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Diverse phase transitions in optimized directed network models with distinct inward
and outward node weights
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We consider growing directed network models that aim at minimizing the weighted connection expenses
while at the same time favoring other important network properties such as weighted local node degrees.
We employed statistical mechanics methods to study the growth of directed networks under the principle of
optimizing some objective function. By mapping the system to an Ising spin model, analytic results are derived
for two such models, exhibiting diverse and interesting phase transition behaviors for general edge weight,
inward and outward node weight distributions. In addition, the unexplored cases of negative node weights
are also investigated. Analytic results for the phase diagrams are derived showing even richer phase transition
behavior, such as first-order transition due to symmetry, second-order transitions with possible reentrance, and
hybrid phase transitions. We further extend previously developed zero-temperature simulation algorithm for
undirected networks to the present directed case and for negative node weights, and we can obtain the minimal
cost connection configuration efficiently. All the theoretical results are explicitly verified by simulations. Possible
applications and implications are also discussed.
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I. INTRODUCTION

The availability of a large number of technological and
biological data in the last two decades flourished the studies
on complex networks [1–3]. At the same time, other network
data such as social, internet, biodata and technical data banks,
etc., become conveniently accessible through internet further
enhance the research activities of complex networks. Several
key issues are of particular interests, one is how the network
topology affects the function of these complex networks, as
in the case of biological networks. Another issue concerns the
principles behind the formation or growth of such networks
under some optimization goals [4,5]. This is associated with
the question of network coevolution and the development or
connection rules in the network are essential. Presumably
a system is optimizing towards some goal or function, but
subject to some constraints and regulated by feedback of the
status of the network. In many cases, these goals and con-
straints are not constant in time but slowly varying, which is
related to the problem of selection and adaptation in biology
in a broad sense [6–8]. In addition, there were also efforts
to understand the designing principle for network formation
that optimizes information flow [9,10] or robustness against
random or targeted attacks [11,12].

Recently, we have developed the basic theoretical frame-
work for optimized network with undirected connections and
investigated the drastic structural changes associated with
phase transitions [13] and the network properties of the op-
timized undirected networks [14]. Our motivation was to
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understand the relation between the cost and the connectiv-
ity in network connection growth models. The optimizing
goal is to minimize the cost of connection material but at
the same time trying to maximize network connections, or
other relevant beneficial quantities under some possible con-
straints [15]. Two connection growth models of undirected
network were developed in Ref. [13] and by mapping the
network into an Ising spin system, it is found that the op-
timization of these undirected network can often be solved
exactly and in many case these models exhibit interesting
phase transition behaviors. Based on mean-field theories, an
algorithm to search for the optimized undirected link configu-
ration was developed and proved to be highly efficient in the
zero-temperature simulations needed for the fully optimized
solution.

However, one of the most important feature of a com-
plex network is how the nodes are connected, including the
strength of the connection and their directionality. As in-
teractions or relations between nodes can be described by
their directed link connections, this feature determines the
overall properties and governs the dynamics and function-
ality of the network. A node can affect another node but
itself is unaffected or affected to a different extend by the
latter. Such unidirectional interactions are represented as di-
rected networks with directional links. Examples for directed
links includes the chemical synaptic connection from the
presynaptic neuron to the postsynaptic neuron; master-slave
interacting networks in which the master nodes can deliver
output command signals to the slave nodes, but not viceversa.
Presumably, the evolution or formation of such directed net-
works is guided by some objective function that the system
tries to achieve an optimal target.
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Unlike many previous studies relating Ising spins and net-
works in which each spin variable sits on a node and interacts
through the network link with another spin on another node
[16], in this work the Ising spin or binary variable represents
the connection between two nodes [13,14,17,18]. There were
some studies in which the undirected network structure is
also determined by a Hamiltonian consists of binary variables
representing the links [17,18]. These studies investigated the
phase transition of network structure of an undirected network
by re-wiring the connections (i.e., total number of edges is
conserved) as the temperature is changed. In our present study,
we examine the phase transitions of directed networks whose
connections are free to vary at zero-temperature (no “noise”
or fully optimized) as the parameters of the edge weight or
node weight distributions change. In the present work, using
mean-field theory approach, analytic and exact results for a
variety of phase transitions are discovered and verified by
simulations whereas the above mentioned works [17,18] were
largely simulations or phenomenological theory.

In this paper, we extend our previous studies for the op-
timization of undirected network connections [13,14] and
construct two models for the optimized directed networks and
investigate the associated network phase transitions. We con-
sider directed network growing models that aim at minimizing
the connection expenses while at the same time enhancing
other important network properties such as network connec-
tions. Directed connections lead naturally to the distinction
of inward and outward node weights that can give rise to
richer behavior and more diverse phase transitions for the
optimized network. Classical network models and statistical
mechanics methods are employed to study the growth of some
networks under the principle of optimizing some objective
function. By mapping the system to an Ising spin model,
our analytic results indicate that these models exhibit rich
and interesting phase transition behaviors, such as first-order,
second-order, and reentrant phase transitions. In this paper,
using the mean-field theories, we derive the zero-temperature
mean-field equations for the optimized directional network
connections, which further enables the development of an
efficient algorithm to find the optimized directed network
(ground-state) configurations. In addition, we consider the
cases of negative node weights which has not been explored
even for the undirected networks. A node with a negative
weight means that node does not favor to have connections.
Analytic results, including the optimized mean connectivity
and cost, the nature of the network phase transitions and the
associated transition points, the phase diagram together with
the phase boundaries, are derived. Monte Carlo simulations
using the proposed new algorithm are carried out to explicitly
verify these analytic results.

II. DIRECTED NETWORK CONNECTION GROWING
MODEL WITH EDGE AND NODE WEIGHTS

Consider the system which consists of N nodes, and the
connections are described by the N × N adjacency matrix Ai j

[see Fig. 1(a)]. The elements Ai j take the value of 1 or 0,
respectively, for connection or no connection. Here we do not
consider multiple connections between two nodes and there is
no self-connection (Aii = 0). The cost function for a general

(a) (b)

FIG. 1. (a) Schematic figure illustrating a network with directed
links. (b) Picture showing a directed connection from node j to
node i with an edge weight wi j . The inward connection of node i
is associated with an inward node weight of λin

i , and the outward
connection of node j is associated with an outward node weight of
λout

j .

network connection growth is modeled as

C =
N∑

i �= j

wi jAi j − F
({Ai j};

{
λin

i , λout
i

})
, (1)

where F is some function of the adjacency matrix elements
to model the system’s advantage which is some quantitative
measure of the benefit when the directed connections are built
up. To model the local intrinsic heterogeneity or variation of
each node, we further introduce two local node weights for
the inward and outward connections of each node i, denoted,
respectively, by λin

i and λout
i . The weight of each connection

is denoted by wi j which can be interpreted as the price (such
as the wiring materials) to set up the connection Ai j . wi j is
taken to be nonnegative throughout this paper. Here the cost
function C is a function of the adjacency matrix elements
whereas wi j , λin

i , and λout
i are treated as parameters of the

system, which are to be assumed to follow some mutually
independent probability distributions denoted, respectively,
by P(w), pin(λ), and pout(λ). Note that wi j depends on the
edge whereas λin

i and λout
i are node dependent. In a di-

rected network, there can be two oppositely directed edges
between two nodes. The maximal total number of possible
connections or bonds is Nb = N (N − 1). For convenience, the
directed edge of the network is labeled by the Greek index
γ (γ = 1, 2, · · · , Nb) hereafter. Throughout this paper, it is
implicitly assumed that the network is large with N � 1 and
Nb � N2. By introducing the spin variable Sγ ≡ 2Aγ − 1, the
system then be described by an Ising spin model with spin
value Sγ = 1 (connections) or −1(no connection). Then the
problem of finding the minimal cost solution becomes the
search of the ground-state configuration of the Ising spins.
With the above mapping of the directed network adjacency
matrix to an Ising spin system, the optimized connections or
the Ising spin configurations can be obtained by the standard
metropolis Monte Carlo simulation method annealed down to
very low temperature for the approximate solution of the fully
optimized solution (the ground state). But such traditional
Monte Carlo simulations with temperature annealing becomes
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inefficient and computationally demanding in searching for
the zero-temperature ground-state configurations. Due to the
fact that each node in the network can have different affini-
ties of joining a directed link, i.e., the node weights for the
inward and outward connections are different, the dimension
of the parameter space is doubled for directed networks as
compared to the undirected case, and hence allowing richer
phase transition behaviors.

In this paper, by invoking mean-field theories, the mean-
field equations for the fully optimized configuration (ground
state) are derived and diverse phase transitions are obtained
and analyzed in Sec. IV. The case of negative node weights
are considered in Sec. V. And in Sec. VI, based on the
zero-temperature mean-field equations, efficient algorithm is
further proposed, including the scenarios of negative node
weights, and implemented to obtain the fully optimized
directed network configurations. Simulations using the zero-
temperature algorithm are carried out, for networks with N =
100 to 500 nodes, to verify all the theoretical results.

III. OPTIMIZED DIRECTED NETWORKS WITH INWARD
AND OUTWARD WEIGHTED NODES: MODEL A

First we consider a simpler model, which we called Model
A. The cost function is modeled as

CA =
N∑

i �= j

wi jAi j −
(

N∑
i=1

λin
i kin

i +
N∑

i=1

λout
i kout

i

)
, (2)

where kin
i and kout

i are, respectively, the in-degree and out-
degree of node i. The first term in the cost function represents
the resources or materials needed to set up the connections,
while the second term models the trend for the network to
make more connections. An example would be the formation
of a neuronal network, the first term in Eq. (2) corresponds
to the material or energy budget for the neural connections

such as the axons and dendrites, while the second term models
(for positive λin and λout) the tendency to make more neu-
ronal connections so as to carry out efficient information or
neural signal flows to achieve important biological functions.
Another example is a physical network with links made of
wiring material such as a circuit, the goal is to design the
circuit with minimal wiring hardware materials but still can
connect a large number of nodes for efficient information flow.

For directed networks, each node i is allowed to have
different inward and outward local node weights, λin

i and λout
i .

