π

∫ 2π

0
dθ c(θ ). (34)

Taking the averages of the coefficients of Eq. (33),

c̄1s = c̄1a = c3a = 0,

c̄2a = −c̄2s = ω0Ku

h2
sech2

(
β

h

)
tanh

(
β

h

)
. (35)

Because the coefficient c0s(θ ) is independent of θ , the average
c̄0s = c0s.

Using the averaged coefficients in Eqs. (35), the continuum
equation [Eq. (19)] for the unidirectional model of Eq. (31)
becomes

θt = ω0 − ω0Ku

2

[
tanh

(
β

h

)
− 1

]

+ ω0Kusech2

(
β

h

)
tanh

(
β

h

)
dx2

2h2
[−(θx )2 + dx θxθxx].

(36)

As the continuum equation lacks a second order term pro-
portional to θxx, Eqs. (23) would be violated for negative
slopes (assuming Ku > 0). Thus instability caused by the θxθxx

term is expected where the slope or phase shifts are locally
negative, even when the magnitude of the phase shift is small.
This suggests that the synchronous state itself is unstable. By
linearizing about the synchronous state and averaging over
time, it is possible to show that this is true, though the as-
sociated Jacobian matrix is degenerate.

C. Illustrations of numerical integrations

Parameters for unidirectional and bidirectional model inte-
grations are listed in Table I. We group integrations by the
dynamical system integrated, and refer to the equation de-
scribing it in the table. The number of oscillators in the loop
is N and dt is the time-step used for each single fourth-order
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TABLE I. Integration parameters for unidirectional and bidirec-
tional models.

Unidirectional model [Eq. (31), continuum Eq. (36)]

Common parameters Ku β h N dt tmax

0.7 0.1 0.05 200 0.05 600

Integration names Uni-S1 Uni-S4 Uni-U
Initial condition sine sine uniform
Amplitude Ainit 0.5 0.02 –
Wavelength nλ 1 4 –
Figures 1, 2(a) 2(b) 3(a)

Bidirectional model [Eq. (27), continuum Eq. (30)]

Common Parameters K μc N dt tmax

0.03 0.05 100 0.05 300

Integration name Bi-U
Initial condition uniform
Figure 3(b)

Notes: nλ is the number of wavelengths that fit within the loop of
oscillators for the sinusoidal initial condition [see Eq. (37)]. When
initial conditions are uniform, the initial phases for each oscillator
are independently drawn from a uniform distribution within [0, 2π ).
All models have intrinsic angular frequency ω0 = 1 and a periodic
boundary condition.

Runge Kutta integration step. All models have intrinsic fre-
quency ω0 = 1. Total integration time is tmax.

The initial conditions for the unidirectional integrations,
denoted Uni-S1 and Uni-S4, are a sine

θ j (t = 0) = Ainit sin(2πnλ j/N ), (37)

with amplitude Ainit and integer nλ that determines how many
wavelengths fit within the loop. Amplitudes for the Uni-S1
and Uni-S4 integrations are chosen to be large enough that
instability is evident within an integration that has duration
with tmax less than a few hundred. The wavelengths are chosen
to be large so that the initial conditions are smooth. For the
Uni-U and Bi-U integrations, initial phases are independently
drawn from a uniform probability distribution ∈ [0, 2π ).

In Fig. 1 we show the Uni-S1 integration of the uni-
directional model with an initial sine perturbation. In this
figure integration time is along the x axis. For the top three
panels, the y axis is the index of the oscillator j. In the
top three panels we show phase θ j , phase difference φ j [as
defined in Eq. (10)], and the cumulative sum w j of the phase
differences, as defined in Eq. (12). The bottom panel plots the
winding number w [defined in Eq. (11) and equal to wN−1].
The cumulative sum of the phase difference shows where dif-
ferences in the winding number arise. The integration shows
that an initially smooth state develops regions where there are
jumps in phase between neighboring oscillators. We can think
of them as discontinuities, but they consist of pairs or groups
of oscillators with phase shifts that alternate by approximately
π . The changes in the winding number occur where phase
differences are near π . When two consecutive oscillators have
a phase difference of π , a small change in the phase difference
can cause a change of ±1 in the winding number. At the end
of the integration the winding number is 9 and a metachronal

FIG. 1. An integration, labeled Uni-S1 of the unidirectional
model given in Eq. (31). The parameters for the model are listed in
Table I. The initial condition is a sine wave and the boundary con-
dition is periodic. The top panel shows phase θ j for each oscillator
as a function of index j, where index j increases on the y axis and
as a function of time which increases on the x axis. When contours
of constant phase are diagonal, the system is in a wavelike state.
The second panel from top shows the cumulative sum w j of phase
differences [defined in Eq. (12)]. The phase differences φ j [defined
in Eq. (10)] are shown in the third panel. The winding number w =
wN−1 [defined in Eq. (11)] is computed from the sum of the phase
differences and is shown in the bottom panel. Groups of oscillators
that have phases that differ by about π develop, and cause jumps
in the cumulative sum of phase differences and these give changes
in the winding number w. At the end of the integration, variations in
winding number cease and a wavelike state is maintained.

wave has emerged, even though the initial condition had a
winding number of zero.

In Fig. 2 we show phases as a function of oscillator index
at different times in two integrations of the unidirectional
model of Eq. (31), the Uni-S1 and Uni-S4 integrations. The
Uni-S4 integration also has a small sinusoidal initial per-
turbation but it is shorter wavelength and lower amplitude
than that in the Uni-S1 integration. Figure 2 shows that the
short wavelength perturbations only grow where the phase
difference (or slope) is negative. The continuum approxima-
tion for this model [Eq. (36)] contains a term proportional
to θxθxx which causes instability depending upon the sign of
the slope. For Ku > 0 the sign of this term is only positive
if θx > 0. This means that instability is expected if the slope
or phase difference is negative. This expectation is consis-
tent with what is seen in Fig. 2. The times of the plotted
curves are t = 1, 20, 50, 91, 106, 108 in Fig. 2(a) and t =
1, 100, 200, 300, 330, 340, 350 in Fig. 2(b).

