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Granger causality for compressively sensed sparse signals
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Compressed sensing is a scheme that allows for sparse signals to be acquired, transmitted, and stored using far
fewer measurements than done by conventional means employing the Nyquist sampling theorem. Since many
naturally occurring signals are sparse (in some domain), compressed sensing has rapidly seen popularity in a
number of applied physics and engineering applications, particularly in designing signal and image acquisition
strategies, e.g., magnetic resonance imaging, quantum state tomography, scanning tunneling microscopy, and
analog to digital conversion technologies. Contemporaneously, causal inference has become an important tool
for the analysis and understanding of processes and their interactions in many disciplines of science, especially
those dealing with complex systems. Direct causal analysis for compressively sensed data is required to avoid
the task of reconstructing the compressed data. Also, for some sparse signals, such as for sparse temporal
data, it may be difficult to discover causal relations directly using available data-driven or model-free causality
estimation techniques. In this work, we provide a mathematical proof that structured compressed sensing
matrices, specifically circulant and Toeplitz, preserve causal relationships in the compressed signal domain, as
measured by Granger causality (GC). We then verify this theorem on a number of bivariate and multivariate
coupled sparse signal simulations which are compressed using these matrices. We also demonstrate a real
world application of network causal connectivity estimation from sparse neural spike train recordings from rat
prefrontal cortex. In addition to demonstrating the effectiveness of structured matrices for GC estimation from
sparse signals, we also show a computational time advantage of the proposed strategy for causal inference from
compressed signals of both sparse and regular autoregressive processes as compared to standard GC estimation
from original signals.
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I. INTRODUCTION

The use of compressed (or compressive) sensing or sam-
pling for acquisition of signals has become very popular in the
past two decades. The basic idea behind the technique is the
acquisition and compression of data at the same time. Since
most real-world signals are sparse in some domain, they can
be acquired with only a few measurements. These measure-
ments contain sufficient information about the signals, making
their perfect reconstruction possible (assuming sparsity)
[1,2].

Compressed sensing has found applications in designing
magnetic resonance imaging techniques [3,4], cameras [5],
analog to digital conversion technologies [2], ghost imaging
[6,7], nuclear magnetic resonance spectroscopy [8,9], quan-
tum state tomography [10,11], radio interferometry based
black hole observation [12,13], and scanning tunneling mi-
croscopy [14]. Since a large number of signals are being
acquired and stored in the compressed domain, it becomes
imperative to analyze the properties of these signals and
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study their interdependence in the compressed domain itself,
avoiding the cumbersome task of their reconstruction. Hence
methods have been proposed to perform many important com-
putations in the domain of signal processing and learning
on compressed low dimensional data directly. These com-
putations include tasks such as regression [15], classification
[16–19], signal detection [20], nearest neighbor finding [21],
and manifold learning [22].

Causality analysis techniques study interactions between
different variables of a complex system and provide richer
information than mere linear correlation based analysis.
This information is required by many disciplines of science
in order to study specific systems based on cause-effect
relationships between observables and eventually control
their required parts, where need be [23,24]. Neuroscience
[25,26], earth sciences [27–31], econometrics [32–35], en-
gineering [36], etc. have employed different time series
causality estimation techniques to study interactions in sys-
tems such as the human brain, stock prices, and Earth’s
climate.

Causality estimation for time series data began with the
pioneering work of Granger [37]. Granger causality (GC)
continues to be the most widely used method for causality
estimation to date. GC is inspired from Wiener’s idea of causal
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prediction, according to which “a time series X causes a time
series Z , if the past values of X contain information that help
predict Z above and beyond the information contained in the
past values of Z alone” [38]. To estimate GC from X to Z , Z is
modeled as a linear autoregressive process in two independent
ways:

Z (t ) =
∞∑

τ=1

[aτ Z (t − τ )] +
∞∑

τ=1

[cτ X (t − τ )] + εc, (1)

Z (t ) =
∞∑

τ=1

[bτ Z (t − τ )] + ε, (2)

where t denotes any time instance, aτ , bτ , cτ are coefficients at
a time lag of τ , and εc, ε are error terms (Gaussian distributed)
in the two models. To determine if X causes Z or not, the
logarithm of the ratio of the prediction error variances is
computed:

FX→Z = ln
var(ε)

var(εc)
. (3)

This measure is called the GC F statistic. If the model repre-
sented by Eq. (1) is a better model for Z (t ) than Eq. (2), then
var(εc) < var(ε) and FX→Z will be greater than zero, suggest-
ing that X Granger causes Z . In spite of using a simplistic
autoregressive model, GC is applicable (in principle) in a wide
range of covariance stationary processes [39,40].