Defining the link dependent parameter

�α ≡ �i j ≡ λin
i + λout

j , (3)

the cost function can be simplified to

CA =
Nb∑

α=1

(wα − �α )Aα. (4)

If λin
i and λout

i follow the distribution Pin and Pout, respectively
(also assumed to be independent of each other), then the
distribution of �α is given by

P(�) =
∫

dλPout(λ)Pin(� − λ). (5)

With the Ising spin variable Sγ ≡ 2Aγ − 1, the model can be
described by the noninteracting Ising spin Hamiltonian:

HA = −1

2

Nb∑
α=1

(�α − wα )Sα. (6)

The corresponding partition function is given by

ln Z =
Nb∑

α=1

ln 2 cosh

[
β

2
(wα − �α )

]
. (7)

The average mean connectivity is related to the order-
parameter (magnetization) of the system via 2〈Ā〉 − 1 =
〈 1

Nb

∑
α Sα〉 which can be calculated to give

〈
1

Nb

∑
α

Sα

〉
= 1

Nb

∑
α

tanh
β

2
(� − w)

Nb→∞
−−−−−→

∫
dw

∫
d� tanh

β

2
(� − w)P(�,w), (8)

where P(�,w) is the joint distribution of � and w. Through-
out this paper, we will assume the node and edge weight
distributions are independent, i.e., P(�,w) = P(�)P(w).

From the expression of CA in Eq. (4), one can easily deduce
that the edges with wα < �α should be built up to reduce the
total cost of the system. In the zero-temperature limit(β →
∞), the connection of each edge simply given by

Aα = �(�α − wα ), α = 1, 2, · · · Nb. (9)

Hence, to obtain the configuration of the fully optimized net-
work for Model A, one can adopt the simple rule of making
connections with �α > wα . In terms of an Ising spin system,
Eq. (9) simply means that the ground state is given by the Ising
spins align with the local external fields. In addition, the mean

connectivity of the optimized network is given by

A = 1

Nb

Nb∑
α=1

�(�α − wα )
Nb→∞

−−−−−→ A =
∫

d�P(�)Fw(�),

(10)

where Fw is the cumulative distribution of edge weight distri-
bution P(w):

Fw(z) =
∫ z

−∞
P(w)dw. (11)

Using Eq. (3), one can derive the mean connectivity of the
optimized directed network in Model A to be

A =
∫∫

dλ1dλ2Pout(λ1)Pin(λ2)Fw(λ1 + λ2). (12)
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The above expression is valid when the two distributions Pout

and Pin are independent.
Hereafter we shall develop the theoretical framework for

describing the behavior of the optimized network for general
edge and node weight distributions that depend on a single
scale, one can write

Pin(λ) = 1

λin
o

pin

(
λ

λin
o

)
, Pout(λ) = 1

λout
o

pout

(
λ

λout
o

)
,

(13)

P(w) = 1

wo
p

(
w

wo

)
,

∫ w

P(w)dw ≡ Fw(w) = fw

(
w

wo

)
,

(14)

for some functions pin, pout, and p that satisfy the nor-
malization conditions, λin

o , λout
o , and wo are the parameters

characterizing the corresponding distributions. Then the be-
havior of the system is governed by only two independent

parameters a ≡ λout
o

wo
and b ≡ λin

o
wo

. The finite-temperature aver-
age mean connectivity can then be written as

〈Ā〉 = 1

2

∫∫
drdspin(r)pout(s)

×
∫

dwp(w)

[
1 + tanh

β

2
(as + br − w)

]
. (15)

The zero-temperature or fully optimized mean connectivity
and optimized cost can be straightforwardly calculated to give

Ā =
∫∫

drdspin(r)pout(s) fw(as + br), (16)

CA

Nbwo
=
∫∫

drdspin(r)pout(s)

×
[∫ as+br

dzzp(z) − (as + br) fw(as + br)

]
.

(17)

Below we shall derive some analytical results for several given
edge and node distributions and verify these results by Monte
Carlo simulations.

A. Model A with homogeneous node weights

In this case, each node has the same inward weight and
outward weight with pin(r) = δ(r − 1) and pout(s) = δ(s −
1). The finite-temperature average mean connectivity can be
calculated from Eq. (15) with an exponentially distributed
(nonnegative) edge weight p(w) = e−w (w ∈ [0,∞)) to
give

〈Ā〉 =2 F1

(
1, 1 + 1

β
; 2 + 1

β
; −e(a+b)β

)
e(a+b)β

1 + β
, (18)

where 2F1 is the hypergeometric function. Traditional
metropolis Monte Carlo simulations of the corresponding
Ising spin system at finite temperature is performed and the
average magnetization is measured to give 〈Ā〉 as a function
of the parameter a + b as plotted in Fig. 2(a), verifying the
formula in Eq. (18).

The optimized mean connectivity and cost can be directly
obtained from Eqs. (16) and (17) to be

Ā = fw(a + b),
CA

Nbwo
=
∫ a+b

dzzp(z) − (a + b) fw(a + b).

(19)

It is clear that in this case, the properties of the optimized
network depends only on a single parameter a + b. For an
exponentially distributed (nonnegative) edge weight, p(w) =
e−w with w ∈ [0,∞), Eq. (19) reads

Ā = [1 − e−(a+b)]�(a + b),

× CA

Nbwo
= [1 − e−(a+b) − (a + b)]�(a + b) � 0.

(20)

Zero-temperature simulations are easily carried out by using
Eq. (9) to connect the link α whenever �α exceeds wα .
Figure 2(a) also shows the measured Ā as a function of the
parameter a + b, showing perfect agreement with the predic-
tion in Eq. (20).

B. Exponential distributions in node and edge weights

For exponentially distributed (nonnegative) edge and node
weights, we have p(w) = e−w, pin(r) = e−r and pout(s) =
e−s, r, s,w ∈ [0,∞) and the optimized mean connectivity can
be obtained from Eqs. (16) and (17) as

Ā = a + b + ab

(1 + a)(1 + b)
,

CA

Nbwo
= 1 − a2 − b2 − ab(a + b)

(1 + a)(1 + b)
.

(21)

Figure 2(b) shows the simulation results of the mean connec-
tivity of the optimized network as a function of a for the cases
of b = a and b = 1. The corresponding theoretical results
from Eq. (21) are also displayed showing perfect agreement.
Figures 2(c) and 2(d) display the contour plots of Ā and
(normalized) CA as a function of a and b as given by Eq. (21).
The variations of the optimized mean connectivity is smooth
and no phase transition occurs.

C. Equal edge weight distribution

Now each edge shares the same weights, namely p(w) =
δ(w − 1). From Eqs. (16) and (17), one gets

Ā =
∫∫

drdspin(r)pout(s)�(as + br − 1), (22)

CA

Nbwo
= −

∫∫
drdspin(r)pout(s)(as + br − 1)

�(as + br − 1) � 0. (23)

For illustration, consider uniform distribution of node weights
in some finite domain, namely Pin(λ) = 1/λin

o for λ ∈ [0, λin
o ]

and Pout(λ) = 1/λout
o for λ ∈ [0, λout

o ], i.e., pin(r) = 1 for r ∈
[0, 1] and = 0 otherwise; and similarly for pout. Using Eq. (22)
and after some algebra, formula for Ā(a, b) can be derived
whose functional form depends on the regimes in the “phase
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(a) (b)

(c) (d)

FIG. 2. The mean connectivity of the optimized directed network in Model A with exponentially distributed (nonnegative) edge weights.
(a) Both the outward and inward node weights are homogeneous, with the respective node strength characterized by a and b. Metropolis
Monte Carlo simulation of the average mean connectivity at finite temperature with β = 5 is shown by the ◦ symbols. The fully optimized
(zero-temperature) mean connectivity measured in simulations, performed with the algorithm in Sec. VI, is denoted by the � symbols. The
corresponding theoretical results are denoted by the solid and dashed curves. (b) Both the inward and outward node weight distributions are
exponential decay functions. The fully optimized (zero-temperature) mean connectivity measured plotted as a function of a in simulations for
exponentially distributed (nonnegative) inward and outward node weights. The corresponding theoretical result is denoted by the solid(b = a)
and dashed(b = 1) curves. (c) Contour plot of the mean connectivity of the optimized network in panel (b) as a function of a and b. (d) Contour
plot of the cost of the optimized network as a function of a and b for the case in panel (c).

diagram” shown in Fig. 3(a):

Ā4 = 0, Ā3 = (a + b − 1)2

2ab
, Ā2 = 1 − 1

2ab
,

Ā1 = 1 + a

2b
− 1

b
, Ā1′ = 1 + b

2a
− 1

a
. (24)

Here the subscript of Ā denotes the corresponding region in
Fig. 3(a). To verify the above analytic formula, simulations are
performed along the b = a line for different values of a whose
mean connectivity are measured and shown in Fig. 3(b). The
corresponding theoretical result can be obtained from Eq. (24)
to give

Ā =

⎧⎪⎨
⎪⎩

0 a � 1
2 ,

(2a−1)2

2a2
1
2 < a � 1,

1 − 1
2a2 1 < a,

(25)

which also is plotted in Fig. 3(b) showing perfect agreement.
Simulations for fixed b = 2 for different values of a are also
carried out [see Fig. 3(b) also], with the theoretical result
derived to be

Ā =

⎧⎪⎨
⎪⎩

0 a � −2,

1
2 + a

4 −2 < a � 1,

1 − 1
4a 1 < a,

(26)

again showing perfect agreement [dashed curve in Fig. 3(b)].