The bidirectional model [Eq. (27)] exhibits some differ-
ences when compared to the unidirectional model. For the
bidirectional model, when the initial conditions are smooth,
and phase differences between neighboring oscillators are
small, the winding number is conserved. This is consistent
with the stability limit computed by Niedermayer et al. [16]
who found that instability arises only if phase differences
exceed ±π/2. In the unidirectional model, even smooth
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FIG. 2. Evolution of the unidirectional model [Eq. (31)] with
initial sinusoidal perturbations. (a) We show the Uni-S1 integration
with an initial sine perturbation with wavelength that exactly fits
within the loop. (b) We show the Uni-S4 integration where the initial
sine perturbation is small and has wavelength 1/4 of the length of the
loop. The phases θ j of each oscillator are plotted at different times
as a function of index j (on the x axis) labeling the oscillator. The
oscillator phases at the different times have been offset so that the
curves are plotted in order of time, with the later times on the top.
While the initial conditions (shown in red and at the bottom in each
panel) are smooth, nonlinearity in the model causes an increase in the
height of the peaks. Regions with negative phase difference (negative
slope) are unstable to the growth of short wavelength perturbations.

initial conditions can lead to growth of large phase differences
(depending upon the sign of the slope).

If initial conditions contain large jumps in phase, then
discontinuities can persist that cause variations in winding
number in both bidirectional and unidirectional models. We
show two integrations, one for the unidirectional model (de-
noted Uni-U) and one for the bidirectional model (denoted
Bi-U). The phases for these integrations are independently
initialized with random angles drawn from uniform probabil-
ity distributions in [0, 2π ). These integrations are shown in
Fig. 3 and the parameters of the models are listed in Table I. In
both models, jumps in phase cause changes in winding num-
ber. However, over long periods of time the high frequency
power decays and both system approach a long lived solu-
tion with an approximately constant slope. After the decay
of the large jumps in phase, variations in winding number
cease.

In the unidirectional model, both continuous and random
initial conditions generate a wavelike state with a preferred
direction. However, in the bidirectional model, only initial
conditions that include jumps in phase allow variations in
winding number. In the unidirectional model, jumps in phase
resolve into waves traveling in a single direction, whereas in
the bidirectional model jumps in phase resolve into clusters
of oscillators exhibiting waves that travel in either direction.
In the bidirectional model, and with smooth initial condi-
tions, the direction of an emergent wave is set by the initial
winding number. Because regions of negative slope can result

FIG. 3. Similar to Fig. 1 except the initial conditions are drawn
from a uniform distribution ∈ [0, 2π ). (a) We show the unidirectional
Uni-U integration. (b) We show the bidirectional Bi-U integration.
Groups of oscillators that have phase differences of about π cause
jumps in the cumulative sum of phase differences. The initial con-
ditions have large phase differences, and while these persist, the
winding number is not conserved. Clusters of oscillators form in
wave-states with waves going in either direction in the bidirectional
model but only moving in a single direction in the unidirectional
model. After large phase differences decay, the winding number
ceases to vary in both models.

in instability in the unidirectional model, a smooth initial
condition with an initial winding number of zero can still
lead to an emergent wave. With random initial conditions,
emergent waves in either direction are equally likely for the
bidirectional model. In the unidirectional model, emergent
waves only travel in one direction. In both models, there are
multiple stable long live entrained states, that are character-
ized by different winding numbers.

D. Causing instability in a bidirectional model to make
an adjustable directional model

To explore how directionality affects the behavior of oscil-
lator chain models, we desire simple models with sufficient
numbers of parameters that we can smoothly adjust whether
it is directional or bidirectional. We modify the sinusoidal
bidirectional model in Sec. III A, Eq. (27), so that it can be
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directional

dθi

dt
= ω0 + μc+ cos(θi − θi+1) + μc− cos(θi − θi−1)

− K+ sin(θi − θi+1) − K− sin(θi − θi−1). (38)

With K+ = K− and μc+ = μc− we recover the bidirectional
model of Eq. (27). The interaction functions are

H+(θi, θi+1) = μc+ cos(θi − θi+1) − K+ sin(θi − θi+1),

H−(θi, θi−1) = μc− cos(θi − θi−1) − K− sin(θi − θi−1). (39)

The coefficients computed via Eq. (18) become

c0s = μc+ + μc−,

c1a = K+ − K−,

c1s = K+ + K−,

c2a = −μc+ + μc−,

c2s = −c0s,

c3a = −c1a, (40)

and are independent of θ .
The related continuum model [using Eq. (19), accurate to

third order in dx] is

θt = ω0 + μc+ + μc− + (K+ + K−)
dx2

2
θxx

− (μc+ + μc−)
dx2

2
(θx )2 + (K+ − K−)

dx2

2
θxxx

+ (−μc+ + μc−)
dx3

2
θxθxx + (K+ − K−)

dx3

3!
(θx )3.

(41)

For instability caused by the θxθxx term that is sensitive to
the sign of the slope, Eq. (23) approximately gives

(μc+ − μc−)(dx θx ) � (K+ + K−). (42)

For phase shift φ between oscillators, this condition for insta-
bility [following Eq. (24)] becomes

(μc+ − μc−)φ � (K+ + K−). (43)

The sign of μc+ − μc− determines the sign of unstable slopes.
To check to see if we can predict when a system develops

instability we run a series of integrations, denoted Di-Series-A
in Table II, that begin with a small sinusoidal variation and a
winding number of zero. We measure the change in winding
number after integrating a specific period of time. The model
has common parameters N = 64, K+ = K− = 0.01, ω0 = 1,
and μc+ = 0. The sinusoidal initial condition has nλ = 4
wavelengths within the loop of oscillators. We do integrations
with a range of amplitudes Ainit for the initial condition and a
range of parameter μc−. In each integration, we measure the
winding number at the end of the integration. The final wind-
ing number is plotted as an image in Fig. 4. Integrations in
which perturbations grow exhibit changes in winding number.

For the integrations shown in Fig. 4, the maximum phase
shift in the initial condition depends on the amplitude and
wavelength of the sine perturbation [following Eq. (37)];

TABLE II. Integration parameters for directional models.

Directional sinusoidal model [Eq. (38)]
Associated continuum equation [Eq. (41)]

Common Parameters K+ K− μc+ N dt tmax

0.01 0.01 0 64 0.05 450

Integration series name Di-Series-A
Type of initial condition sine, nλ = 4
Amplitude Ainit [0,0.5]
Parameter μc− [0,0.9]
Figure 4

Directional overlap model [Eq. (45)]
Associated continuum equation [Eq. (46)]

Common Parameters β h K N dt tmax

0.1 0.05 0.01 64 0.05 600

Integration series name Di-Series-B
Type of initial condition sine, nλ = 4
Amplitude Ainit [0.01,0.4]
Parameter Ku [0.01,0.4]
Figure 5

Notes: The sinusoidal initial condition is from Eq. (37). All models
have intrinsic angular frequency ω0 = 1 and a periodic bound-
ary condition. For integration series we show ranges for varied
parameters.

