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Eigenvector localization in hypergraphs: Pairwise versus higher-order links
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Localization behaviors of Laplacian eigenvectors of complex networks furnish an explanation to various
dynamical phenomena of the corresponding complex systems. We numerically examine roles of higher-order
and pairwise links in driving eigenvector localization of hypergraphs Laplacians. We find that pairwise interac-
tions can engender localization of eigenvectors corresponding to small eigenvalues for some cases, whereas
higher-order interactions, even being much much less than the pairwise links, keep steering localization of
the eigenvectors corresponding to larger eigenvalues for all the cases considered here. These results will
be advantageous to comprehend dynamical phenomena, such as diffusion, and random walks on a range of
real-world complex systems having higher-order interactions in better manner.
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I. INTRODUCTION

Network science has been a powerful means to con-
strue and predict properties of many real-world complex
systems [1–4]. A network consists of nodes, microscopic
units of the underlying system, and links which represent
interactions among the nodes. Many real-world complex sys-
tems inherently share common structural properties, such
as power-law degree distributions, short path lengths, high
clustering, degree-degree correlation, etc. These structural
properties govern various dynamical processes on networks,
for instance, disease spreading [5], steady-state behaviors
of random walkers [6], synchronization [7], etc. Despite an
astounding theoretical success of the network theory in com-
prehending properties of the associated complex systems,
it often becomes insufficient to fathom origin behind many
emerging dynamical behaviors of many real-world complex
systems. With the increasing accumulation of data, it has been
construed that often real-world interactions transpire among
more than two nodes at a time, whereas, the network theory is
apt for the binary relationships between nodes [8]. The ineffi-
cacy of networks to model many-body interactions compelled
researchers to look beyond the realm of pairwise interactions
and develop appropriate higher-order models. The two most
popular approaches for modeling higher-order interactions are
hypergraphs [9] and simplicial complexes [10].

Hypergraphs capturing higher-order interactions provide
a more generalized model for real-world complex systems.
A hypergraph consists of nodes and hyperedges; a hyper-
edge connects d nodes together where typically d � 2. The
size of the hyperedges of a hypergraph may differ. Never-
theless, if all the hyperedges consist of the same number of
nodes d , it is referred to as a d-uniform hypergraph. Thus, a
two-uniform hypergraph would correspond to a conventional
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graph. Hypergraphs have been successfully employed to illus-
trate various real-world interactions from biology [11], social
systems [12], evolutionary dynamics [13], etc. A simplicial
complex is a special type of hypergraph, which is closed
under the subset operation [14,15]. A simplicial complex not
only is comprised of nodes and links, but also corroborates
higher-order dimensions, such as triangles, tetrahedrons, etc.
Accordingly, a k simplex describes a simultaneous interac-
tions among k + 1 nodes A fundamental difference between
modeling many-body interactions with the hypergraphs and
simplicial complexes is that a k simplex subsumes all the
possible k − 1 dimension simplices, which is not true with the
former.

Moreover, the spectra of adjacency and Laplacian matri-
ces are recognized to affect various dynamical processes on
corresponding networks. For example, an epidemic threshold
of the infection rate on graphs is determined by the inverse
of the principal eigenvalue of the associated adjacency ma-
trices [16]. Furthermore, under appropriate conditions, the
critical coupling strength at which synchronization occurs in
coupled oscillators on networks is determined by the largest
eigenvalue of the adjacency matrices [17]. Spectra of the
adjacency matrix also furnish insight into various structural
properties of corresponding complex networks [18–21]. Like-
wise, spectra of the Laplacian matrices are related to the
diffusion and other spreading phenomena on networks [22].
Withal, spectral dimension supplies a mean to characterize
or determine the return probability of diffusion [23], scaling
of return time of a random walker for a magnetic model
on graphs [24], return to the origin probability of the Gaus-
sian model [25]. The ratio of the largest to the first nonzero
eigenvalue of a Laplacian matrix helps in determining the
stability of generalized synchronization in the coupled dy-
namical system [26]. Furthermore, Refs. [27], highlight the
existence of relationships among topological, spectral, and dy-
namical properties of networks. In addition to the eigenvalues,
eigenvectors of the underlying adjacency and the Laplacian
matrices have also been indicated to be advantageous in
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providing insight into various structural and dynamical
properties of the corresponding systems [28,29]. In par-
ticular, localization of eigenvectors ascribes crucially with
disease spreading [30], perturbation propagation in ecologi-
cal networks, [31], etc. Furthermore, analyzing localization
properties of the Laplacian eigenvectors is advantageous
in characterizing or identifying community structures [32],
stability of the system against external shocks [33], network-
turning patterns [34], etc.