IV. MODEL B: MEAN-FIELD EQUATIONS
AND PHASE TRANSITIONS

To model the cooperative effect of the formation of an
edge that is enhanced by the existence of another edge, one
can model such interactions on a “mean-field” level by the
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(a) (b)

FIG. 3. Optimized network in Model A with uniform distribution
of node weights in some finite domain, pin(r) = 1 and pout = 1
for r, s ∈ [0, 1] and = 0 otherwise. The edges are unweighted with
p(w) = δ(w − 1). (a) b vs a phase diagram showing regions with
different expression for the optimized mean connectivity as given by
Eq. (24). (b) Simulation results for the optimized mean connectivity
Ā as a function of a for the cases of b = a and b = 2. The correspond-
ing theoretical results are denoted by the solid and dashed curves.

following cost function, which we called Model B, as

CB =
N∑

i �= j

wi jAi j − 1

Nb

(
N∑

i=1

λin
i kin

i +
N∑

i=1

λout
i kout

i

)2

=
Nb∑
γ

wγ Aγ − 1

Nb

(
Nb∑

γ=1

�γ Aγ

)2

, (27)

where �α is also given by Eq. (3). The two terms in CB have
similar physical meaning as that of Model A given by Eq. (2).
The main difference is that the tendency to make connections
in Model A increases linearly with the weighted sum of the
local degree, whereas in Eq. (27) such a tendency to make
connection is quadratic so as to model the simplest cooper-
ative or nonlinear effects in forming the connections, which
in turn can lead to more interesing phase transitions. Again
with the Ising spin defined as Sγ = 2Aγ − 1, one obtains the
Hamiltonian of Ising spin system

HB = −1

2

∑
γ

(��γ − wγ )Sγ − 1

4Nb

(∑
γ

�γ Sγ

)2

, (28)

which consists of an external field term and an interaction
term (second term) with �γ �γ ′ being the strength of interac-
tions between two spins Sγ and Sγ ′ . The statistical mechanics
of this model can be solved by performing the Hubbard-
Stratonovich transformation to calculate the partition function
to give

Z =
√

βNb

4π

∫ ∞

−∞
exp

{
− βNb

4
y2

+
∑

ln 2 cosh
β

2

[
(� + y)�γ − wγ

]}
dy, (29)

which leads to the saddle-point equation in the large Nb limit
given by

yo = 1

Nb

∑
γ

�γ tanh

{
β

2
[(� + yo)�γ − wγ ]

}
(30)

→
∫

d�

∫
dwP(�,w)� tanh

{
β

2
[(� + yo)� − w]

}
.

(31)

yo represents the modified order-parameter (or weighted
magnetization), yo ≡ 1

Nb

∑Nb
γ �γ Sγ . For the fully optimized

solution for the network model, the ground state should be
considered (i.e., β → ∞). Here, we introduce a new pa-
rameter uo defined as uo ≡ 1

Nb

∑
γ �γ Aγ ≡ �A. Assuming

P(�,w) = P(�)P(w), we derive the saddle-point equa-
tion governing the connectivity of the fully optimized
(zero-temperature) network:

uo =
∫∫

dλ1dλ2Pout(λ1)Pin(λ2)(λ1 + λ2)Fw[2uo(λ1 + λ2)].

(32)

The mean connectivity of the optimized network is given by

A =
∫∫

dλ1dλ2Pout(λ1)Pin(λ2)Fw[2uo(λ1 + λ2)], (33)

where uo is obtained from the root of Eq. (32). It is clear that
uo = 0 (corresponds to network with no edge at all) is always
the trivial root for nonnegative edge weights.

A. Mean-field equations for Model B

In addition to the saddle-point equation for uo which de-
scribes the mean properties of the whole system, one can
employ the mean-field theory to derive the local mean-field
equations for the local magnetizations or network connec-
tions. To carry out the mean-field approximation, the spin in
Eq. (28) is replaced by its mean value mγ ≡ 〈Sγ 〉, and the
Hamiltonian becomes

HB = − 1

2

∑
γ

(��γ − wγ )Sγ

− 1

4Nb

∑
γ

∑
γ ′

�γ ′�γ (mγ ′ + δsγ ′ )(mγ + δsγ ), (34)

where δsγ is the fluctuation from the mean value, Sγ = mγ +
δsγ . Ignoring spin fluctuations of O(δs2) and higher, we ob-
tain the Hamiltonian under the mean-field approximation:

HMF
B = − 1

2

∑
γ

[(
� + 1

Nb

∑
γ ′

�γ ′mγ ′

)
�γ − wγ

]

× Sγ − 1

4Nb

(∑
γ

�γ mγ

)2

. (35)

Now, the mean-field Hamiltonian of Model B share the same
form as in Model A and one can obtain the local mean-field
equations

mγ = tanh
β

2

[(
� + 1

Nb

∑
γ ′

�γ ′mγ ′

)
�γ − wγ

]
,

× γ = 1, 2, · · · , Nb, (36)
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(a) (b)

FIG. 4. (a) The general scenario of G′′
a,b(v) < 0 holds, exhibiting a second-order transition. For G′

a,b(0) < 1
2 (red dot-dashed curve), only

the trivial v = 0 root for the saddle-point Eq. (39) which corresponds to situation that the optimized solution is an unconnected network. For
G′

a,b(0) > 1
2 (blue solid curve), another nontrivial v > 0 root exists corresponding to a network with finite connections. (b) The scenario that

Ga,b(v) has an inflexion point, i.e., G′′
a,b(v) = 0 at some v > 0, a first-order phase transition is possible. As the parameters (a, b) vary to (a∗,

b∗), a nontrivial root emerge via a tangent bifurcation at v = v∗ (the red dot-dashed curve). Further change in the parameters result in two
nontrivial roots v1 and v2 as shown by the blue solid curve.

which is consistent with the saddle-point equation for yo in
Eq. (30). The local mean-field equations can also be derived
using the cavity method in interacting Ising spin systems
(see the review [16]). In addition, it is worth to note that
in general the correct equation for local magnetization for
heterogeneous coupling strengths (especially with ferro and
antiferro couplings) is the Thouless-Anderson-Palmer (TAP)
equation [19]. However, due to the 1/Nb factor in the spin-spin
coupling term of the Hamiltonian (28), the TAP equation re-
duces to Eq. (36) in the thermodynamic limit (Nb → ∞) since
the reaction term in the TAP equation is of order Nb times
smaller than the mean-field term.

In the zero-temperature limit with mγ = 2Aγ − 1, one can
derive the mean-field equations for the optimized directed link
configurations from Eq. (36):

Aγ = �(2�A�γ − wγ ), γ = 1, 2, · · · , Nb, (37)

which are coupled nonlinear equations for the Aγ ’s.

B. Classification of phase transitions in Model B

Hereafter, we shall focus on edge and node weight distri-
butions as given by Eqs. (13) and (14). Introducing the scaled
variable v ≡ 2uo/wo = 2

wo
�A, the mean-field equations (37)

can be rewritten as

Aα = �(vwo�α − wα ), α = 1, 2, · · · Nb, (38)

and v satisfies the saddle-point equation

v

2
=
∫∫

drdspin(r)pout(s)(as + br) fw(v[as + br])

≡ Ga,b(v), (39)

where a ≡ λout
o√
wo

and b ≡ λin
o√
wo

for Model B. The mean connec-
tivity and optimized cost can be directly calculated to give

Ā =
∫∫

drdspin(r)pout(s) fw(v[as + br]), (40)

CB

Nbwo
=
∫∫

drdspin(r)pout(s)
∫ (as+br)v

dzzp(z) − v2

4
,

(41)

where v is the root of the saddle-point equation (39).
In general, Ga,b(v) �

∫∫
drdspin(r)pout(as + br) and

hence is bounded. Since w is nonnegative, G′
a,b(v) =∫∫

drdspin(r)pout(s)(as + br)2 p(v[as + br]) � 0, i.e.,
Ga,b(v) is a nondecreasing function in v. There can be
two general and one special scenarios determining the nature
of the phase transitions.

The first general scenario is that G′′
a,b(v) < 0 always holds,

which will lead to a second-order phase transition as explained
below. Since Ga,b(v) is nondecreasing and bounded by its
value at large v [see Fig. 4(a) for a schematic illustration],
Eq. (39) implies a nontrivial root of the saddle-point equation
emerges for G′

a,b(0) > 1
2 . And if the associated cost CB < 0,

which will be further demonstrated below, then a continuous
second-order phase transition results. The second-order tran-
sition occurs at (ac, bc) and the phase boundary can be derived
from G′

ac,bc
(0) = 1

2 to be

2p(0)I2 = 1, In ≡
∫∫

drdspin(r)pout(s)(acs + bcr)n.

(42)
Remarkably, the critical phase boundary curve depends on
p(0) but does not depend on the detail shape of the edge
weight distribution. The properties of the continuous transi-
tion can be further investigated by examining the behavior
near (ac, bc) in the v � 0 (ordered or finite-connectivity) phase
by expanding the solution of v in Eq. (39) in powers of the
deviation from criticality, i.e., in powers of G′

a,b(0) − 1
2 . For

p′(0) �= 0, using G′′
a,b(0) = p′(0)I3, direct calculations give

v � 2
(
G′

a,b(0) − 1
2

)
−p′(0)I3

+ O
{[

G′
a,b(0) − 1

2

]2}
, (43)

and the mean connectivity near the phase boundary in the
finite-connectivity phase is

Ā � 2p(0)I1

−p′(0)I3

[
G′

a,b(0) − 1

2

]
+ O

{[
G′

a,b(0) − 1

2

]2}
, (44)

with a critical exponent of unity. Furthermore, the optimized
cost in Eq. (41) for the nontrivial solution can be expanded to
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O(v3) to give

CB

woNb
� −2

[
G′

a,b(0) − 1
2

]3

3[p′(0)I3]2
+ O

{[
G′

a,b(0) − 1

2

]4}
, (45)

which is always negative in the finite-connectivity phase and
hence is the optimized network. If p′(0) = 0 and the lowest
order nonvanishing derivative is n (i.e., p(n) �= 0), similar cal-
culations can also be carried out. For instance, Ā ∼ [G′

a,b(0) −
1
2 ]

1
n , i.e., the critical exponent is 1

n .
The second general scenario is that Ga,b(v) has an inflexion

point, i.e., G′′
a,b changes sign, and a first-order transition can

occur. In this case, a nontrivial root emerges via a tangent
(saddle-node) bifurcation that occurs at (a∗, b∗) with v = v∗
[see the schematic illustration in Fig. 4(b)]. Further changes
in (a, b) results in a pair of nontrivial roots (denoted by v1

and v2) as illustrated by the blue solid curve in Fig. 4(b). The
abrupt occurrence of nontrivial and noninfinitesimal v > 0
roots for infinitesimal changes of (a, b) beyond (a∗, b∗) leads
to a first-order transition. v∗ satisfies Eq. (39) together with

G′
a∗,b∗ (v∗) = 1

2 . (46)

However, in many scenarios the corresponding cost CB for
the nontrivial root(s) may still be positive and the zero-cost
unconnected network is still the optimized one. As the pa-
rameters a and b are varied, CB for the nontrivial root can
become negative and a first-order transition occurs. In this
case, a first-order transition occurs at v = vt and the phase
boundary can be determined from the conditions:

CB(vt ) = 0, Ga,b(vt ) = vt

2
. (47)

In general, one needs to examine the corresponding costs
of the nontrivial roots emerged [say v1 and v2 as shown in

Fig. 4(b)], and together with the zero-cost of the trivial un-
connected solution, the optimized solution is given by the one
with the lowest cost. And a first-order transition occurs when
there is a switch in the lowest cost among CB(0) = 0, CB(v1),
and CB(v2).