FIG. 4. We integrate the directional sinusoidal model of Eq. (38)
with a sinusoidal initial condition with a range of initial amplitudes
Ainit , on the y axis, and a range for the parameter μc−, on the x
axis. Remaining parameters for the series of integrations are listed
in Table II with the name Di-Series-A. The initial winding number
w = 0. Plotted as an image is the final winding number at the end
of each integration. A change in winding number implies that an
instability occurred during the integration. The contours show the
stability parameter ycrit of Eq. (44) which is derived by comparing
the strength of diffusive terms in the continuum equation [following
Eq. (43)]. We plot ycrit = 1 (red solid line), 2 (green dashed line),
and 4 (blue dotted line). When the stability parameter ycrit is greater
than 1, and to the right of the red solid line, instability occurs giving
clusters of oscillators with larger phase differences. These resolve by
increasing the winding number.
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|φmax| = Ainitnλdx with spacing dx = 2π/N . The contours in
Fig. 4 show the value of

ycrit (Ainit, μc−) = |φmax| |μc+ − μc−|
(K+ + K−)

= Ainitnλ

2π

N

|μc+ − μc−|
(K+ + K−)

, (44)

which is derived from the stability limit estimate of Eq. (43).
Near where this function is above 1, we expect instability.
This is indeed seen in these numerical integrations as changes
in winding number are only seen to the right of the solid
red contour which has ycrit = 1. We numerically confirm that
Eq. (24) can give a slope-dependent estimate for the local
stability of smooth initial conditions in a directional model.

E. Stabilizing a unidirectional model to make
an adjustable directional model

The unidirectional model discussed in Sec. III B [Eq. (31)],
when averaged has coefficient c̄1s = 0, so its associated
continuum equation [Eq. (36)] lacks a stabilizing term pro-
portional to θxx. To this unidirectional model, we add an
additional term, that with coefficient K from the bidirectional
model of Eq. (27), that gives a nonzero coefficient c1s (see
Sec. III A):

dθ j

dt
= ω0 − ω0Ku

2

[
tanh

(
cos θ j−1 − cos θ j − β

h

)
+ 1

]

− K[sin(θ j − θ j+1) + sin(θ j − θ j−1)]. (45)

With the addition of the term with coefficient K , the model is
no longer unidirectional, rather it is directional and we can ad-
just the relative strengths of the symmetric and antisymmetric
interactions by varying K . The parameter K characterizes the
strength of the symmetric component of the interaction.

The averaged coefficients present in the continuum equa-
tion for this model are the same as in Eqs. (35), except the
coefficient c1s = 2K . The associated continuum equation is
similar to Eq. (36) but with an additional term,

θt = ω0 − ω0Ku

2

[
tanh

(
β

h

)
− 1

]
+ Kdx2θxx

+ ω0Kusech2

(
β

h

)
tanh

(
β

h

)
dx2

2h2
[−(θx )2 + dx θxθxx].

(46)

As in Sec. III D, we run a series of integrations, denoted
Di-Series-B and with parameters listed in Table II, have si-
nusoidal initial conditions, and cover a range of amplitudes
and parameters Ku to see which ones develop instabilities
that cause variations in winding number. The final winding
numbers are plotted in Fig. 5. These integrations have param-
eters h, β, ω0 giving coefficient c̄2a ≈ 27Ku [evaluated using
Eq. (35)]. The coefficient c1s = 2K for this dynamical system.
The estimate for instability of Eq. (24) depends on

ycrit (Ainit, Ku) ≈ 13Ainitnλ

2π

N

Ku

K
, (47)

with unstable phase shifts for a sinusoidal initial condition
likely for ycrit � 1. Contours with ycrit = 1, 2, 4 are shown

FIG. 5. Similar to Fig. 4 except we integrate the directional over-
lap model of Eq. (45) with a sinusoidal initial condition. Integrations
have a range of initial amplitudes Ainit , shown with a log-scale on
the y axis, and a range for the parameter Ku, shown with a log-scale
on the x axis. Remaining parameters for the series of integrations
are listed in Table II with the name Di-Series-B. Plotted as an im-
age is the final winding number at the end of each integration. A
change in winding number implies that an instability occurred during
the integration. The contours show the stability parameter ycrit of
Eq. (47), which is derived by comparing the strength of diffusive
terms in the continuum equation. We plot ycrit = 1 (red solid line),
2 (green dashed line) and 4 (blue dotted line). When the stability
parameter ycrit is greater than 1, and to the right of the red solid line,
instability occurs giving perturbations in regions where the slope
(or equivalently the phase difference) is negative. These resolve by
increasing the winding number.

on Fig. 5. The ycrit = 1 curve delineates the region where
winding number remains fixed. Thus Fig. 5 illustrates that the
condition [Eq. (24)] based on coefficients of diffusive terms in
the associated continuum equation is consistent with the de-
velopment of short wavelength instabilities in the dynamical
system of Eq. (45).

IV. STOCHASTIC DIRECTIONAL PHASE
OSCILLATOR MODELS

In the previous sections we found that the initial condition
can affect the properties of the phase oscillator chain system
after integration. How is it possible for a biological system
to ensure that a metachronal wave is robustly generated? As
fluctuations are likely to be present in ciliated systems (e.g.,
Ref. [19]) and following Solovev and Friedrich [17], we con-
sider the role of white noise in influencing the properties of
long-lived states.

To each oscillator in the directional models of Eqs. (38) and
(45) we add a continuous random variable that is Gaussian
white noise, ξ (t ). We characterize the strength of the noise
with parameter η where the probability distribution of the
integral W (�t ) = ∫ �t

0 ξ (t )dt is a normal distribution with
zero mean and with variance η�t . Equivalently 〈ξ (t )ξ (t ′)〉 =
ηδ(t − t ′). In our numerical integrations, at each time step of
duration dt we add an independent random variable to each
oscillator phase that is drawn from a normal distribution with
zero mean and variance ηdt .
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TABLE III. Parameters for integrations of directional models with noise.