A number of attempts have been made to generalize GC
to the nonlinear case, such as by using an estimator based on
correlation integral [33], a nonparametric regression approach
[41], local linear predictors [42], mutual nearest neighbors
[43,44], and kernel estimators [45], just to name a few.
Other causality estimation techniques have also been pro-
posed based on Wiener’s idea of causation. These include
transfer entropy [46], conditional mutual information [47],
compression-complexity causality [48], and direct transfer
function [49]. All these techniques are largely model-free
or nonparametric and do not require an explicit assumption
of the underlying causal model. Other than these, there are
other techniques which are model based, which require an
explicit assumption of the underlying physical model gener-
ating the data. Owing to these assumptions, these methods
are often specific to certain systems in specific application do-
mains. Some examples include dynamic causal modeling [50],
which was developed for neuroscience, and structural equa-
tion modeling [51], which has found applications in medicine,
engineering, and social sciences.

In today’s world of data-driven science, both compressed
sensing and causality estimation have gained impressive
ground across disciplines and play an important role in experi-
mental [10,52–55] and computational [56–58] physics as well
as the study of complex systems and networks [25,29,59–62].
By saving measurement time and cost, compressed sensing
has enabled experiments to be conducted more efficiently.
Causality estimation, on the other hand, has supplied tools
to study interactions in systems and unravel their underlying
dynamics. The motivation for this study lies at the intersec-
tion of these two disciplines. Specifically, we wish to extend
causal estimation to the compressed domain. It is often the
case that causal network discovery is required to be done on

high dimensional data having a large number of variables.
Application of causality estimation techniques to compressed
signals will prevent the computationally expensive task of
reconstructing signals acquired using compressive sensing.
This would enable fast and reliable causal discovery, helping
in compressed computation, which has gained importance in
recent times. In the following subsections, we discuss the
technique of compressed sensing and the requirement for
causal inference in the compressive domain in some detail.

A. Compressed sensing

Compressed sensing is a relatively recent signal process-
ing technique that helps in the acquisition, transmission, and
storage as well as modification of large amounts of data in
an efficient manner. It is well known that, when a signal is
sampled at the Nyquist rate, perfect recovery of the origi-
nal signal is guaranteed. However, the theory of compressed
sensing claims that signal recovery is possible by using far
fewer measurements under certain conditions. There are two
conditions required for this: (1) the input signal be sparse
when expressed in a proper basis and (2) the basis in which it
is sensed or acquired be incoherent with the above mentioned
sparsifying basis [2,63]. Sparsity refers to the case in which
most entries of a discrete-time signal are zero. If a signal has
“k” nonzero entries, then k is much less than the total length of
the signal. This means that, when expressed in the proper basis
ψ , which is called the sparsifying matrix, these signals have
concise representations. Incoherence is basically the idea that
objects that have a sparse representation in ψ should spread
out in the domain in which they are acquired (or sensed). This
is analogous to the property of duality—an impulse in the time
domain is spread out in the frequency domain (and vice versa).
In other words, incoherence means that the sampling (sensing)
waveforms have a very dense representation in ψ .

Let y (an m × 1 dimension vector) be a set of measure-
ments acquired for a sparse signal z (of dimension n × 1) [64].
y is called the compressed signal or compressive measurement
vector. Then, sparse signal recovery can be seen as a com-
pressed sensing problem as follows:

y = φz, (4)

where φ is an m × n sensing matrix. The input vector z is in
Rn and is mapped to the output vector y, which is in Rm. The
sensing matrix, φ, has a rank �m (and m � n).

φ must satisfy φz1 �= φz2 for all k-sparse vectors z1 �= z2.
Here, k-sparse vectors are those which contain a maximum
number of k nonzero entries. This property allows the map-
ping to be invertible on all k-sparse vectors, ensuring that no
two output vectors are mapped to the exact same sparse vector
during recovery. For this to be the case, it is required that φ has
at least 2k rows, i.e., m � 2k.