Finally, in some special cases, it is possible that the root
v∗ emerges at the tangent bifurcation has a cost CB(v∗) � 0,
then a hybrid phase transition results [13]. Such hybrid phase
transition exhibits characteristics of a first-order (a jump in
the mean connectivity) and second-order [a continuous power-
law increase of mean-connectivity for small variations of the
parameters beyond (a∗, b∗)] phase transitions. As the param-
eters vary beyond the hybrid phase transition boundary, the
optimized solution is given by vi (i = 1 or 2) where CB(vi ) =
min[CB(v1), CB(v2)].

C. Equal edge weight distribution: P(w) = δ(w − wo)

In this case fw(w) = �(w − 1), it is easy to see from
Eq. (39) that G′

a,b(0) = 0. Here we consider nonnegative
node weights, i.e. pin(r), pout(s) with r, s ∈ [0,∞), hence
Ga,b(v → ∞) → a positive constant. Since Ga,b(v) is not a
constant and nondecreasing, thus there must be an inflexion
point (G′′

a,b = 0) at some finite value of v which is the scenario
as depicted in Fig. 4(b). Therefore, for the case of unweighted
edge, there is in general a first-order phase transition, which
will be demonstrated explicitly below.

Here we take the node weights to follow exponential de-
cay distributions with nonnegative weights, i.e., pin(r) = e−r ,
pout(s) = e−s where r, s,∈ [0,∞). Using Eqs. (39)–(41), af-
ter some algebra, one obtains (recall a ≡ λout

o√
wo

> 0 and b ≡
λin

o√
wo

> 0)

v

2
= Ga,b(v) = be− 1

bv (bv + 1) − ae− 1
av (av + 1)

v(b − a)

b→a
−−−−−→ [1 + 2av(1 + av)]e− 1

av

av2
, (48)

Ā = be− 1
bv − ae− 1

av

(b − a)

b→a
−−−−−→ (1 + av)e− 1

av

av
, (49)

CB

Nbwo
= Ā − v2

4
= be− 1

bv − ae− 1
av

(b − a)
− v2

4
. (50)

From Eq. (48), one gets G′′
a,b(v) = (a−3abv)e− 1

bv −(b−3abv)e− 1
av

ab(b−a)v5

and hence there is an inflexion point at some finite v > 0, and
thus nontrivial root v∗ emerges via tangent bifurcation given

by Eq. (48) and 1
2 = G′

a,b(v∗) = e− 1
bv∗ −e− 1

av∗
(b−a)v∗3 . In addition, the

tangent bifurcation boundary curve for the emergence of non-
trivial root, φbi f (a, b) = 0, can be obtained by eliminating v

in Eq. (48) and G′
a,b(v) = 1

2 which reads

e− 1
bv − e− 1

av

(b − a)v3
= be− 1

bv (bv + 1) − ae− 1
av (av + 1)

v2(b − a)
= 1

2
. (51)

φbif(a, b) = 0 is shown by the dashed curve in Fig. 5(a). Care-
ful examination reveals that the cost of the emerged nontrivial
root CB(v∗) is positive and hence the unconnected network
is still the optimized solution. Upon further changes in the

parameters away from the bifurcation boundary, the cost of
one of the nontrivial root (the larger one) decreases and
becomes negative at some threshold signifying a first-order
phase transition, whose conditions are given by Eq. (47),
which in this case reads

v

2
=
√

be− 1
bv − ae− 1

av

(b − a)
= be− 1

bv (bv + 1) − ae− 1
av (av + 1)

v(b − a)
,

(52)

and the solution gives the first-order boundary curve as shown
in Fig. 5(a).

The above theoretical results are further verified by sim-
ulations for the measured mean connectivity as displayed
in Fig. 5(b) showing perfect agreement with the analytic
formula. For case of b = a, in this case a∗ for the tangent
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FIG. 5. Optimized directed network in Model B with edges of equal weights and nonnegative exponentially distributed inward and outward
node weights. (a) Phase diagram showing the boundary (the red dashed curve) separating the emergence of nontrivial roots via tangent
bifurcation, φbi f (a, b) = 0. The boundary curve for zero optimized cost, CB = 0, which is also the first-order phase boundary is shown by
the solid blue curve. (b) Simulation results of the optimized network for Ā vs a the cases of b = 0.9 and b = 0.6. The respective theoretical
predictions from Eqs. (48) and (49) for Ā are also shown. (c) The (normalized) cost, CB

Nbwo
, of the optimized network measured in simulations

(symbols) as a function of a for the case of b = a. The lowest cost among the costs of all roots of the saddle-point equation (48) is shown by
the solid curve. The cost is zero for the trivial no connection network, the (lower cost) nontrivial solution emerged at a∗ � 0.4270 also has a

positive cost, and its cost decreases with a and becomes negative for a > at = e
1√
2

2
√

2(1+√
2)

� 0.46149. a∗ and at are marked by vertical dotted

lines.

bifurcation point and at for the first-order transition point can
be derived analytically to be

a∗ = s∗2e
1

2s∗√
2

, where

s∗ = 3

1 + 3
√

37 − 3
√

114 + 3
√

37 + 3
√

114
� 0.44062

(53)

is the real root of 2s∗3 + 2s∗2 + s∗ = 1, (54)

at = e
1√
2

2
√

2(1 + √
2)

� 0.46149. (55)

The simulation results indicate a sharp jump in Ā near a =
0.46 in close agreement with the theoretical at . The sim-
ulations are perform with a single realization of the edge
and node distribution and strong realization fluctuations are
observed near the transition in the simulations, average over
many realizations will render the simulation results in even
better agreement with the theoretical results, as observed in
previous studies on undirected optimized networks [13]. The
simulation result of the optimized cost is also displayed as
a function of a for b = a in Fig. 5(c). The theoretical cost
as given by Eq. (50) is also shown (solid curve). Notice that
the cost is zero for the trivial no connection network, the
(lower cost) nontrivial solution emerged at a∗ � 0.4270 also
has a positive cost, and its cost decreases with a and becomes
negative for a > at =� 0.46149.

D. Model B with homogeneous node weights: First- and
second-order phase transitions

In this case, the nodes have the same inward weights
and the same outward weights with pin(r) = δ(r − 1) and
pout(s) = δ(s − 1). The optimized mean connectivity and cost
can be directly obtained from Eqs. (40) and (41) to be

Ā = fw[(a + b)vr],

× CB

Nbwo
=
∫ (a+b)vr

dzzp(z) − (a + b)2Ā2, (56)

where vr is the lowest-cost root of the saddle-point equa-
tion (39),

v/2 = Ga,b(v) ≡ (a + b) fw[(a + b)v], and

G′
a,b(v) = (a + b)2 p[(a + b)v]. (57)

The behavior of the network is determined by the single pa-
rameter a + b. The increase of either a (outward node weight)
or b (inward node weight) will enhance the network connec-
tions of the network.

Depending on the properties of the edge distribution fw, the
optimized directed network can exhibit a variety of different
phase transitions as described in the previous section, which
will be illustrated below. First consider the edge distribution
of the form

p(w) = wαe−w

�(1 + α)
, w ∈ [0,∞); α � 0, (58)
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FIG. 6. (a) Second-order transition of the directed Model B with
unweighted nodes and exponential edge weight distribution given by
Eq. (58) with α = 0. The optimized mean-connectivity as a func-
tion of a + b (dashed curve). The optimized cost as a function of
a + b (solid curve). The simulation results (symbols) are also plotted.
(b) First-order transition of the directed Model B with unweighted
nodes and edge weight distribution given by Eq. (58) with α = 1.
Simulation results (symbols) for the optimized mean-connectivity
as a function of a + b showing a transition close to the theoretical
value of (a + b)t � 1.34 (marked by vertical dotted line). The solid
curve is the theoretical result as given by Eq. (62). Simulation results
(symbols) of the normalized cost of the network as a function of
a + b. The cost as given by Eq. (60) (blue dashed curve) is zero for
the trivial no connection network, the (lower cost) nontrivial solution
emerged at (a + b)∗ � 1.23 also has a positive cost, and its cost
decreases becomes negative for a + b > (a + b)t � 1.34. (a + b)∗

and (a + b)t are marked by vertical dotted lines.

and the cumulative distribution is given by fw(z) = 1 −
�1+α (z)
�(1+α) . Other relevant quantities can be directly obtained from
Eqs. (56) and (57):

Ga,b(v) = (a + b)

[
1 − �1+α ((a + b)v)

�(1 + α)

]
,

G′
a,b(v) = (a + b)2+α

�(1 + α)
vαe−(a+b)v, (59)

Ā = 1 − �1+α ((a + b)vr )

�(1 + α)
,

CB

Nbwo
= 1 + α − �2+α ((a + b)vr )

�(1 + α)
− (a + b)2Ā2. (60)

For α = 0 and hence p(z) is monotonic decreasing, the
optimized network exhibits a second-order phase transition
to be shown as follows. In this case, fw(z) = 1 − e−z and
the saddle-point equation reads v/2 = Ga,b(v) = (a + b)[1 −
e−(a+b)v]. Thus, G′′

a,b(v) is always negative and thus a second-
order transition is given by G′

a,b(0) = 1
2 [see Fig. 4(a)]

and occurs at a + b = 1√
2
. The mean connectivity given

by Eq. (60) can be directly calculated to give Ā = [1 −
e−(a+b)vr ]�(a + b − 1√

2
) where vr is the nontrivial root given

by the saddle-point equation vr/2 = (a + b)[1 − e−(a+b)vr ].
In addition, it can be verified that CB(vr ) is always negative
justifying that the nontrivial root has a lower cost. Simulations
are performed and the measured results for Ā as a function of
a + b are plotted in Fig. 6(a) together with the above theoreti-
cal result showing perfect agreement.