Directional sinusoidal model with white noise [Eq. (48)]
Associated stochastic continuum equation [Eq. (49)]

Common parameters K+ K− μc+ dt tmax

0.01 0.01 0 0.05 600

Integrations DWN1 DWN2 DWN-SerA DWN-SerW DWN-SerN BWN-SerN
Noise strength η 0.005 0.02 [10−3,0.09] [10−3,0.04] [10−3,0.03] [10−3,0.03]
Parameter μc− −0.006 0.03 [−0.07,0.07] 0.06 0.06 0.0
Initial winding number w0 0 0 0 [−15,15] 0 0
Number of oscillators N 50 50 50 50 [32,4096] [32,4096]
Figures 6(a) 6(b) 7 9(a), 9(b) 10(a), 10(b) 10(e), 10(f)

Directional overlap model with white noise [Eq. (50)]
Associated stochastic continuum equation [Eq. (51)]

Common parameters β h dt tmax

0.1 0.05 0.05 600

Integrations OWN-SerA OWN-SerB OWN-SerC OWN-SerW OWN-SerN
Noise strength η 10−3 [10−4,0.04] [10−4,0.04] [10−3,0.04] [10−3,0.03]
Parameter K [0.0003,0.13] 0.002 [0.0006,0.26] 0.01 0.01
Parameter Ku [0.01,0.41] [0.01,0.28] 0.2 0.2 0.2
Initial winding number w0 0 0 0 [−15,15] 0
Number of oscillators N 100 100 100 50 [32,4096]
Figures 8(a), 8(b) 8(c), 8(d) 8(e), 8(f) 9(c), 9(d) 10(c), 10(d)

Notes: All models have intrinsic angular frequency ω0 = 1 and a periodic boundary condition. Initial conditions have a constant slope set
by w0. The initial phase differences are determined by the initial winding number w0. For integration series we show ranges for the varied
parameters.

A. A sinusoidal directional model with white noise

We modify the directional model of Eq. (38) discussed in
Sec. III D with the addition of a stochastic term

dθi

dt
= ω0 + μc+ cos(θi − θi+1) + μc− cos(θi − θi−1)

− K+ sin(θi − θi+1) − K− sin(θi − θi−1) + ξi(t ).
(48)

Here each ξi(t ) is an independent continuous random variable
that is Gaussian white noise with strength η, as discussed at
the beginning of Sec. IV.

The associated continuum equation for the model of
Eq. (48) is the same as Eq. (41) with the addition of white
noise that depends on both space and time:

θt = ω0 + μc+ + μc− + (K+ + K−)
dx2

2
θxx

− (μc+ + μc−)
dx2

2
(θx )2 + (K+ − K−)

dx2

2
θxxx

+ (−μc+ + μc−)
dx3

2
θxθxx + (K+ − K−)

dx3

3!
(θx )3

+ ξ (x, t ). (49)

Here ξ (x, t ) denotes uncorrelated Gaussian white noise with
〈ξ (x, t )ξ (x′, t ′)〉 = Dδ(x − x′)δ(t − t ′). We relate D to the
noise strength η for the discrete system via D = ηdx where
dx is the distance between neighboring oscillators.

We run a series of integrations of Eq. (48), where initial
phases are all set to zero, so the system begins in the syn-
chronous state. In these models we set K+ = K− and μc+ = 0.

We vary the strength of the noise η and the parameter μc−
which makes the model directional. The integrations denoted
DWN1 and DWN2, have parameters listed in Table III and are
shown in Fig. 6. In both DWN1 and DWN2 integrations the
noise seeds perturbations that grow sufficiently large that they
cause variations in winding number. As the jumps in phase
resolve, the system enters a coherent wave state that persists.

The DWN1 integration, shown in Fig. 6(a) has parameter
μc− with opposite sign to that of the DWN2 model, which is
shown in Fig. 6(b). The sign difference causes the resultant
waves to be in opposite directions. The DWN2 integration has
stronger noise than the DWN1 integration. While the winding
number remains constant at the end of the DWN1 integration,
it continues to vary in the DWN2 integration. The phase shift
is fairly smooth in the DWN1 integration, indicating that the
phase shift is sufficiently high that perturbations caused by
the noise are damped diffusively. We attribute the increased
stability to the strength of the slope-dependent diffusion term,
proportional to θxθxx, in the associated continuum equation, is
Eq. (49).

The higher level of noise in the DWN2 integration, shown
in Fig. 6(b), causes changes in the winding number to persist
throughout the integration. While the winding number never
drops to zero, variations in slope or phase shift persist and
only clusters of oscillators maintain a constant phase delay.
This integration has a higher value of the standard deviation
of the phase shift than the DWN1 integration, indicating that
the wave is not entirely coherent. There are regions or clusters
of oscillators in wavelike states with jumps in phase between
them. The sensitivity of the collective motion to the strength
of the noise is consistent with the study by Solovev and
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FIG. 6. Similar to Fig. 1 except we show two integrations of
the stochastic directional sinusoidal model of Eq. (48), with pa-
rameters listed in Table III. Initially all oscillator phases are set to
zero. (a) We show the DWN1 integration. This model has enough
noise to seed perturbations that grow. Groups of oscillators that have
phase differences of about π cause jumps in the cumulative sum of
phase differences, and these cause variations in the winding number.
These groups resolve into negative phase differences and the system
enters a long-lived wavelike state. We attribute the later stability of
the resulting wave to the slope-dependent diffusive term in the con-
tinuum equation (that ∝ θxθxx). (b) We show the DWN2 integration.
This model has μc− with the opposite sign as the DWN1 model, so
noise induced perturbations resolve into a wave that travels in the
opposite direction. The noise strength is higher in this integration so
only clusters of oscillators maintain a constant phase delay and the
winding number continues to vary.

Friedrich [17] who found that white noise could suppress syn-
chronization in two-dimensional models of interacting phase
oscillators.

We run a series of integrations varying the strength of the
noise η and the μc− parameter setting the asymmetry in the in-
teractions. The series is denoted DWN-SerA in Table III. Here
and in subsequent series of integrations, parameter ranges are
chosen so that the integrations illustrate a range of phenom-
ena. At the end of each integration we record the winding
number w and the standard deviation of the phase difference
σφ . Both quantities are plotted as images in Fig. 7. We use σφ

FIG. 7. We show integration series denoted DWN-SerA with
different levels of white noise strength η and parameter μc− for
the directional sinusoidal model of Eq. (48). Parameters for the
integrations are given in Table III. (a) We show final winding number
as an image. Positive winding numbers are predominantly found on
the right-hand side of the plot, at μc−/(K+ + K−) > 0. (b) We show
the standard deviation of the average phase difference σφ [defined
in Eq. (13)]. The green diamonds show the DWN1 integration of
Fig. 6(a) and the yellow hexagons show the DWN2 integration of
Fig. 6(b). The direction of the waves is set by the parameter μc−.
Simulations with sufficient noise and asymmetry in nearest-neighbor
interaction functions enter wavelike states, but if the noise is too
strong, coherence is reduced or lost.

to characterize the coherence of wavelike states at the end of
the integrations.