Although a huge amount of literature on spectra of net-
works prevails, specifically, on eigenvector localization and
their implications, an attempt has been made to comprehend
localization properties of eigenvectors of the higher-order
interaction graphs here. Here, we investigate localization
properties of eigenvectors of hypergraphs comprising the
higher-order interactions indicated by the hyperedges. We in-
spect hypergraphs instead of simplicial complexes as the latter
involves complicated combinatorics, and, thus, the applica-
tions are limited to the lower dimension simplicial complexes,
such as triangles and tetrahedrons [35]. On the other hand, in
the case of the hypergraphs, the information of higher-order
structures is installed in a matrix form with the dimension
equal to NN where N is the number of nodes. Further-
more, hypergraphs allow handling heterogeneous sizes of the
hyperedges more efficiently than that of the simplicial com-
plexes. Of late, works on hypergraphs include random walks
[35,36], synchronization [37–39], social contagions [14,40],
evolutionary dynamics [13], etc. Most of these works, spot-
lighting on hypergraphs, converges on projecting hypergraphs
into their weighted pairwise networks and, thereupon com-
paring various structural and dynamical properties between
the hypergraphs and the projected pairwise networks. In this
paper, we take a slightly different approach, and instead of
projecting a hypergraph into a corresponding pairwise net-
work, we consider contributions from the higher-order and
pairwise interactions for each node. Thereafter, by defining
parameter γ , we compare the relative contributions of these
two types of interactions in the steering localization of the
eigenvectors of hypergraph Laplacians. We find that eigenvec-
tors are localized on those nodes which have their pairwise or
higher-order degrees considerably deviating from the average
pairwise degree (〈kp〉) and average higher-order degree (〈kh〉)
of the hypergraph, respectively.

The paper is organized as follows. Section II comprises
definitions of the Laplacian matrices of hypergraphs. Sec-
tion III introduces the hypergraph model. Section IV discusses
the methodology and techniques involved in the paper. Sec-
tion V contains results about significance of the interplay of
pairwise and higher-order links on eigenvector localization.
Finally, Sec. VI concludes the paper with future directions.

II. LAPLACIAN MATRIX

A hypergraph denoted by H = {V, EH } consists of a set of
nodes and hyperedges. The set of nodes is represented by V =
{v1–v3,..., vN }, and the set of hyperedges is represented by EH

= {E1–E3,..., EM} where N and M are the sizes of V and EH ,
respectively. Note that, each hyperedge Eα , ∀α = 1, 2,..., M,
will contain a collection of nodes, i.e., Eα ⊂ V . Thus, when
|Eα| = 2 for all α’s, the hypergraph reduces to a standard

graph. Mathematically, a hypergraph can be represented by
its incidence matrix (eiα )NM whose elements are defined as

eiα =
{

1, vi ∈ Eα,

0, otherwise. (1)

One can easily build the NN adjacency matrix for a hyper-
graph using Eq. (1), as A = eeT . The entries of the adjacency
matrix Ai j represents the number of hyperedges containing
both i and j nodes. It is important to note here that the
adjacency matrix is often obtained by setting 0 to its diagonal
entries. We further define MM hyperedges matrix C = eT e,
whose the entry Cαβ represents the number of nodes common
between the hyperedges Eα and Eβ .

There exists no unique way to define the Laplacian matrix
L of a hypergraph [8]. One of the conventional manners is
as follows; Li j = kiδi j − Ai j where ki = ∑N

j=1 Ai j denotes the
number of hyperedges containing node i. However, it is not
consistent with the full higher-order structures encrypted in
the hypergraph. More specifically, it does not account for the
sizes of the hyperedges incident on a node. Reference [35]
solved this limitation by defining a new Laplacian matrix for
a random walk, which is also consistent with the higher-order
structures. The transition probability of a random walker de-
fined in Ref. [35] takes care of the size of the hyperedges
involved. More precisely, the Laplacian of the random walk
(RW) defined in Ref. [35] is as follows:

LRW
i j = δi j − kH

i j∑
i �=� kH

i�

, (2)

and the entries of the KH matrix are given by

kH
i j =

∑
α

(Cαα − 1)eiαe jα = (eĈeT )i j − Ai j, ∀ i �= j, (3)

where Ĉ is a matrix whose diagonal entries coincide with
that of C and other entries are zero. Using Eqs. (2) and (3)
[36], we construct the combinatorial Laplacian matrix for the
hypergraph, given by

LH = KH − D. (4)

Here, D is a diagonal matrix whose entries are Dii = kH
i =∑

i �=� kH
i� , and zero otherwise. Note that, in accordance with

the earlier convention, i.e., setting 0 to the main diagonal,
kii = 0. The Laplacian matrix is defined by Eq. (4) which
takes into account both the number and the size of the hy-
peredges incident on the nodes, and, thus, incorporates the
higher-order structures completely. By considering LH as a
Laplacian of the hypergraph, here we study the effect of
higher-order structures on steering the eigenvector localiza-
tion.