For the case of α > 0, p(w) exhibits a peak and Ga,b(v) has
an inflexion point [see Fig. 4(b)], the optimized network has

a first-order transition to be described below. Take α = 1 for
example, then Ga,b(v) = (a + b)(1 − [1 + (a + b)v]e−(a+b)v )
and direct calculations indicates that the nontrivial root v∗
of the saddle-point equation emerges at (a + b)∗ via tangent
bifurcation, which can solved from Eq. (57) to be (a + b)∗ =√

ez∗

2z∗ = 1.2944 where z∗ = 1.7933 is the nonzero root of ez =
z2 + z + 1; and v∗ = ez∗

2 = 1.3854. But the corresponding
cost CB(v∗) still remains positive and thus not the optimized
solution. Upon further increasing a + b, there are two non-
trivial roots and the cost of the larger root (v2) decreases
and its cost becomes zero at the first-order transition point
a + b = (a + b)t with v2 = vt . (a + b)t and vt can be obtained
by solving Eq. (47) and CB = 0 with Ga,b and CB given by
Eqs. (59) and (60). After some algebra, one gets the first-order
transition threshold

(a + b)t =
√

yt

2[1 − (1 + yt )e−yt ]
= 1.33941,

whereyt = 2.688, (61)

which is the nonzero root of4 − y = e−y(4 + 3y + y2)

(62)

and vt =
√

2yt [1 − (1 + yt )e−yt ] = 2.0069. (63)

Figure 6(b) plots the simulation results of measured mean
connectivity of the optimized network Ā as a function of a + b
with α = 1 showing an abrupt jump signifying the first-order
transition at (a + b)t ≈ 1.34 in close agreement with the the-
oretical value.

The diversity in phase transitions of the model can be
illustrated by the edge distributions of the form

p(w) = (w + α)e−w

1 + α
, w ∈ [0,∞); α � 0. (64)

The cumulative distribution is given by fw(z) = 1 − (1 +
z

1+α
)e−z. Other relevant quantities can be directly calcu-

lated similarly using Eqs. (56) and (57). The diverse phase
transitions can be demonstrated in the phase diagram of α

versus a + b displayed in Fig. 7(a), showing both first- and
second-order phase boundaries which are obtained analyti-
cally. Critical phase transition occurs for α > 1 whose phase
boundary can be derived from G′

a,b(0) = 1
2 using Eq. (59) to

give (a + b)c =
√

1+α
2α

. First-order transition takes place for
α < 1 whose phase boundary can be derived from Eq. (47).
The first- and second-order phase boundary merged at the crit-
ical point of α = 1 and a + b = 1. The change in the nature
of the phase transitions at α = 1 can be attributed to the form
of the edge distribution in Eq. (64) that p(w) is monotonic
decreasing for α > 1 but exhibits a peak for α < 1 (thus, Ga,b

has an inflexion point and hence the first-order transition).
Simulations are performed to measure the mean-connectivity
of the optimized networks as a function of a + b for different
values of α as plotted in Fig. 7(b) showing the characteristics
of first- and second-order transitions for α < 1 and α > 1,
respectively. The theoretical values obtained from Eq. (56) are
also plotted showing perfect agreement with the simulation
results.
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FIG. 7. First- and second-order phase transitions in the directed Model B with unweighted nodes and edge weight distribution given by
Eq. (64). (a) Phase diagram of α vs a + b. The first- and second-order phase boundaries are denoted by the blue dashed and red solid curves,
respectively. The first- and second-order phase boundary meets at the tricritical point of α = 1 and a + b = 1. (b) Simulation results for the
optimized mean-connectivity as a function of a + b showing a first-order transition for α = 0.5 and a second-order transition for α = 1.5.
The simulation results (symbols) indicate a sharp jump in Ā at a + b = (a + b)t � 1.1413 for α = 0.5 which is very close to the bifurcation
point for nontrivial root at (a + b)∗ � 1.13404. The theoretical result (blue dashed curve) is also shown. For for α = 1.5, a second-order phase

transition occurs at (a + b)c =
√

1+α

2α
= 0.91287. The theoretical result (red solid curve) is also shown.

E. General phase diagrams in Model B

Here we consider some general, common but nontrivial
node and edge weight distributions. The key formulas for
general analytic calculations have been listed in Eqs. (39)–
(41). In general, the phase diagram of b versus a with the
corresponding phase boundaries can be obtained analytically.
For illustration, consider the case of exponential decay distri-
butions for all nonnegative node and edge weights, namely:
pin(r) = e−r , pout(s) = e−s, p(w) = e−w, where r, s,w ∈
[0,∞). From Eqs. (39)–(41), after some algebra, one can
derive

Ga,b(v) = a + b + a2

(b − a)(1 + av)2
− b2

(b − a)(1 + bv)2

b→a
−−−−−→ 2a

(
1 − 1

(1 + av)3

)
, (65)

Ā = (a + b + abv)v

(1 + av)(1 + bv)
, (66)

CB

Nbwo
=
[

a2 + b2 + ab + abv(2a + 2b + abv)

(1 + av)2(1 + bv)2
− 1

4

]
v2.

(67)

One can see from Eq. (65) that G′′
a,b(v) < 0 for all finite v and

hence exhibits a second-order phase transition at 1
2 = G′

a,b(0),
which gives the critical phase boundary on the a-b phase di-
agram: 4(a2

c + acbc + b2
c ) = 1, which is shown in the contour

plot of the cost as a function of a and b in Fig. 8(a). The
theoretical results are further verified by simulations for the
measured mean connectivity as displayed in Fig. 8(b) showing
perfect agreement with the analytic formula.

F. Hybrid phase transition

In some special situations, the optimized network under-
goes a hybrid phase transition from the unconnected network
to a network of finite (and not small) connectivity displaying
an abrupt jump in Ā but the emergence of nontrivial solution
is not via the tangent bifurcation as in the case of first-order
transition discussed in previous section. In fact, the emergence
of the nontrivial solution resembles more the situation of the
second-order transition with Ga,b(0) > 1

2 , but the nontrivial
just emerged is always not small. Such a scenario results in a
hybrid phase transition [20], exhibiting both first- and second-
order characteristics. To illustrate the hybrid phase transition,
here we consider the case of node and edge distributions pin,
pout, and p(w) are all uniformly distributed in [0, 1). Relevant
quantities such as Ga,b(v), Ā, and CB can be derived analyti-
cally using Eqs. (39)–(41) to give

Ā =
∫ 1

0

∫ 1

0
drds fw[(as + br)v], fw(z)=

{
1, z � 1
z, 0 < z < 1 ,

(68)

CB

Nbwo
= 1

2

∫ 1

0

∫ 1

0
drds

×
({

1, (as + br)v � 1
(as + br)2v2, (as + br)v < 1

)
− v2

4
,

(69)

where v is the root of the saddle-point equation

v

2
= Ga,b(v) =

∫ 1

0

∫ 1

0
drds(as + br) fw[(as + br)v]. (70)
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FIG. 8. Optimized directed network in Model B with nonnegative exponentially distributed inward and outward node weights, the
nonnegative edge weight is also exponentially distributed. (a) Contour plot of the theoretical optimized cost (normalized) as a function of
a and b. The critical phase boundary separating the optimized network to be unconnected or with finite connectivity, 4(a2

c + acbc + b2
c ) = 1, is

also shown by the red dashed curve. (b) Simulation results of the optimized network for Ā vs a the cases of b = a and b = 0.6. The respective
theoretical predictions from Eqs. (65) and (66) for Ā are also shown.

In particular, Ga,b(v) = v
6 (2a2 + 2b2 + 3ab) for v < 1/(a +

b). The main feature that results in the hybrid phase transition
can be traced to the properties in Ga,b(v) having a finite
region of linearity with positive slope for v > 0, as depicted
in Fig. 9(a). If the slope is less than 1

2 , the trivial root is
the only solution [dot-dashed curve in Fig. 9(a)]. The slope
of the linear regime increases as the parameters vary and a
nontrivial root of finite magnitude emerges for G′

a,b(0) > 1
2

[solid curve in Fig. 9(a)] similar to the scenario of a second-
order transition [see Fig. 4(a)], but here the difference is that
the magnitude of the emerged root is not infinitesimally small
even it is infinitesimally close into the finite connection phase.
The hybrid phase transition boundary can be derived to be
2a2 + 2b2 + 3ab = 3, which is shown in Fig. 9(b). The hybrid

phase boundary separates the unconnected network (Ā = 0,
lower left quadrant) from the optimized network of finite
connectivity (Ā > 0 and not small). Simulations are carried
out to measured the Ā of the optimized networks as a function
of a for various values of b and the results (symbols) are
plotted in Fig. 9(c), which are in perfect agreement with the
corresponding theoretical results (curves).

V. OPTIMIZED NETWORK WITH NEGATIVE
NODE-WEIGHTS

Here we consider the interesting situations in which some
of the nodes can have negative node weights. A node with
negative node weight means that the node does not favor

0 0.5 1 1.5 2
a

0

0.2

0.4

0.6

0.8

1

A

b = a

b = 0.5

b = 1.5

(b)(a) (c)

FIG. 9. Hybrid phase transitions in the directed Model B with node and edge weights follow the uniform distributions. (a) The function
Ga,b(v) for 2a2 + 2b2 + 3ab < 3 (red dot-dashed curve) and 2a2 + 2b2 + 3ab > 3 (blue solid curve). The v

2 line is also shown by the dashed
line. (b) Phase diagram of b vs a. The hybrid phase boundary separating the unconnected network to optimized network with finite connectivity
is denoted by the blue solid curve. (c) Simulation results for the optimized mean-connectivity as a function of a for various values of b. The

simulation results (symbols) indicate a sharp jump in Ā at a =
√

3
7 � 0.65465 for the case of b = a. The corresponding theoretical results

(curves) are also shown.
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FIG. 10. Undirected optimized network of Model A with negative node weights with pλ(z) uniformly distributed in z ∈ [c − 1, c], 0<c<1
is the fraction of nodes with positive weights, and edge weight cumulative distribution fw (z) = (1 − e−z )�(z). (a) The theoretical normalized
cost as a function of c for fixed values of a as given by Eq. (72). a = 1.5 (solid red curve) and a = 4 (dashed green curve). (b) The optimized
mean connectivity Ā vs c for the cases in panel (a). Symbols are the simulation results and the curves are the theoretical results from Eq. (71).

for linking, and additional cost is need to make a connec-
tion involving this node. If we think of a direct link as
a kind of master-slave interaction in which the node with
outward connection dominate over the node with inward con-
nection, then optimizing the cost function can lead to richer
properties. At first sight, if some nodes have large positive
outward node weights while other nodes have large nega-
tive inward node weights, then this would result in strong
frustration effects [21,22] that could induce a complex cost
landscape that would impose additional challenge for the
search of the fully optimized configuration [21–23]. Node
with a large positive outward node weight and a large negative
inward node weight might be destined to be a dominat-
ing outward hub in the optimized network. However, nodes
with both large negative inward and outward node weights
will tend to be isolated. In some situation, the interplay
of the distributed positive and negative node weights in
the system could result in clustering of node and commu-
nity formation upon the optimization process. We will first
examine the undirected optimized network models with neg-
ative node weight, which has not been investigated before in
Refs. [13,14].