Figure 7(a) shows that wavelike states are long-lived in the
presence of noise and it is possible to chose the direction of
the waves by adjusting the sign of the parameter μc−. In these
integrations μc+ = 0. More generally the sign of μc+ − μc−
would determine the direction of the waves. This follows as
this difference sets the sign of the c2a coefficient which in
turn determines the sign of the θxθxx term in the associated
continuum equation [Eq. (41)].

The size of term that is proportional to θxx in the continuum
equation [Eq. (41)] depends on c1s = (K+ + K−) [Eq. (40)].
As the coefficient is positive, this diffusive term damps
short wavelength perturbations. The linearized stochastic
continuum equation would resemble the Edwards-Wilkinson
equation, where the variance of the phase is sensitive to the
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ratio η/(K+ + K−), which is why we use η/(K+ + K−) on the
y axis in Fig. 7.

Slope-dependent instability depends on the size of the
term that is proportional to θxθxx in the continuum equa-
tion [Eq. (49)]. This term depends on the coefficient c2a =
−μc+ + μc− [Eq. (40)]. The slope-dependent stability condi-
tion depends on the ratio of c2a and c1s = K+ + K− [Eq. (23)]
which is why we use μc−/(K+ + K−) on the x axis. With noise
able to cause jumps in phase (η/(K+ + K−) not too small)
and jumps in phase able to cause changes in winding number
|μc−|/(K+ + K−) � 1, the system maintains a wavelike state.
With larger η/(K+ + K−) the noise dominates over local syn-
chronization causing the system to lose coherence. The system
breaks up into clusters of oscillators that are moving together.
This is evident in Fig. 7(b) showing the standard deviation of
the phase shift σφ [computed with Eq. (13)]. When the wave is
coherent across the system, the standard deviation σφ is lower
(�20◦). When the system loses coherence and breaks up into
small clusters, σφ is higher.

Two integrations with the same value of η and μc− can
give different final winding numbers, but the scatter in final
winding numbers is not large. This can be seen from the
differences in final winding number between neighboring pix-
els in Fig. 7(a), as each pixel represents a single numerical
integration.

B. A modified overlap model with noise

To the directional model discussed in Sec. III E [Eq. (45)],
we add a Gaussian white noise term ξi(t ) with strength η

(with properties as discussed at the beginning of Sec. IV). The
oscillator model is

dθi

dt
= ω0 − ω0Ku

2

[
tanh

(
cos θi−1 − cos θi − β

h

)
+ 1

]

− K[sin(θi − θi+1) + sin(θi − θi−1)] + ξi(t ). (50)

The associated continuum equation is that of Eq. (46) but with
an additional white noise term

θt = ω0 − ω0Ku
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[
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β

h

)
− 1

]
+ Kdx2θxx

+ ω0Kusech2

(
β

h

)
tanh

(
β

h

)
dx2

2h2

[−(θx )2 + dx θxθxx
]
.

+ ξ (x, t ). (51)

In Figs. 8(a) and 8(b) we show the final winding num-
ber and standard deviation σφ of the series OWN-SerA of
integrations where we vary the parameter Ku (controlling di-
rectionality) and the parameter K that diffusively stabilizes the
model. Figures 8(c) and 8(d) are similar except they show the
series OWN-SerB where we vary Ku and the noise strength η.
Figures 8(e) and 8(f) are similar, except they show the series
OWN-SerC where we vary K and the noise strength η. The
integrations have parameters, including those held fixed, listed
in Table III. On all panels in Fig. 8 we show a dotted black line
corresponding to η/K = 1 and a dashed green or dashed light
green line showing Ku/K = 10.

Wave generation, giving positive winding number at the
end of the integrations, is seen to the right of the dashed green
line in Figs. 8(a) and 8(c) and to the left of it in Fig. 8(e).

Low values of K (diffusively preventing perturbations from
growing) and high values of Ku, giving strongly asymmet-
ric interaction, are required for wave generation, as seen in
Figs. 8(a), 8(c) and 8(e). With noise strength above η > K
and if waves are generated, coherence is lost. This is seen in
Fig. 8(b) where the standard deviation of the phase shift σφ

is high below the η/K = 1 dotted black line and in Figs. 8(d)
and 8(f) where σφ is high above the η/K = 1 dotted black line.

Figure 8 illustrates that given a particular noise strength,
the parameters K and Ku of Eq. (50) can be adjusted to put
the system in a region of parameter space that allows waves to
form and remain coherent.

We find that clusters waves in a single direction tend to
be generated for Ku/K > 10, independent of noise strength,
with more coherent waves requiring larger values of Ku. These
integrations have parameters h, β, ω0 giving coefficient c̄2a ≈
27Ku [evaluated using Eq. (35)]. The coefficient c1s = 2K
for this dynamical system. The ratio Ku/K = 10, gives ratio
c̄2a/c1s = 135. Using the stability criterion of Eq. (24), this
gives a remarkably small phase shift of φ ∼ 0.4◦. So even
though we found that Eq. (24) could predict the level of
sinusoidal perturbations that cause instability (as discussed
in Sec. III E), if applied with a critical phase shift of order
1 radian, this criterion can underestimate the regime where
noise can help drive clusters of waves in a single direction.
In this respect, the stochastic directional model of Eq. (50),
considered here, is more sensitive to noise than the sinusoidal
directional model of Eq. (48), discussed in Sec. IV A.