III. MODEL

There are various manners in which a random hypergraph
can be constructed [8]. We generate the hypergraph in this
paper as follows. Starting from a ring lattice in which each
node is connected to its nearest neighbors on both the sides,
we randomly choose d nodes uniformly from all the existing
nodes. If there exists no hyperedge comprising of the chosen
d nodes, we add a hyperedge consisting of these d nodes. For
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FIG. 1. Schematic of the hypergraph model used here with N =
10, Mh = 1, and M p = 1 for two different realizations. (a) One pair-
wise link E p = {1, 8} and one hyperedge Eh = {1, 3, 7} are added
into the ring lattice. (b) One pairwise link E p = {3, 7} and one hy-
peredge Eh = {3, 7, 10} are added into the ring lattice. The pairwise
links are solid lines (green) and the hyperedge with the dashed line
(sky-blue) enclosing the involved nodes.

the simplicity, we consider d = 3 for each iteration. Next,
we add pairwise links by choosing d = 2 nodes uniformly
and randomly from the existing nodes. The pairwise links are
added to the model so that an interplay of the higher-order
and pairwise links on the eigenvector localization can be
investigated. Figure 1 presents a schematic of the model for
two different cases; (a) no pairwise links exists between nodes
involved in a hyperedge and (b) pairwise links exist in the
nodes belonging to the hyperedge. Note that, a similar model
was also used in Ref. [41], but no pairwise links were added
to the original ring lattice. We would like to further mention
here that one can choose an alternate algorithm to generate
the given model as introduced in Ref. [42]. In the alternate
approach, for each node, one can choose two other nodes
with a probability p, and add hyperedges containing the nodes
under consideration. Similarly, one can add pairwise links by
associating one node for a given node. Thus, the total number
of the hyperedges, and pairwise links each will be equal to pN .
However, in one loop only N pairwise links can be added for
p = 1. To add more pairwise links, one has to again repeat the
entire algorithm. Hence, we use the former algorithm in which
the number of pairwise links and hyperedges are admitted
from the beginning.

IV. METHODS

As discussed earlier, a hypergraph can be represented
by its Laplacian matrix LH . Let the eigenvalues of the
Laplacian matrix denoted by {λ1–λ3, . . . , λN } where λ1 �
λ2 � · · · � λN and the corresponding orthonormal eigen-
vectors as {x1–x3, . . . , xN }. The Laplacian matrix is posi-
tive semidefinite, i.e.,

∑
i, j LH

i, jxix j � 0 for any vector x =
(x1–x3, . . . , xN ). Therefore, all the eigenvalues of the Lapla-
cian matrix are positive with one and only one being zero for
the connected network. The entries of the eigenvector corre-
sponding to this zero eigenvalue will be uniformly distributed
(1, 1, . . . , 1)/

√
N . The generalized degree of a node i in the

hypergraph is given by kH
i which can be further decomposed

into kH
i = kh

i + kp
i where kh

i and kp
i are the contributions

from the higher-order and the pairwise links, respectively.

Similarly, the average degree, 〈k〉 =
∑

i kH
i

N , can be decom-

posed as 〈k〉 = 〈kh〉 + 〈kp〉 where 〈kh〉 =
∑

i kh
i

N and 〈kp〉 =∑
i kp

i
N . We would like to further define 〈k〉 in terms of total

number of the higher-order and pairwise links as 〈k〉 = 2M p

N +
12Mh

N , where M p and Mh are total numbers of the pairwise
edges (d = 2) and the hyperedges (d = 3) in the hypergraph.
Also, it is important to note that if a node, say i, gets one
additional pairwise link and one higher-order link, its degree
will be increased by 1 and 4 from the pairwise and higher-
order links, respectively. For example, if we consider the
hypergraph depicted in Fig. 1(a), the first row of the KH ma-
trix (i = 1) is the following: kH

1 j = [0, 1, 2, 0, 0, 0, 2, 1, 0, 1].
Note that, kH

13 = 2, kH
17 = 2 from the hyperedge. Therefore,

kH
1 = 7 with kh

1 = 4 and kp
1 = 3. Hence, kh

i = 4Mh
i , where Mh

i
is the total number of higher-order links incident on node i. To
provide an equal opportunity to the pairwise and higher-order
links for steering localization on a given node, we introduce
the total number of pairwise links four times greater than the
higher-order links, i.e., M p = 4Mh for kh

i = kp
i . Next, we de-

fine a parameter γ = M p

4Mh to measure the relative contribution
for both types of the links. Thus, if γ > 1 then kp

i > kh
i ; if

γ < 1 then kp
i < kh

i holds.
We examine the localization property of the eigenvectors

of the hypergraph, and analyze the changes in the localization
behavior as the pairwise and the higher-order links are intro-
duced on the initial ring lattice. Localization of an eigenvector
refers to a state that a few entries of the eigenvector acquire
much higher values compared to the others. Degree of local-
ization of the x j th eigenvector can be quantified by measuring
the inverse participation ratio (IPR) denoted as Yx j . The IPR
of an eigenvector x j is defined as [30]

Yx j =
N∑

i=1

(xi )
4
j , (5)

where (xi ) j is the ith component of the normalized eigenvec-
tor x j with j ∈ {1–3 . . . , N}. One can easily verify that, for
the most delocalized eigenvector all its components should
be equal, i.e., (xi ) j = 1√

N
with the IPR value being 1/N .