A. Undirected network with some nodes having
negative node weights

For undirected network with positive or negative node
weights, one can naturally classify the nodes into nodes with
positive weights (denoted by ⊕) and nodes with negative
weights (denoted by �). For the case of Model A, since
the node weights are nonnegative, Eq. (9) implies that there
is no � − � connection, and a higher chance for ⊕ − ⊕
connections. This suggests the possibility of segregation of
different node types or isolation of the � nodes under certain
conditions.

For explicit calculations, we first consider undirected net-
work in Model A with uniformly distributed P(λ) = 1/λo for
λ ∈ [λ′ − λo, λ

′] where λo > 0 and 0 < λ′ < λo so that the
nodes have finite probabilities of having positive and negative
weights. Using similar definitions as Eqs. (13) and (14), and
defining a ≡ λo/wo for Model A as before and c ≡ λ′/λo, the
scaled node weight distribution pλ(z) is uniformly distributed
in z ∈ [c − 1, c], and 0 < c < 1 is the fraction of nodes with
positive weights. The scaled edge weight cumulative distri-
bution is fw(z) = (1 − e−z )�(z). The mean connectivity can
then be computed to give

Ā =
⎧⎨
⎩− a2(2c2−4c+1)−2a(c−1)+e−2ac−2ea−2ac+1

a2 c � 1
2 ,

2ac(ac−1)−e−2ac+1
a2 c < 1

2 ,
(71)

CA

Nbwo
=
{

− e−2ac−2ea−2ac+1
a2 + 1

3 a(4c3 − 12c2 + 6c − 1) + 2(c−1)
a − 2c2 + 4c − 1 c � 1

2 ,

1−e−2ac

a2 − 4ac3

3 − 2c
a + 2c2 c < 1

2 .
(72)

Figure 10(a) shows that the cost is always negative, keeps decreasing as a function of c, and is more negative for larger a. The
simulation results for the mean connectivity are plotted in Fig. 10(b) showing that Ā increases smoothly with c which agree well
with the theoretical results in Eq. (75).

For undirected network in Model B, Eq. (27) indicates that � − � connections are equally favorable as the ⊕ − ⊕
connections, but the ⊕ − � connections are suppressed. This will induce segregation of the ⊕ and � nodes into two communities
that are weakly linked. Again for explicit calculations, we consider undirected network in Model B also with pλ(z) uniformly
distributed in z ∈ [c − 1, c], 0 < c < 1, the saddle-point equation reads

v

2
= Ga(v) = a2

∫ c

c−1

∫ c

c−1
drds(r + s)2 fw[av(r + s)], (73)
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and hence for edge distribution with p(0) > 0, a second-order phase transition occurs at G′
a(0) = 1

2 giving the critical transition
point at

ac = 1√
2p(0)

[
4c(c − 1) + 7

6

] . (74)

For fw(z) = (1 − e−z )�(z), direct calculation after some algebra, one obtains the optimized mean connectivity

Ā =
{

a[(K� − KLL )�(v) + KLL�(−v)] c � 1
2 ,

a[KUR�(v) + (K� − KUR)�(−v)+] c < 1
2

, where (75)

K� = 1 − (eav − 1)2e−2acv

a2v2

KUR = η(avc)

a2v2
, KLL = η[av(c − 1)]

a2v2
; η(X ) ≡ 2X (X − 1) + 1 − e−2X , (76)

with v being the root of the saddle-point equation

v

2
= Ga(v) =

{
a[(I� − ILL )�(v) + ILL�(−v)] c � 1

2 ,

a[IUR�(v) + (I� − IUR)�(−v)+] c < 1
2 , where

(77)

I� = −2(eav − 1)e−2acv{−acv + eav[a(c − 1)v + 1] − 1}
a3v3

+ 2c − 1 (78)

IUR = c3φ(avc), ILL = (c − 1)3φ[av(c − 1)]; φ(X ) ≡ 4

3
− 2[X + e−2X (X + 1) − 1]

X 3
. (79)

The corresponding cost can be derived to give

CB

Nbwo
=
{

a[(J� − JLL )�(v) + JLL�(−v)] − v2

4 c � 1
2 ,

a[JUR�(v) + (J� − JUR)�(−v)+] − v2

4 c < 1
2 , where

(80)

J� = 1 − (eav − 1)e−2acv{−2acv + eav[2a(c − 1)v + 3] − 3}
a2v2

, (81)

JUR = ψ (avc)

a2v2
, JLL = ψ[av(c − 1)]

a2v2
; ψ (X ) ≡ 2(X − 2)X − e−2X (2X + 3) + 3. (82)

The second-order phase boundary can be derived to be

2
[
4c(c − 1) + 7

6

] = a2, (83)

implying that a second-order transition occurs only for a �√
13
3 � 2.082. The phase diagram with the second-order

phase boundary is shown in Fig. 11(a). Notice that there is
a reentrant phase transition for fixed a <

√
13
3 as c varies.

Such a reentrant second-order phase transition is confirmed by
simulation results of the optimized Ā as shown in Fig. 11(b).
In addition to the second-order transition, a first-order transi-
tion is possible as outlined by the following reasoning. Apart
from the trivial v = 0 root, the saddle-point Eq. (77) has a
positive root for c > 1

2 if G′(0+) > 1
2 . However, another neg-

ative root can coexist in some regime and the conditions can
be deduced from Eq. (77) to be a∂vILL|0− > 1

2 , which gives
4a2(1 − c)4 > 3/2. Similar calculations for the case of c < 1

2
leads to the condition of coexistence of positive and negative
roots (denoted by v> and v<, respectively) as 4a2c4 > 3/2.

The coexistence of positive and negative roots is shown by
the region bound by the dot-dashed curves in Fig. 11(a). In the
coexistence region of v> and v<, a first-order transition occurs
at c = 1

2 when CB(v>) = CB(v<). Thus, there is a first-order
transition for sufficiently large values of a, a >

√
6 � 2.45

as c varies across c = 1
2 as marked by the dashed line in

Fig. 11(a). Simulations are performed to measure the opti-
mized Ā for the first-order transition across c = 1

2 and the
results are shown in Fig. 11(b) (� symbols), which agrees
with the theoretical values. Although Ā is continuous across
c = 1/2, it is a first-order transition because the optimized
cost CB (the “free-energy”) has a discontinuous derivative at
c = 1/2.

B. Optimized directed network with negative node weights

For illustration, let us consider the case of exponential de-
cay of edge weight distribution, but the inward node weights
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FIG. 11. Undirected optimized network of Model B with uniformly distributed node weights in [c − 1, c], 0 < c < 1. c is the fraction of
nodes with positive weights. The edge weight cumulative distribution is fw (z) = (1 − e−z )�(z). (a) Phase diagram of c vs a. The red curve
is the second-order phase transition boundary given by Eq. (83) separating the unconnected network (left side) from the network with finite
connections. The coexistence of positive and negative roots is shown by the region bound by the orange dot-dashed curves. The first-order
transition is shown by the blue dashed line. (b) The optimized mean connectivity Ā vs c for a = 1 (solid red curve) and a = 4 (dashed blue
curve) showing the reentrant second-order phase transitions and first-order transition, respectively. Symbols are the simulation results and the
curves are the theoretical results (75).

are nonpositive and the outward node weights are nonnegative
which are also exponentially distributed, namely: pin(r) =
er , r ∈ (−∞, 0], pout(s) = e−s, p(w) = e−w, where r, s,w ∈
[0,∞). Such a case can model the situation that nodes have
a kind of dominating behavior that like to control (make
outward connections to) others but not be influenced by others
(having inward connections).

1. Model A

For the simpler case of Model A, direct calculations using
Eqs. (16) and (17) give

Ā = a2

(1 + a)(a + b)
,

CA

Nbwo
= − a3

(1 + a)(a + b)
. (84)

Figure 12(a) plots the normalized cost as a function of a for
fixed value of b and the case of b = a, showing that the cost
is always negative for finite values of a and decreases with
a and b monotonically. Simulation results for the optimized
mean connectivity are plotted in Fig. 12(b). Notice that for
the case of b = a, i.e., the inward and outward node weights
are opposite but of same magnitude on average, Ā < 1

2 and
only approach to the upper bound of 1

2 when b = a → ∞.
The theoretical results of Ā from Eq. (84) are also displayed
showing perfect agreement.

2. Model B: First-order transition due to positive-negative node
symmetry and reentrant transition

Before we investigate the phase transition properties, let us
examine the possibility of a spin-glass phase due to the appar-
ent frustration in this case of both ferro and antiferromagnetic
spin-spin coupling. Notice that the Hamiltonian (28) is of the

form of a Mattis spin glass [24] and the spin-spin coupling
term can be rewritten as

∑
γ ρ |�γ ||�ρ |sgn(�γ )sgn(�ρ )Sγ Sρ ,

where sgn is the sign function that takes the value of 1 or
−1. Thus, by redefining Sγ → sgn(�γ )Sγ , the apparent frus-
tration can be gauged away. Hence, there is no frustration
and no spin-glass phase even if �’s can be negative. This
fact can also be reflected from the fact that the cost land-
scapes are not complex [as revealed in Figs. 15(a) and 15(b)].
However, if there are some additional constraints or penalty
on establishing the connections, then frustrations can actu-
ally occur, as in the case of two-dimensional networks with
edge crossing penalty which can induce antiferromagnetic
coupling [15].