C. Sensitivity of stochastic directional models to initial
mean phase shift or slope

The integrations shown in Figs. 6–8 began with all oscil-
lators set to zero, so the initial winding number, slope and
mean phase shift are all zero. Because of the slope-dependent
diffusive term in the associated continuum equation, pertur-
bations caused by noise can grow. The system increases or
decreases in slope, depending upon the sign of μc+ − μc−
in the stochastic sinusoidal directional model of Eq. (48), or
the sign of Ku in the stochastic overlap model of Eq. (50).
What if the initial condition was a smooth ramp, so that the
initial winding number and slope is nonzero? If the slope’s
sign allows perturbations to grow, then the integrations evolve,
as shown in Figs. 6–8, until the system reaches a winding
number and associated slope that is stable. However, if the
slope’s sign is in the opposite direction, then the system could
remain sufficiently stable that the winding number would
remain fixed. This would imply that the long-lived states of
the stochastic models can be sensitive to initial conditions.
To investigate this possibility we explore simulations with
initial conditions that are linear ramps, with a single phase
shift between neighboring oscillators.

In Fig. 9 we show series of integrations for both stochastic
models, denoted the DWN-SerW and OWN-SerW simula-
tions, where we vary initial phase shift and noise strength.
Initial conditions are ramped so that the phase shift between
neighboring oscillators is fixed and determined from the initial
winding number via Eq. (14). In all panels we show on the top
x axis the initial phase difference φ0 in degrees. Parameters of
the simulations are listed in Table III. In Figs. 9(a) and 9(c)
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FIG. 8. (a) We show final winding number as a image for the OWN-SerA integrations with different parameters K and Ku for the model of
Eq. (50). (b) Similar to panel (a) except we show the final value of the standard deviation of the phase shift σφ for the OWN-SerA integrations.
(c) Similar to panel (b) but showing the winding number for the OWN-SerB integrations with different noise strength η and parameter Ku.
(d) Similar to panel (c) but showing the final value of the standard deviation of the phase shift σφ for the OWN-SerB integrations. (e) Similar
to panel (a) except we show the final value of the standard deviation of the phase shift σφ for the OWN-SerC integrations with different noise
strength η and parameter K . (f) Similar to panel (c) but showing the final value of the standard deviation of the phase shift σφ for the OWN-SerC
integrations. Parameters for the integrations are given in Table III. The standard deviation σφ of the phase shift is high if coherence is low. The
winding number remains zero if waves do not form as the integrations begin in a synchronous state. Nonzero winding number and low σφ are
typical of a coherent wave-state. Sufficiently high noise strength (that with η/K ∼ 1, with division shown with dotted black lines) can cause
the system to lose coherence by breaking into clusters of oscillators that move together. Asymmetric interactions (Ku/K � 10, with division
shown with dashed green lines) facilitate wave formation. Text labeling the dotted or dashed lines are on the side of the line where where
coherent metachronal waves can exist. In panels (a), (c), and (e) winding numbers are predominantly positive except on the upper left corner
of panel (c).

we show final winding number at the end of the integrations
and in Figs. 9(a) and 9(c) we show the standard deviation of
the phase shifts, σφ .

Positive slopes (corresponding to positive w0) are more sta-
ble for both sinusoidal stochastic model and stochastic overlap
models shown in Fig. 9. Figure 9(a), showing the stochastic
sinusoidal directional model, has a region on the lower right,
with w0 ranging from 1 to 15, giving final winding number
that is equal to the initial one. The region on the figure has
vertical bars with the same color shade. This region contains
integrations that did not vary in winding number, thus these

integrations began in a stable state. With noise sufficiently
strong (on the top right), variations in winding number occur,
but at the expense of coherence in the resulting wavelike
states, as seen in Fig. 9(b).

The stochastic overlap directional model has a similar sta-
ble region on the lower right in Fig. 9(c) (with w0 ranging
from 1 to 5) but it is much smaller than the stable region
in Fig. 9(a). The stochastic overlap model is more sensitive
to the growth of instabilities from noise than the sinusoidal
stochastic directional model. For the sinusoidal model, the
ratio c1s/c2a [derived from the stability criterion of Eq. (24)]
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FIG. 9. Sensitivity of final winding number and standard deviation of phase difference to initial winding number w0 and noise strength
η. Initial conditions have a constant slope with phase difference determined by the initial winding number. Parameters for each integration
series are given in Table III. (a) Final winding number is shown as a function of initial winding number w0 (on the x axis) and noise strength
(on the y axis). Initial phase differences are shown in degrees on the top x axis. We show the DWN-SerW integration series which are for
the stochastic sinusoidal directional model of Eq. (48). (b) The standard deviation of the phase difference at the end of the integrations also
for the DWN-SerW integrations. (c) Similar to panel (a) but showing winding number for the OWN-SerW integrations. These are for the
stochastic directional overlap model of Eq. (50). (d) Similar to panel (b) but showing σφ for the OWN-SerW integrations. For both models a
positive initial slope can be stable, and the system would not exhibit variations in winding number, giving sensitivity of the final state to initial
conditions. The regions where there are no changes in winding number have constant color shade in the vertical direction in panels a and c. For
the stochastic directional overlap model [shown in panel (c)], the region where initial winding number is equal to the final one, on the lower
middle right, is much smaller than for the stochastic sinusoidal directional model [shown in panel (a)]. The stochastic overlap model is less
sensitive to initial conditions and so more robustly gives metachronal wave states.

corresponds to an unstable angle of 19◦, whereas for the
stochastic overlap model c1s/c2a is only 0.2◦. The difference
between these ratios could in part account for the different
behavior of the two models. We increased the μc− parameter
in the sinusoidal stochastic model but we did not see the
stable region in w0 significantly decrease in size. We suspect
that the shape of the interaction functions influences their
behavior and the criterion of Eq. (24) is not sufficient to fully
characterize the behavior of the stochastic models.

In summary, we find that for smooth ramped initial con-
ditions and within a particular range of initial slopes, the
long-lived states of the stochastic directional models can be
sensitive to the initial slope. The long-lived states are wavelike
and travel in the direction set by the directionality of the inter-
actions, but the wave speed depends upon the initial condition.
This could cause a problem for applications to biological
systems that robustly exhibit waves with speeds restricted to a
narrow range.

D. Sensitivity to the number of oscillators

Following Refs. [4,17], the variance of the phases in a
chain of interacting stochastic phase oscillators is predicted to

depend on the number of oscillators in the system. The argu-
ment is based on the stochastic differential equation in Fourier
space, that arises through linearizing the Pardari-Parisi-Zhang
equation (e.g., Ref. [31]), which arises in the continuum limit
for the bidirectional model [as in Eq. (22) or Eq. (30) with
the addition of noise]. A long-wavelength cutoff arises from
the number of oscillators N in a chain and this is predicted to
cause the variance of the phases to depend upon the size of the
system.