Whereas, for the most localized eigenvector, only one com-
ponent of the eigenvector will be nonzero, and, consequently,
IPR will be equal to 1. It is also important to note here that
there may exist fluctuations in the IPR values for a given state
x j for different realizations. However, it is not possible that λ j

remains the same for all the random realizations, and, hence,
averaging over should be performed diligently. For the robust-
ness of the results, we consider a small width dλ around λ, and
average all the IPR values corresponding to those λ values
which fall inside this small width. Thus, we present results
for average over small width dλ, which is indeed a general
practice in the localization studies [43–45]. We further elab-
orate on the averaging procedure for the discrete eigenvalues
spectrum achieved through the numerical calculations. Let λR

= {λ1, λ2, . . . , λNR} such that λ1 � λ2 � · · · � λNR is a set
of eigenvalues of the hypergraph for all R random realizations
where NR is the size of λR. The corresponding eigenvector
of λR is denoted by xR = {x1–x3, . . . , xNR}. We then divide
λR for a given value of dλ into further m subsets where m
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= (λNR − λ1)/dλ. For each λ j ⊂ λR and the corresponding
eigenvectors x j ⊂ xR, ∀ j = 1, 2,..., m; λ j = {λ1, λ2,..., λl j }
and corresponding eigenvector x j = {x1–x3, . . . , xl j } where
l j is the size of the jth subset such that

∑m
j=1 l j = NR with

a constraint that λl j − λ1 j � dλ. For each subset, the corre-
sponding set of IPRs for x j will be {Yx1 ,Yx2 ,...,Yxl j }. Hence,
the average IPR [Yx j (λ)] for each subset x j can be calculated

as
∑l j

i=1 Yxi
l j where λ is the central value for each subset, i.e., λ +

dλ
2 = λl j and λ− dλ

2 = λ1 j . Here, we define few more physical
quantities, kh(λ), kp(λ), k̂h(λ), and k̂ p(λ) used in the paper.
For any eigenvector x j , these quantities can be calculated as
the following.

kh
x j

: higher-order degree of the node io with
the maximum component in |(xi ) j |, i.e., (xio) j =
max{|(x1) j |, |(x2) j |, . . . , |(xN ) j |}.

kp
x j : pairwise degree of the node io with the

maximum component in |(xi ) j |, i.e., (xio) j =
max{|(x1) j |, |(x2) j |, . . . , |(xN ) j |}.

k̂h
x j

: higher-order degree expectation value of eigenvector,

defined as
∑N

i=1(xi )2
j k

h
i .

k̂ p
x j : pairwise degree expectation value of eigenvector, de-

fined as
∑N

i=1(xi )2
j k

p
i .

All these physical quantities obey the same averaging pro-
cedures over λ and λ ± dλ as described for IPR, and we obtain
kh(λ), kp(λ), k̂h(λ), and k̂ p(λ).

V. RESULTS

We first discuss the degree-eigenvalue correlation of
the Laplacian of the hypergraphs. It was contemplated for
pairwise interactions [46,47] that the eigenvalues of the
Laplacian matrices have similar distributions as that of the
degree of the nodes. The relative average deviation be-
tween the eigenvalues and degrees of a network can be

defined as ‖λ(L) − k‖2/‖k‖2 �
√

‖k‖1/‖k‖2
2, where λ(L) =

(λ1, λ2, . . . , λN )T and k = (k1, k2, . . . , kN )T are the eigenval-
ues of the Laplacian matrix and node degrees arranged in
increasing order, respectively. The relative average deviation
estimates, on average, that how much eigenvalues differ from
the corresponding degrees and the proof of the inequality can
be found in Ref. [46]. The ‖y‖p represents the p norms of
any vector y = (y1, y2, . . . , yn) and is defined as (

∑
i |yi|p)1/p.

Thus, we see that
√

‖k‖1/‖k‖2
2 
 1, which implies that eigen-

value distribution and degree distribution will have similar
natures. Also, it is well known that 〈k〉 = 〈λ〉. Figure 2 plots
the eigenvalues (λi) and degree (kH

i ) of the hypergraph ar-
ranged in an increasing order with N = 2000 and 40 random
realizations for various γ values. A clear degree-eigenvalue
correlation can be a witness akin to the pairwise networks
from Fig. 2.

Next, it is difficult to decompose an eigenvalue λi exactly
into λh

i + λ
p
i = f (kh

i ) + f (kh
i ) parts as practiced for the node

degree. Nevertheless, we can contemplate a few heuristic ar-

guments as follows. First, we define δh
i = (|λi−kh

i |)
λi

and δ
p
i =

(|λi−kp
i |)

λi
to analyze the relative deviations of the eigenvalues
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FIG. 2. Laplacian eigenvalues λi (red) and node degree ki (blue)
against index i arranged in an increasing order for the γ values. The
size of the hypergraphs N = 2000 and Mh = 500 remain fixed for all
γ values with 40 random realizations.

from the higher-order and pairwise degrees. Figure 3 illus-
trates δh

i , δ
p
i against i for various γ values. For γ � 1, for the

initial eigenvalues (λ � 6) and index (i � 40 000), δh
i > δ

p
i .