The nature of the phase transitions in this case can be
revealed from Eqs. (39)–(41). After some algebra, one can
derive

v

2
= Ga,b(v) = a3v(2 + av)

(a + b)(1 + av)2
�(v)

+ b3v(2 − bv)

(a + b)(1 − bv)2
�(−v), (85)

Ā = v

a + b

[
a2

(av + 1)
�(v) + b2

(bv − 1)
�(−v)

]
, (86)

CB

Nbwo
=
[

a3

(av + 1)2
�(v) + b3

(bv − 1)2
�(−v)

]

× v2

a + b
− v2

4
. (87)
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FIG. 12. Optimized directed network in Model A with exponentially distributed negative inward node weights and exponentially distributed
positive outward node weights, the nonnegative edge weight is also exponentially distributed. (a) The theoretical normalized cost as a function
of a for b = a (dashed blue curve) and b = 1 (solid red curve). (b) The optimized mean connectivity Ā vs a for the cases in panel (a). Symbols
are the simulation results and the curves are the theoretical results from Eq. (84).

The saddle-point equation (85) is quadratic and can be solved
explicitly to give a positive (v>) or negative (v<)root:

v =
⎧⎨
⎩

v> ≡ 4a3−a−b

a[a+b−a3+a
√

a(2a+2b+a3 )]
if 4a3 − a − b > 0,

v< ≡ − 4b3−a−b

b[a+b−b3+b
√

b(2a+2b+b3 )]
if 4b3 − a − b < 0.

(88)
Only the trivial v = 0 exists (the optimized network is un-
connected with Ā = 0) in the region of 4a3 − a − b < 0 and
4b3 − a − b > 0 [the lower left region in the phase diagram
Fig. 13(a)]. A second-order phase transition occurs across the
critical phase boundaries of 4a3 − a − b = 0 and 4b3 − a −
b = 0, which is qualitatively similar to the case of positive
inward node weights in Fig. 8. However, for the present case
with negative inward node weights, a new the coexistence
(v> and v< coexist) regime appears in the 4a3 − a − b > 0

and 4b3 − a − b < 0 regime [the upper right region in the
phase diagram Fig. 13(a)]. In the coexistence regime, the opti-
mized solution is determined by the roots with the lower cost
which is exchanged as one crosses the positive-negative node
symmetry (i.e., b = a) line. As demonstrated in Fig. 13(b)
for increasing a with b fixed at b = 1, the lowest cost root
switched from the v< branch to the v> branch as a crosses the
a = b boundary and the optimized v (recall v = �̄A) shows an
abrupt jump characterising a first-order transition. Detail ex-
amination of the theoretical phase diagram further reveals the
existence of reentrant (i.e., v = 0 → v �= 0 → v = 0 along
some path in the phase diagram) second-order phase transi-
tions, for example for any fixed value of b ∈ ( 1

2 , 1√
2

), as a
increases from 0, reentrant phase transition occurs across the
two different second-order phase boundaries.
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FIG. 13. Optimized directed network in Model B with exponentially distributed negative inward node weights and exponentially distributed
positive outward node weights, the nonnegative edge weight is also exponentially distributed. (a) Phase diagram of b vs a showing the boundary
of second-order phase transitions given by 4a3 = a + b (the green dashed curve) and 4b3 = a + b (the red dashed curve). The first-order phase
boundary of b = a is shown by the black dotted line. (b) Nontrivial roots of the saddle-point equation (85) plotted as a function of a for b = 1.
The positive and negative roots together with the corresponding normalized cost are also shown. The black dot-dashed curve denoted the
optimized solution with the lowest cost, showing a jump at a = b signifying a first-order transition. (c) Simulation results of the optimized
network for Ā vs a for the cases of b = 0.4, b = 0.6 and b = 1 showing, respectively, the second-order, reentrant, and first-order phase
transitions. The respective theoretical predictions from Eqs. (85) and (86) for Ā are also shown.
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The above theoretical results are verified by the simulation
results of the measured mean-connectivity of the optimized
network as a function of a for various fixed values of b.
As shown in Fig. 13(c), Ā shows the characteristic behavior
of second-order, reentrant, and first-order phase transitions,
respectively, for fixed values of b = 0.4, b = 0.6, and b = 1.

VI. OPTIMAL COST ALGORITHM FOR DIRECTED
NETWORKS AND COST FUNCTION IN ORDERED SPACE

For the simpler case of Model A, the optimized network
connections are simply given by Eq. (9). For a given local
node weights of λin and λout, one simply make the connection
when λin + λout exceeds the correspond edge weight w in the
simulations.

As for Model B with nonnegative node weights, the zero-
temperature local mean-field equations can be used to find
the optimized network configuration. In principle, the coupled
nonlinear equations (37) can be solved numerically to find all
possible solution and the one with the lowest CB can then be
selected. But such an approach is inefficient as the number
of equations is Nb = N (N − 1) can be rather large (e.g., Nb =
249 500 for a network of N = 500 nodes). Here we can extend
the zero-temperature algorithm developed for the undirected
networks [13] to the case for directed connections, and further
develop efficient algorithm to handle the case with negative
node weights.

A. Algorithm for nonnegative node weights

Exploiting the zero-temperature mean-field equation (37),
one can develop an algorithm to find the optimized network
configuration efficiently, similar to the case of undirected
networks. For a given realization of the edge weights {wγ },
and sum of inward and outward edge weights {�γ } (recall
�γ ≡ �i j = λin

i + λout
j for the j → i connection), we first set

Aγ = 0 if �γ = 0 which follows from Eq. (37) for nonnega-
tive wγ . Then for those nonzero �γ , one defines the sequence
�γ ≡ wγ /�γ and sort it in increasing order to form the or-
dered sequence {�γ̃ }, where the ordered sequence index is
denoted with a γ̃ . Then locate all the ‘local minima’ along the
sorted sequence, i.e., find the values of μ̃ satisfying

�μ̃+1 � 2

Nb

μ̃∑
σ̃

�σ̃ > �μ̃. (89)

A candidate for the optimized solution is

Aσ̃ =
{

1 for σ̃ = 1, · · · , μ̃,

0 for σ̃ = μ̃ + 1, · · · , Nb.
(90)

The corresponding cost and mean connectivity can be easily
evaluated to be

CB(μ̃) =
μ̃∑

γ̃=1

wγ̃ −
⎛
⎝ 1

N

μ̃∑
γ̃=1

�γ̃

⎞
⎠

2

, (91)

Ā = μ̃

Nb
. (92)

Finally, the costs of all the μ̃ candidates together with that of
zero connection and fully connected networks are compared,

and the final optimized solution is the one with the lowest
cost. The same method has been applied in previous studies
of undirected network with nonnegative node weights and
proved to be much more efficient as compared to the tradi-
tional Monte Carlo simulation method by annealing to low
temperatures [13]. The key reason for the high efficiency of
our algorithm is that the solution space dramatically reduce
from the search in 2Nb configuration states to the ordered
index space of Nb + 1 states. For N = 500, this amounts to
a reduction from 224 950 � 5 × 107510 down to 24 951 states.

The insights obtained from the above results suggest that
one can analyze the network optimization problem in the
ordered index space using the expression (91), which can in
general be obtained straightforwardly for given edge and node
weights realization. In some special scenarios, the functional
dependence of CB(μ̃) can be derived theoretically using order
statistics [25], which will be illustrated below for several
cases of homogeneous inward and outward node weights, i.e.,
Pin(λ) = δ(λ − λin

o ) and Pout(λ) = δ(λ − λout
o ). Under such

conditions, the second term on the right-hand side (rhs) of
Eq. (91) can be trivially evaluated. Furthermore, the ordering
of �γ will simply be the same as ordering the edge weights
wγ , and thus the expectation of the first term on the rhs of
Eq. (91) can be evaluated for a given P(w). Consider for
example P(w) is uniformly distributed in [0,wo], using order
statistics, one obtains for Nb � 1,

CB(μ̃)

Nbwo
= (

1
2 − (a + b)2

)( μ̃

Nb

)2

. (93)

The explicit expression of CB(μ̃) can be conveniently ana-
lyzed further to reveal the phase transition properties of the
optimized network as follows. It is easy to see from Eq. (93)
that μ̃ = 0 is the global cost minimum if a + b < 1√

2
, but for

a + b > 1√
2

the global minimum jumps to μ̃ = Nb, signifying
a first-order transition from the unconnected network to a fully
connected network at a + b = 1√

2
. Figure 14(a) plots the nor-

malized CB(μ̃) for the cases of a + b < 1√
2

and a + b < 1√
2
.

Another example is P(w) = 1
wo

exp(− w
wo

) w ∈ [0,∞), af-
ter some calculations, one gets

CB(μ̃)

Nbwo
= μ̃

Nb
+
(

1 − μ̃

Nb

)[
HNb−μ̃ − HNb

]− (a + b)2

(
μ̃

Nb

)2

(94)

= μ̃

Nb
+
(

1 − μ̃

Nb

)
ln

(
1 − μ̃

Nb

)
− (a + b)2

(
μ̃

Nb

)2

for Nb � 1, (95)

where Hm ≡ ∑m
k=1

1
k is the harmonic number. Taking deriva-

tives of CB(μ̃), one easily finds that μ̃ = 0 is always an
extremum for the cost, indicating that the unconnected net-
work is always a solution of the mean-field equations. In
addition, since C′′

B (0)
Nbwo

= 1 − 2(a + b)2, the μ̃ = 0 state is the

global minimum of the cost only if a + b < 1√
2
, and an-

other (global) minimum with a negative cost emerges for
a + b > 1√

2
signifying a second-order phase. These results are

in agreement with that of Fig. 6(a), but is more straightforward
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(a) (b)

FIG. 14. (a) Theoretical result of the normalized cost as a function of the normalized sorted index μ̃

Nb
with P(w) uniformly distributed in

[0, wo], Pin(λ) = δ(λ − λin
o ), and Pout(λ) = δ(λ − λout

o ). (b) Similar to panel (a) but with P(w) = 1
wo

exp(− w

wo
).

and intuitive using Eq. (95). Figure 14(b) plots the normalized
CB(μ̃) for the cases of a + b < 1√

2
and a + b < 1√

2
.