Is the mean phase shift in the directional models sensi-
tive to the number of oscillators in a loop? To answer this
question we ran three integration series where we vary the
number of oscillators N and the strength of the noise η.
The integrations parameters are listed in Table III and are
shown in Fig. 10. The number of oscillators integrated are
powers of 2 ranging from 32 to 4096. The series are denoted
DWN-SerN, for the directional sinusoidal model, the OWN-
SerN, for the directional overlap model, and BWN-SerN for
a bidrectional model that is same as the DWN-SerN, except
the parameter setting asymmetry in the interactions μc− = 0.
Phases in these integrations are initialized to zero. Instead
of computing the winding number, which depends on N , we
compute the mean phase shift φ̄ [via Eq. (14)] at the end of
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FIG. 10. Sensitivity of final mean phase shift and standard deviation of the phase shift to noise strength η and number of oscillators N . All
phases are initially set to zero. Parameters for each integration series are given in Table III. (a) Final mean phase shift φ̄ is shown as a function
of N (on the x axis) and noise strength (on the y axis). We show the DWN-SerN integration series which are for the stochastic sinusoidal
directional model of Eq. (48). (b) The standard deviation of the phase difference at the end of the integrations also for the DWN-SerN
integrations. (c) Similar to panel (a) but showing winding number for the OWN-SerN integrations. These are for the stochastic directional
overlap model of Eq. (50). (d) Similar to panel (b) but showing σφ for the OWN-SerN integrations. (e) Similar to panel (a) but showing the
BWN-SerN integrations which are of a bidirectional model. The parameters and model are the same as for the DWN-SerN integration, (shown
in a) except the parameter giving asymmetry μc− = 0. (f) Similar to panel (b) except showing σφ for the BWN-SerN integrations. In the
directional models, we find that the mean and standard deviation of the phase shift, φ̄ and σφ , are insensitive to the number of oscillators in the
loop.

each integration. The mean phase shifts φ̄ are shown as images
in Figs. 10(a), 10(c) and 10(e), and the standard deviations of
the phase shifts σφ are shown as images in Figs. 10(b), 10(d)
and 10(f).

Figures 10(a)–10(d) show that neither mean phase shift
or standard deviation of the phase shift is sensitive to the
number of oscillators in the loop for the directional stochastic
models, contrary to expectations. We were curious whether
this insensitivity is only a property of the directional models.
Figures 10(e) and 10(f) shows a bidirectional model. The
mean phase shift at the end of these integrations decreases
with increasing N , which is opposite to what is expected if
the mean phase shift scales with the phase variance which
is predicted via Fourier analysis to be larger in a larger

system in one-dimension. We consider explanations for this
discrepancy. Our numerical investigations of Sec. III found
that variations in mean phase shift and winding number only
occur when there are larger phase differences between neigh-
boring oscillators. However, when the phase differences are
large we do not expect the associated continuum equations to
be good approximations to the discrete models. Predictions
based on the Kardar-Parisi-Zhang equation may be only be
accurate in the discrete model before phase differences be-
tween oscillators become large. Possibly in addition, the term
proportional to θxθxx in the associated stochastic continuum
equation that is only present for directional models could give
different behavior than predicted for the Kardar-Parisi-Zhang
equation which lacks this term.
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V. SUMMARY AND DISCUSSION

We have explored dynamical systems of chains of identi-
cal phase oscillators with nearest-neighbor interactions that
are arranged in a loop. We derive a continuum partial dif-
ferential equation [Eq. (19)], accurate to third order in the
separation between oscillators, that is a good approximation
if phase differences are small. Numerical integrations and
related continuum equations illustrate that directional mod-
els differ in some respects from bidirectional models (those
with mirror reversal symmetry). We show a unidirectional
model [12] that exhibits instability to small perturbations even
for smooth initial conditions. The instability depends on the
sign of the local slope and there is a preferred direction
for emergent waves. The instability causes growth of short
wavelength perturbations that grow to ±π phase differences
between neighboring oscillators. We attribute the instability to
a third order diffusive term in the associated continuum partial
differential equation that has sign that depends on the local
slope. We also explore a bidirectional model [16] that only
exhibits instabilities with initial conditions that contain large
phase differences between neighboring oscillators.

In the continuum limit, and with a periodic boundary con-
dition, winding number is like a topological charge and is
a conserved quantity [6]. The winding number is directly
related to the direction and speed of emergent waves. We
use numerical integrations of unidirectional and bidirectional
discrete phase oscillator models with oscillators in a loop to
find out whether and how winding number varies. We find that
variations in winding number occur when there are groups of
neighboring oscillators with phase differences near π . Varia-
tions in winding number cease after short wavelength pertur-
bations decay. The resulting long-lived state is a synchronous
or wavelike phase-locked state with waves in either direction
for the bidirectional model, but is a wavelike entrained state
with a preferred direction in the unidirectional model.

The two lowest-order diffusive terms (∝ θxx) in the as-
sociated continuum equations give a criterion for slope or
phase shift-dependent instability to the growth of small per-
turbations. With two phase oscillator models that let us adjust
the directionality, we show that this criterion approximately
predicts when small smooth sinusoidal perturbations can grow
and cause changes in winding number, eventually giving long-
lived metachronal wave states.

With adjustable directional models we explored the role of
white noise in influencing the states of these phase oscilla-
tor dynamical systems. An advantage of studying stochastic
systems, is that the properties of long-lived states could be
insensitive to initial conditions. We find that as long as the
strength of the noise does not destroy the coherence of the sys-
tem (as previously noted by [17]), noise helps in developing
and maintaining a wavelike state through seeding instabilities.
The direction of the resulting waves is set by the asymmetry in
the oscillator interaction functions. We support prior studies
[17,32] finding that directional models (lacking mirror sym-
metry in the oscillator interaction functions) are preferable
for modeling phase oscillator systems that robustly enter and
maintain a metachronal wave collective state.

We find that wave generation, as seen from the wind-
ing number during integrations that are initialized with zero

FIG. 11. Illustration of regimes for stochastic directional phase
oscillator models.

phases, is sensitive to the strength of coefficients in the associ-
ated continuum equation, that depend upon derivatives of the
oscillator interaction functions. However, in terms of ratios of
these coefficients, the regions in parameter space where waves
are generated differed in the two directional stochastic models
we explored.