Thus, the eigenvalues are more correlated with the pairwise
degree than that of the higher-order degree. Thus, λh

i < λ
p
i and

also kh
i = 0 for i < 40 000 (not shown). For the intermediate

eigenvalues δh
i ≈ δ

p
i and, thus, λh

i ≈ λ
p
i . For the extremal

eigenvalues and large indices, we see that δh
i 
 δ

p
i and,

therefore, λ
p
i 
 λh

i . We further mention here that for the said
parameter, i.e., γ < 1, Mh = 500, kp

max = 10, and kh
max = 24,

and, therefore, for the extremal eigenvalues, the higher-order
degrees play a governing role. For 1 < γ � 3, δh

i < δ
p
i for

the extremal eigenvalues since kp
max < kh

max for 1 < γ � 3.
However, for γ > 3, δh

i > δ
p
i , and, thus, λh

i < λ
p
i for entire

eigenvalue spectrum. Next, we discuss the interplay of higher-
order and pairwise links on instigating localization.

For γ < 1. We would first like to emphasize here that
by merely calculating the IPR value of an eigenvector, one
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FIG. 3. The relative deviations of eigenvalues from the higher-
order degrees, δh

i (blue) and pairwise degrees, δp
i (red) against index i.

The hypergraph parameters, N = 2000 and Mh = 500, remain fixed
for all γ values with 40 random realizations.
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higher-order and pairwise degree distribution are also plotted in last
two rows. − − − and − · − · − depict, respectively, 〈kh〉 and 〈kp〉 on
the y axis. The size of the hypergraphs N = 2000 and Mh = 500 re-
main fixed for all γ values with 40 random realizations for the bottom
three rows. Red (−), green (−), black (−), blue (−), magenta (−) are
used for N = 500, 1000, 2000, 4000, and 8000, respectively, in the
upper panels.

cannot validate if the eigenvector is localized or delocalized
as a critical phenomenon is accurately determined only for
N → ∞. To substantiate the localization behavior more pre-
cisely, one should check the scaling of the IPR with the system
size. In general, Yx j (λ) ∝ N−α with α = 0 and 1 for localized
and delocalized eigenvectors, respectively. For 0 < α < 1, the
eigenvector can be referred to be at the critical state, i.e.,
neither localized nor delocalized. Figures 4(a), 4(e) and 4(i)
present results for Yx j (λ) for different network sizes against
λ for various values of γ < 1. The larger eigenvalues in the
eigenvalue spectrum (λ > 22) are localized with Yx j (λ) → 1
for all N’s and, thus, α = 0. For λ � 22, eigenvalues are
relatively less localized as compared with the larger eigen-
values, which can be verified by performing log-log curve
fitting of Yx j (λ) ∝ N−α and calculating α [Figs. 6(a)–6(c)].
It is apparent from the figure that according to the inclination
towards localization or delocalization, α takes values accord-
ingly. It is also worth mentioning here that there exists no
noticeable change in the nature of the plot with an increase in
γ , depicting the inefficacy of the pairwise links on instigating
localization. Next, as reflected from Figs. 4(b), 4(f) and 4(j)
that kp(λ) remains constant to a value around 〈kp〉 for all the
γ values. Furthermore, Ref. [43] argued that localization of a
eigenvector is centered on the nodes having very high or low
degrees or whose degree deviate significantly from the aver-
age degree of the corresponding network. One can also note
that for a completely delocalized eigenvector, degree expecta-
tion value k̂ = ∑N

i=1(xi )2
j ki = (k1+k2+k3···+kN )

N = 〈k〉. However,
upon scrutinizing kh(λ) closely, we find that the its behavior
is significantly different from kp(λ). kh(λ) exhibits an increas-
ing trend with the increase in the eigenvalue, and takes the
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FIG. 5. Average IPR [Yx j (λ)], kh(λ) (◦), kp(λ) (�), k̂h(λ) (− −
−), and k̂ p(λ) (− − −) against λ for various γ > 1’s. The cor-
responding higher-order and pairwise degree distributions are also
plotted in last two rows. − − − and − · − · − are at 〈kh〉 and 〈kp〉
on the y axis. The size of the hypergraph, N = 2000 and Mh = 500
remain fixed for all γ values with 40 random realizations for bottom
three rows. Red (−), green (−), black (−), blue (−), and magenta
(−) are used for N = 500, 1000, 2000, 4000, and 8000, respectively,
in the upper panels.

maximum possible value in the localized region. Thus, the
eigenvectors are localized on the set of the nodes with kh

being significantly higher than 〈kh〉. Furthermore, in the same
plot, kh(λ) and kp(λ) are shown to be in good approximation
with the k̂h(λ) and k̂ p(λ) values, respectively. Also, we plot
the higher-order degree distribution P(kh) and pairwise degree
distribution P(kp) in Figs. 4(c), 4(d), 4(g), 4(h), 4(k) and 4(l).
Few interesting observations are as follows: The number of
nodes with kh > 16, kh > 12, and kh > 8 are only 0.04%,
0.64%, and 4%, respectively, and still the eigenvectors are
localized on these nodes in the localized region. All these
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FIG. 6. Plot of α against λ for various γ values. (a) γ = 0.25,
(b) γ = 0.50, (c) γ = 0.75, (d) γ = 1.25, (e) γ = 3, and (f) γ = 5.
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observations clearly suggest prime role of the higher-order
degree on instigating localization, and rather no visible impact
of pairwise links on the same. Note that for γ = 1, there exists
no sharp transition in the eigenvector localization and, thus,
the next section focuses on γ > 1. The results for γ = 1 can
be found in the Supplemental Material [48].