B. Modified algorithm for negative node weights

For the directed network Model B, if some nodes has
negative node weights (either inward or outward), then some
edges can have �γ < 0. According to Eq. (37), the condition
to make a connection becomes �γ ≡ wγ /�γ > 2�A. Thus,
instead of sorting �γ in an increasing order, �γ needs to be
sorted in decreasing order for �γ < 0. Hence, one creates two
sorted sequences, one for �γ > 0, and the other for �γ < 0.
The local minima for these two sorted sequences, μ̃ and ν̃, are
located according to the following rules:{

�μ̃+1 � 2
Nb

∑μ̃
σ̃=1 �σ̃ > �μ̃, �σ̃ > 0,

�ν̃+1 � 2
Nb

∑ν̃
σ̃ ′=1 �ρ̃ < �ν̃, �ρ̃ < 0,

(96)

where the sorted indices σ̃ is for nonnegative �’s and ρ̃ is
for the negative ones. After finding all μ̃ and ν̃ that satisfy
the inequalities (96), then compare all the solutions (including
the trivial ones) to select the lowest cost one for the optimized
solution.

The corresponding cost and mean connectivity can be eas-
ily evaluated to be

CB(μ̃, ν̃) =
μ̃∑

σ̃=1,σ̃∈�+
wσ̃ +

ν̃∑
ρ̃=1,ρ̃∈�−

wρ̃

−
⎛
⎝ 1

N

μ̃∑
σ̃=1,σ̃∈�+

�σ̃ + 1

N

ν̃∑
ρ̃=1,ρ̃∈�−

�ρ̃

⎞
⎠

2

,

(97)

Ā = μ̃ + ν̃

Nb
. (98)

The properties of the optimized network can be conveniently
obtained by analyzing the cost function given by Eq. (97)
using the minimization principle in the two-dimensional or-
dered index space. For illustrative purpose, consider the case
of homogeneous negative inward and positive outward node

weights, i.e., Pin(λ) = δ(λ + λin
o ) and Pout(λ) = δ(λ − λout

o ),
whose functional dependence of CB(μ̃, ν̃ ) can also be derived
theoretically using order statistics [25]. For P(w) uniformly
distributed in [0,wo], one obtains for Nb � 1,

CB(μ̃, ν̃ )

Nbwo
= 1

2

[(
μ̃

Nb

)2

+
(

ν̃

Nb

)2
]

− (b − a)2

(
μ̃ + ν̃

Nb

)2

,

× μ̃

Nb
+ ν̃

Nb
� 1. (99)

Figure 15(a) shows the contour plot of the normalized cost
CB(μ̃, ν̃) in Eq. (99) for a ≡ λout

o√
wo

= 1.48 in which (0,0) is the
stable global minimum and hence the unconnected network

is the trivial optimized state. However, for b ≡ λin
o√
wo

= 1 as
shown in Fig. 15(b), (0,0) becomes a saddle and the global
minimum shifts to ( 1

2 , 1
2 ) and the optimized state is the fully

connected network. From Eq. (99), it is easy to verify that
( μ̃

Nb
, ν̃

Nb
) = (0, 0) is the only local extremum. The stability of

(0,0) can be directly obtained from the eigenvalues of the
Jacobian, which can be calculated to be 1 and 1 − 4(b − a)2.
Thus, the (0,0) state (unconnected network) has the minimal
cost for |b − a| < 1

2 , but becomes unstable (a saddle) when
|b − a| > 1

2 . Furthermore, the eigenvector associated with the
unstable eigenvalue of 1 − 4(b − a)2 is along the (1,1) direc-
tion and flows to the global minimum of ( 1

2 , 1
2 ) (and hence

Ā = 1, the fully connected network) which is the edge of
the allow domain in Fig. 15(b). The above simple analy-
sis reveals the first-order transition with the phase boundary
given by |b − a| = 1

2 separating the unconnected optimized
network and the fully connected optimized network. Simu-
lations are performed to find the optimized network and the
mean connectivity is plotted as a function of a for various
values of b, as shown in Fig. 15(d). As predicted by the
above theoretical analysis, a first-order transition is observed,
and reentrant first-order transitions occur in some parameter
regime as predicted from the theoretical phase diagram. For
instance, reentrant phase transition occurs for a fixed value
of b > 1

2 as a increases, as revealed from the phase diagram
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FIG. 15. Contour plot of the theoretical normalized cost as a function of μ̃

Nb
and ν̃

Nb
for P(w) uniformly distributed in [0,wo], Pin(λ) =

δ(λ + λin
o ) and Pout(λ) = δ(λ − λout

o ) for : (a) a ≡ λout
o√
wo

= 1.48 and b ≡ λin
o√
wo

= 1. (0,0) is the stable global minimum, (b) a = 1.52 and b = 1.

(0,0) becomes a saddle and the global minimum becomes ( 1
2 , 1

2 ). (c) Phase diagram showing the region of the first-order phase transition
boundaries separating the unconnected network with Ā = 0 (the central diagonal stripe region) and the fully connected optimized network
with Ā = 1. (d) Simulation results of the measured Ā of the optimized network as a function of a for b = 0.4 and b = 1. The theoretical results
are shown by solid and dashed curves.

Fig. 15(c), which is also confirmed by the simulation results
of the optimized Ā shown in Fig. 15(d) for b = 1.

VII. SUMMARY AND OUTLOOK

In this work, we considered the growth of the directed
links in network models that aim at minimizing the connection
expenses while at the same time favoring other important
network properties such as network connections. Our moti-
vation is to understand the relation between the energy cost
and the connectivity in a network. These models are quite
general and can be applicable in various physical or biological
networks. By generalizing the recently studied optimization of
undirected network connection models, a similar mapping of
the directed network model to an Ising spin model can also
be achieved and analyzed by employing statistical mechanics
methods. It is found that the models under studied can be
solved exactly or analytical results can be derived for general
edge, inward and outward node weights that are distributed

independently. These models exhibit a variety of interesting
phase transition behavior in many scenarios, signifying abrupt
changes in the network structures. Our Model A is relatively
simple and demonstrates that the directed network model can
be mapped to an Ising spin system under a local external
field in which exact results can be obtained. Its ground-state
solution can be found straightforwardly by placing a directed
link if its weight wα is less than the corresponding sum of
inward and outward node weights, �α .

However, Model B involves edge interactions which is
less trivial. In Model B, the network model is mapped to
Ising spins with infinite-range interactions and hence can
be precisely described by the mean-field theory. Using the
mean-field equations and with appropriate extensions, we also
obtain an efficient algorithm for finding the fully optimized
directed network configuration as in the case of undirected
optimized networks. Traditional metropolis Monte Carlo sim-
ulations can explore efficiently the phase space and perform
well only for temperatures that are not too low. However,
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our algorithm applies well for the search of the fully opti-
mized zero-temperature case in which traditional Monte Carlo
method will be frozen and become ineffective. This algorithm
is efficient because it drastically reduces the search configu-
ration space and also provides further insights in terms of the
cost function in ordered space. Monte Carlo simulations are
carried out explicitly using the efficient algorithm to confirm-
ing the validity of our theoretical results, and the efficiency of
our algorithm.

In addition, the scenarios with negative node weights in
optimized network models, which have not studied previously
even for the undirected network, were also considered in this
work. The possibility of segregation of nodes and clustering
can be analyzed in detail, thus providing insights for the
plausible mechanisms in network community formation as a
result of network optimization. Efficient simulation algorithm
to include the case of negative node weights to search for the
fully optimized zero-temperature configuration were also de-
veloped and employed to verify the corresponding theoretical
results.

A wide class of interesting phase transitions, including
first-order, second-order, and hybrid ones, is obtained in the
framework of our models. The change near the second-order
transition point from the unconnected to network with sparse
connections can provide some insights for the nature of many
realistic networks which are found to be sparse. However,
the drastic change from finite connectivity to an unconnected
network across a first-order transition may capture the abrupt
failure of network linkage or communication in the break-
down of network or grid structures.

In this paper, we focused on the phase transitions associ-
ated with the optimized directed network models. After the
network is optimized with the lowest total cost, the properties
in the optimized network can then be further analyzed the-
oretically and also be measured by simulations, which will
be presented in a future publication. Key features of the fully
optimized directed network, such as degree distributions, clus-
ter coefficients, minimal path lengths, key motifs occurrence,
etc. will provide valuable information on the properties of
the optimized network, as well as for further identification of
the edge and node weights in the present model in terms of the
parameters in realistic physical or biological networks. For
example, if one takes the positive node weights as the local
firing rate of a neuron, then the node weights can enhance the
internode connection if �i j = λin

i + λout
j is sufficiently large,

which can be interpreted as a rough version of the Hebb’s rule
of “firing enhances wiring” [26].

The directed network optimized connection problem in
the presence of additional constraints, such as strong inter-
link topological interactions [27] as in the case of entangled
polymer chains [28–30]. The edge crossing penalty in two-
dimensional networks [15], would enhance the complexity
for the search of the fully optimized configuration. Only
undirected network with unweighted nodes were investigated
for the optimization of two-dimensional networks with edge
crossing penalty or forbiddance in Ref. [15], it is of interest
to investigate the optimization of directed two-dimensional
network with heterogeneous node of positive and negative
inward or outward node weights and probe the optimized
network structures.

In general, the question of what kind of weight and node
distributions used will produce the given observed optimized
weight and degree distributions is a challenging inverse prob-
lem that is under investigation. An even more ambitious goal
is to uncover the evolution principle, presumably governed
by some optimization model, from the observed network
structure. This is an even more challenging inverse problem
of inferring the cost function and its parameters from the
observed links such as the optimized wα . Such a task is
difficult because often the network connection weights and
directions are not directly available in practice, and usually
only the dynamical data of network nodes can be observed.
Therefore, one first needs to infer the network structure from
the time-series data of the nodes. Then with the increasing
availability of dynamical data of network nodes, together with
several recently proposed reliable and efficient methods for
the reconstruction of networks from the time-series dynamics
data of the nodes [31–40] that can be employed. Such an
approach should be promising with the suitable implementa-
tion of network reconstruction schemes and the inference of
optimization model from network structure to be developed.
Hopefully it can open a new avenue of deducing the network
evolution principle, which is usually a long time scale pro-
cess, from the relatively short observation times in the node
dynamics.
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