We explored sensitivity of the stochastic directional models
to initial conditions with a set slope or phase shift, corre-
sponding to different initial winding numbers. Due to the
directionality of these models, only smooth initial conditions
with either positive or negative winding number can be stable.
In the stable case, the final winding number can be set by the
initial condition. The range of possible winding numbers (or
initial phase shifts) where long-lived wavelike states depend
upon the initial phase shift depends upon the oscillator interac-
tion functions. With the stochastic bidirectional overlap model
we explored, the region where winding number is set by the
initial slope is much smaller than for the stochastic sinusoidal
directional model. This suggests that stochastic models with
strong directionality would more robustly enter metachronal
and maintain wave states and would be less sensitive to
initial conditions. Stochastic models with strong direction-
ality might be preferentially applied to model biological
systems that robustly enter and maintain metachronal wave
states.

We explored sensitivity of the stochastic directional mod-
els to the number of oscillators in the loop. Contrary to
expectations based on Fourier analysis of stochastic contin-
uum equations [4,17], we find that mean phase shift and
the standard deviation of the phase shift, after integration,
are insensitive to the number of oscillators. The scaling es-
timated via Fourier analysis may fail because the continuum
equation is a poor approximation to the discrete interact-
ing oscillator chain models when phase differences between
neighboring oscillators are large.

Given a particular level of noise, is it possible to choose
phase oscillator interaction functions that would robustly give
long-lived metachronal wave states? Based on our exploration
of two directional models, we roughly illustrate regimes of
collective behavior in Fig. 11. Because noise seeds perturba-
tions that can cause variations in winding number, the strength
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of the symmetric interactions must not be so strong that
perturbations are damped rapidly. For waves to be formed,
the strength of the directionality, set by asymmetry in the
interactions, should be sufficiently strong that small pertur-
bations are unstable and can grow to large enough values
to change the winding number. The interaction strengths
cannot be so weak that noise causes generated waves to com-
pletely lose coherence. With sufficiently strong asymmetric
interactions, we suspect that a stochastic model is relatively
insensitive to initial conditions, in the sense that only for a
small range of smooth and sloped initial conditions would
the system’s long-lived states depend upon the initial slope in
the phases. Most of our integrations of stochastic directional
models exhibited clusters of oscillators in wavelike states,
but with waves moving in a particular direction set by the
directionality, rather than a coherent wave that spanned the
entire system. If metachronal waves in biological systems
rely on noise to seed waves, then there might be a trade-off
between wave coherence and sensitivity to initial conditions.
Robustly generated long-lived states consisting of clusters of
oscillators driving waves, may be functionally preferable to
unreliably generated but coherent wave states for biological
applications.

Future study could improve upon our understanding of how
the characteristics of the interaction functions and the nature
of stochastic perturbations affect wave generation (as seen
from statistics of the winding number or mean phase shift),
the coherence of the generated waves and their sensitivity
to initial conditions. In biological systems, statistics of wave
speeds, variations in wave speed and coherence of clusters of
oscillators showing coherent phase shifts, might pin down the
role of noise in seeding and maintaining metachronal wave
states and better constrain the nature of interactions between
the oscillators.

For the models we explored, instability caused large phases
differences which resolved with changes in winding number
and giving long-lived waves. Using a perturbative analysis
and by computing eigenvalues of a circulant matrix, Nieder-
mayer et al. [16] shows explicitly for their bidirectional model
[Eq. (27)] that a phase-locked state with a phase shift above
π/2 between each oscillators would be unstable. It is more
difficult to similarly assess, via perturbative linear analysis,
the stability of an entrained state with a large phase shift
in the unidirectional model [Eq. (31)], because this requires
averaging over the oscillation period of the entrained state.
Instability when the phase differences are large is not neces-
sarily sufficient for robust formation of waves. To form waves
in particular direction, jumps in phase should resolve in a par-
ticular direction. In other words, the phase difference should
preferentially cross π in either the clockwise or counter clock-
wise direction (as is true for our unidirectional model but not
the bidirectional model) to ensure that waves form moving in
a specific direction. Perhaps insight can be sought by studying
propagation of phase kinks in other settings (e.g., Ref. [33]) or
by studying jumps in phase that are present in experiments of

cilia carpets, concentrations of vinegar eels or other biological
systems.

We gained intuition by looking at the partial differential
equation that approximates an oscillator chain model. How-
ever, the continuum equations, which are derived in the limit
of small phase shift, do not help us predict how large jumps
in phase evolve. We have noticed that a single large jump in
phase is not sufficient to cause a change in winding num-
ber, rather at least two large phase jumps in sequence are
required. If the collective behavior of the model is sensitive to
the dynamics of strong short wavelength perturbations, then
desirable models for actual biological systems should be good
approximations in both short and long wavelength limits. The
interaction functions for the models we have explored do not
contain more than one minimum or maximum. There may be
constraints on the shapes of the periodic functions that permit
changes in winding number in the associated phase oscillator
dynamical systems.

The partial differential equation that approximates a direc-
tional oscillator chain model in the continuum limit resembles
the Kardar-Parisi-Zhang equation but with the addition of a
third order nonlinear term that is proportional to θxθxx. The
slope-dependent instability we see in the discrete models
suggests that the stochastic version of this differential equa-
tion may exhibit novel phenomena that is not present with the
Kardar-Parisi-Zhang equation.

Hydrodynamic interaction models for cilia can be direc-
tional (e.g., Refs. [6,17]). We have shown here that there are
directional models that exhibit changes in winding number
(and giving waves in a particular direction), but that does
not necessarily mean that this class of models is appropri-
ate for real biological systems. Quantitative measurements
describing the coherence of generated waves may help dif-
ferentiate between stochastic models. Experimental systems
can be studied to see if they exhibit jumps in phase, and if
these arise, if and how they resolve. By evaluating the strength
and shape of the symmetric and antisymmetric hydrodynamic
interaction functions for cilia it may be possible to determine
if instabilities mediate changes in the winding number so that
these systems can preferentially enter and maintain coherent
wavelike states. If this is not the case, then alternate physi-
cal mechanisms are required to account for the formation of
metachronal waves. For example, physical gaps in ciliated
systems, which relax the constraint of a periodic boundary
condition, could facilitate metachronal wave formation, as
proposed by Chakrabarti et al. [6]. Additional physical mech-
anisms for oscillator interaction [34], variations in properties
and additional degrees of freedom describing the individual
oscillators could also influence the collective behavior of in-
teracting oscillating systems.
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