For γ > 1. Here, we discuss the localization properties
of the eigenvectors for γ > 1. Figures 5(a), 5(e) and 5(i)
present the results for Yx j (λ) for different network sizes as a
function of λ for various values of γ > 1. The extremal part of
the eigenvalue spectrum (larger and smaller eigenvalues) are
highly localized with Yx j (λ) → 1. On the contrary, the central
part of the eigenvalue spectrum are delocalized with 10−3 �
Yx j (λ) < 10−2. Figures 6(d), 6(e) and 6(f) illustrates the be-
havior of α for different parts of the eigenvalue spectrum. In
the localized part of the eigenvalue spectrum, α ≈ 0 whereas
for the delocalized regime α ≈ 1. Furthermore, in accordance
with the tendency towards localization or delocalization, α

takes suitable values for other parts of the eigenvalue spec-
trum. Also, as γ increases, the eigenvectors corresponding
to the smaller eigenvalues get more localized captured by
the IPR value. The nature of the plots is similar to those
of the small-world networks (pairwise) shown in Ref. [43].
Furthermore, we report that the eigenvectors are localized on
the nodes with degree (kH

i ) being abnormally high or low
from the average degree (〈k〉), which is consistent with the
observations made in Refs. [43,49].

Next, we discuss the role of pairwise (kp
i ) and higher-order

links (kh
i ) separately on steering the localization. Figs. 5(b),

5(f), and 5(j) illustrate the results for kh(λ), kp(λ), k̂h(λ),
and k̂ p(λ) for various γ values. For γ = 1.25, kp(λ) remains
constant around 〈kp〉 but deviates slightly at the extremal parts
of the eigenvalue spectrum. On the contrary, kh(λ) manifests
an increasing trend with the increase in the eigenvalues and
achieves large possible values in the localized region of the
spectrum. As γ increases, the pairwise links also start play-
ing the role in steering the localization. First, the degree of
localization of the eigenvectors corresponding to the smaller
eigenvalues enhances. This can be explained as follows. For
the case of smaller eigenvalues kh(λ) and kp(λ) both take very
small values. However, as γ increases the number of pairwise
links also increases which, in turn, leads to an increase in 〈kp〉.
As discussed earlier that eigenvectors get localized on the
nodes whose degrees deviate from the average degree. Thus,
as γ increases, kp(λ) 
 〈kp〉 for smaller eigenvalues, which,
consequently, intensifies the degree of localization. On con-
trary, 〈kh〉 = 3 remains fixed for all γ values and, therefore,
kh(λ) for smaller eigenvalues can not be much less than 〈kh〉,
therefore, suggesting no visible role of higher-order links in
steering localization for smaller eigenvalues.

Next, we discuss the localization properties of the eigen-
vectors corresponding to those large eigenvalues, which are
highly localized. From Figs. 5(b), 5(f) and 5(j), it is visible
that for γ � 3, kp(λ) start deviating from 〈kp〉, and, hence,
the pairwise links also start participating in instigating lo-
calization along with the higher-order links. Few interesting
things to be noted here are as follows: The number of nodes
with large kh values are always very less as compared to the
number of nodes with large kp values for γ � 3 [Figs. 5(c),
5(g) and 5(k)]. Scrutinizing more closely, we witness that the

TABLE I. Number of nodes common between sets No(kh ) and
No(kp). For N = 2000 and 40 random realizations.

γ = 3 γ = 5 γ = 7.5

No(kh > 8) 3227 3212 3193
No(kh > 12) 585 582 611
No(kh > 16) 78 93 82
No(kh > 20) 10 7 13
No(kp > 8) 31509 69698 70494
No(kp > 12) 3418 582 79400
No(kp > 16) 125 6698 428561
No(kp > 20) 2 508 14487
No(kh > 8) ∩ No(kp > 8) 1286 2806 3168
No(kh > 12) ∩ No(kp > 12) 31 237 532
No(kh > 16) ∩ No(kp > 16) 0 7 46
No(kh > 20) ∩ No(kp > 20) 0 0 1

number of nodes with kh > 8, kh > 12, kh > 16, and kh > 20
are roughly around 4%, 0.73%, 0.11%, and 0.06%, respec-
tively, for all γ values. On the other hand. For γ = 3, the
number of nodes with kp > 8 and kp > 12 are 39% and
4.27%, respectively. For γ = 5, the number of nodes with
kp > 12 and kp > 16 are 41% and 8%, respectively. For γ =
7.5, the number of nodes with kp > 16 and kp > 20 are 53%
and 18%, respectively. Therefore, despite the number of nodes
with large kh being very small, the higher-order links still keep
playing very crucial roles in steering localization for the larger
eigenvalues. To get further insight into the role of higher-order
links, we define the following quantities. Let No(kh > c) and
No(kp > c) denote the set of nodes with kh > c and kp > c,
respectively. We are interested to find out the number of nodes
which are common between these two sets, i.e., No(kh >

c) ∩ No(kp > c) (Table I). It is evident from the table that total
number of nodes in No(kh > c) ∩ No(kp > c) is less than 50%
of set No(kh > c) for all γ values and c > 8. Therefore, the
impact of the higher-order links over the pairwise links in
steering localization for larger eigenvalues is apparent more
profoundly, which can be attributed to the increase in the
〈kp〉 value with the increase in γ , whereas 〈kh〉 = 3 taking
a constant value. Thus, kh(λ) � 〈kh〉 for the case of large
eigenvalues for all γ values. On the contrary, although the
largest pairwise degree kp

max experiences an increase with the
increase in γ , at the same time 〈kp〉 also increases, and, hence,
kp(λ) does not deviate much from the pairwise average degree
(〈kp〉) as compared to the deviation experienced by kh(λ) from
higher-order average degree (〈kp〉). Mathematically, we can
write kh(λ) − 〈kh〉 > kp(λ) − 〈kp〉 for larger eigenvalues.

So far, by using kh(λ) and kp(λ), we have discussed the lo-
calization properties of the eigenvectors. Particularly, we have
demonstrated that eigenvectors are localized on the nodes
having the degree abnormally high or low either with respect
to 〈kh〉 or 〈kp〉. Also, kh(λ) and kp(λ) come in the good
approximation with k̂h(λ) and k̂ p(λ), respectively. However, it
is also important to scrutinize other eigenvector components
to achieve the holistic idea of the localization. For this, we
calculate the absolute value of the eigenvector components
|xi|, the higher-order degree of the corresponding node kh

i ,
the pairwise degree kp

i , and average them over λ and λ ± dλ
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FIG. 7. 〈|xi|〉 (black), 〈kh
i 〉 (red), and 〈kp

i 〉 (blue) against index i
for λ belonging to the delocalized region. (a) and (b) λ ≈ 8.5, (c) and
(d) λ ≈ 14, (e) and (f) λ ≈ 12.5, (g) and (h) λ ≈ 23.5, (i) and (j)
λ ≈ 18, and (k) and (l) λ ≈ 26. The size of the hypergraph, N =
2000, and Mh = 500 remains fixed for all γ values with 40 random
realizations.

denoted by 〈|xi|〉, 〈kh
i 〉, and 〈kp

i 〉. We consider different regions
of the eigenvalue spectrum to calculate 〈|xi|〉, 〈kh

i 〉, and 〈kp
i 〉.

For the delocalized region, we consider the λ values where
kh(λ) intersects with k̂h(λ), and kp(λ) intersects with k̂h(λ).
For the localized region, we consider λ from the extremal
eigenvalues, i.e., smaller and larger eigenvalues. Figure 7
presents the results for 〈|xi|〉 arranged in an increasing order,
and corresponding 〈kh

i 〉 and 〈kp
i 〉 for two λ values belonging to

the delocalized region for various γ values. It is clearly visible
that max(〈|xi|〉) 
 1 and most of the 〈|xi|〉 are on the order
of 10−2 and 10−3, respectively. It becomes more interesting
to look at the behavior of 〈kh

i 〉 and 〈kp
i 〉. Both 〈kh

i 〉 and 〈kp
i 〉

remain constant to values, which are around 〈kh〉 and 〈kp〉,
respectively, and, thus, validating the earlier results. Further-
more, Fig. 8 plots 〈|xi|〉, 〈kh

i 〉, and 〈kp
i 〉 for λ belonging to

the localized region. It is apparent from that (max〈|xi|〉) → 1,
and only a few entries are on the order of 10−1 depicting the
localized nature of the eigenvectors. Furthermore, for smaller
eigenvalues, 〈kh

i 〉 remains fixed to the values lying in the close
vicinity to 〈kh〉 ≈ 3 ± 2 for all i’s. However, 〈kp

i 〉 deviates
from 〈kp〉 and dips down to a value which is lower than 〈kp〉
for the node contributing maximum in 〈|xi|〉. For the larger
eigenvalues, 〈kh

i 〉 remains constant at around 〈kh〉 for the nodes
contributing minimal in 〈|xi|〉, and takes value much larger
than 〈kh〉 for the nodes contributing maximal in 〈|xi|〉. On
the other hand, 〈kp

i 〉 always keeps oscillating around 〈kp〉 for
all i’s, and manifests a little deviation for 〈kp〉 for large i.
The above observations validate the earlier obtained result
that localization at smaller eigenvalues is instigated by the
pairwise links with higher-order links playing a dominant role
in inducing localization for larger eigenvalues.

We emphasize that the results presented here are robust
against the changes in the hypergraph parameters. The Sup-
plemental Material [48] consists of the results for two other
values of Mh = 1000 and 2000. The behavior of eigenvector
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FIG. 8. 〈|xi|〉 (black), 〈kh
i 〉 (red), and 〈kp

i 〉 (blue) against index i
for λ belonging to the localized region. (a) and (b) λ ≈ 2, (c) and
(d) λ ≈ 33, (e) and (f) λ ≈ 3, (g) and (h) λ ≈ 36, (i) and (j) λ ≈ 5,
and (k) and (l) λ ≈ 46. The size of the hypergraphs N = 2000, and
Mh = 500 remain fixed for all γ values with 40 random realizations.

localization is similar to that discussed here for Mh = 500.
Additionally, we consider one more size of the hyperedges,
i.e., d = 4, and the results manifest good agreements with
those of d = 3.

Localization properties of the conventional Laplacian. Let
us now discuss localization behavior of the eigenvectors for
the conventional Laplacian matrices. As mentioned earlier,
we consider LH instead of L in our analysis. Unlike the
conventional Laplacian (L), LH considers both the number
and the size of hyperedges incident on the nodes and, thus,
incorporates the higher-order structures completely. Here,
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FIG. 9. Average IPR [Yx j (λ)] (◦), kh(λ) (◦), and kp(λ) (�)
against λ for various γ < 1’s of the conventional Laplacian. The
corresponding higher-order and pairwise degree distributions are
also plotted in the last two rows. The size of the hypergraphs N =
2000 and Mh = 500 remain fixed for all γ values with 40 random
realizations.
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FIG. 10. Average IPR [Yx j (λ)] (◦), kh(λ) (◦), and kp(λ) (�), for
various γ > 1’s of the conventional Laplacian. The corresponding
higher-order and pairwise degree distributions are also plotted in
last two rows. The size of the hypergraphs N = 2000 and Mh = 500
remain fixed for all γ values with 40 random realizations.

we present the results for the conventional Laplacian by
calculating the same parameters as those used for LH . Note
that in the case of the conventional Laplacian γ = M p

2Mh since
if a node is incident on one hyperedge, its degree will be
increased by 2. From γ < 1, the localization behavior of the
eigenvectors remains the same as that of LH (Fig. 9). How-
ever, for γ > 1, the localization behavior of the eigenvectors
of L displays a completely different behavior to that of LH

(Fig. 10). The pairwise links play a more prominent role
in steering localization for all γ > 1, and hyperlinks play a
negligible effect. This may be due to the fact that the con-
ventional Laplacian does not take into account the size of the
hyperedges, and, thus, as pairwise links increase, it dominates
the effect of hyperlinks on steering localization. Thus, the
above observations indicate the importance of LH in cap-
turing properties of higher-order interaction networks more
accurately than the conventional Laplacian. Furthermore, this
example provides insight about the importance of definition
of Laplacian matrices, which depend on the physical system
modeled on the hypergraph.

VI. CONCLUSION

To conclude, we have investigated an interplay of the
higher-order and the pairwise links in driving localization of
the eigenvectors of hypergraphs. We find that the hypergraph

eigenvectors are localized on the set of nodes having de-
grees either much higher or lower from the average degree, a
result which is consistent with the earlier known result for
the networks having only pairwise interactions. Furthermore,
by defining a single parameter γ which measures relative
contribution of the pairwise and the higher-order links on a
node, we show that pairwise links does not impart any impact
on localization for γ � 1. For γ > 1 with an increase in γ , the
degree of localization of the eigenvectors corresponding to the
smaller eigenvalues increases. We show that role of higher-
order links is not significant as compared to the pairwise links
in inducing localization for smaller eigenvalues. This is due to
the fact that average pairwise degree (〈kp〉) increases with the
increase in γ , but the average higher-order degree (〈kh〉 = 3)
remains to a fixed value. Thus, the higher-order degree of the
nodes contributing maximum in an eigenvector and averaged
over λ and λ ± dλ [kh(λ)] being small for lower eigenvalues
cannot be substantially low as compared with 〈kh〉 for all γ

values. On the contrary, the difference between the pairwise
degree of a node contributing maximum in the eigenvector
and and average pairwise degree (〈kp〉) start increasing with
the increase in γ . Ergo, the pairwise links play a significant
role in the eigenvector localization for smaller eigenvalues.
Whereas, for larger eigenvalues, the higher-order links play a
crucial role in instigating localization despite the fact that the
number of nodes with the high value of higher-order degree
(kh) remains very small for all the γ values. This can also
be explained in a similar fashion which we adopted for the
smaller eigenvalues. As 〈kh〉 = 3 remains fixed to a constant
value for all γ values, the difference between kh(λ) and 〈kh〉
for larger eigenvalues always remain very high, whereas for
the pairwise links though the largest pairwise degree kp

max

exhibits an increase with γ , there exists a simultaneous in-
crease in 〈kp〉. Therefore, the difference between kh(λ) and
〈kh〉 is greater than the difference between kp(λ) and 〈kh〉, i.e.,
kh(λ) − 〈kh〉 > kp(λ) − 〈kp〉 for larger eigenvalues, which,
in turn, indicates the importance of higher-order links on the
localization for larger eigenvalues. The present paper can be
extended to simplicial complexes in which higher-order de-
grees can be further decomposed into contributions attributed
from different dimensions, such as triangles, tetrahedrons,
and so on. Furthermore, investigating roles of higher-order
and pairwise interactions, separately, on dynamics of random
walkers is an interesting future direction.
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