Restricted isometry property (RIP) [65] is a key notion in
compressed sensing that determines the efficiency and robust-
ness of the sensing matrix φ to capture information about
sparse signals, such that the aim of recovering them is sat-
isfactorily fulfilled. For each integer, k = 1, 2, . . ., let δk be
the RIP or isometry constant of matrix φ associated with that
k. Then, δk is defined as the smallest positive value such that

(1 − δk )‖z‖2
l2 � ‖φz‖2

l2 � (1 + δk )‖z‖2
l2 (5)
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holds for all k-sparse vectors z [66]. φ is said to fulfill an RIP
of order k, if δk is not too close to one. This implies that, for
k-sparse signals, the Euclidean length is roughly preserved,
and so these k-sparse vectors cannot be in the null space
of φ. Consequently, this ensures that their reconstruction is
possible.

Even when φ satisfies the above conditions, Eq. (4) still
remains underdetermined with infinitely many solutions. The
best (sparse) solution can be recovered from the compressed
measurement vector y, using a variety of algorithms, which
employ, for example, optimization techniques (such as l1
minimization [1,67]) or greedy approach (such as orthogonal
matching pursuit [68]).

B. Causal inference in the compressive domain

As compressed sensing schemes are being widely em-
ployed for the acquisition of signals, their transmission, and
storage, it is important to know whether causal relationships
between different variables in the compressed domain can be
inferred directly from the compressed data, that is, without
reconstructing the signals. Also, it is necessary to know under
what circumstances and for what kind of sensing matrices are
causal relationships preserved in the compressed domain.

Further, sometimes, in case of sparse data, available tech-
niques for model-free causality estimation may not perform
adequately when applied directly to the original data (uncom-
pressed). For example, Granger causality cannot be computed
directly for point processes and only spectral GC estimated
from Fourier transformed stationary point processes is mean-
ingful [69]. Another way that has been explored for such cases
is converting the point process data to continuous domain
through the use of smoothing kernels [70] or low pass fil-
ters [49,71] and then applying GC or one of its extensions.
Other than this, GC in combination with machine learning
algorithms has also been used to learn causality for certain
kinds of point processes [72]. Transfer entropy (in its origi-
nal discrete time form), when applied to point processes or
event-based data, has also been shown to have a number
of drawbacks and hence continuous time transfer entropy
has been developed and proposed as an alternative [73,74].
However, there are no works validating the use of model-free
causal estimation techniques, generally on sparse processes
or compressed representations of sparse processes. There are
some specialized model-based methods that have been pro-
posed to be applied to specific kinds of sparse processes. For
example, point process generalized linear model (GLM) based
techniques [75–80], MVAR nonlinear Poisson model [81],
dynamic Bayesian network [82], and Cox model [83] have
been proposed for effective connectivity analysis of neural
spike train data.

In this work, we discuss if and how the use of Granger
causality can be done in order to discover causal relations for
sparse data by using them directly as acquired in the com-
pressive domain or transforming them into the compressed
domain. Specifically we show that structured compressed
sensing matrices, circulant and Toeplitz, when used to di-
rectly sense or (posteriorly) compress sparse signals preserve
GC (retain the direction as well as the strength of causality)
between these signals in the compressed domain. Some pre-

liminary work in this direction was done by the authors in
[84].

When the connections in the network are sparse, there exist
techniques such as Lasso Granger [85], its several variations
[86,87], CaSPIAN [88], etc. that employ a combination of
compressed sensing techniques [such as variable (model) se-
lection, for example, Lasso] and causality estimation methods
(such as GC). These are methods to infer network connectivity
and are of use for the study of systems such as genetic regu-
latory networks [89]. These methods are not to be confused
with the work that we present in this paper since none of
these methods attempt to infer causal relationships in the
compressed domain.

This paper is organized as follows. In Sec. II, we provide
a mathematical proof that circulant and Toeplitz structured
sensing matrices preserve GC for compressively sensed sig-
nals. In Sec. III, we demonstrate the performance of these
sensing matrices by discovering causality from signals sensed
using these matrices. This is done for the case of bivariate
and multivariate simulations of sparse signals. We also apply
the matrices to estimate GC from compressed counterparts
of neural spike trains recorded from rat prefrontal cortex. We
discuss our results and conclude in Sec. IV.

II. SPECIAL SENSING MATRICES THAT PRESERVE
GRANGER CAUSALITY

As discussed before, a sensing matrix, φ, on multiplication
with an n × 1 sparse signal, z, yields a compressed signal, y, of
size m × 1. This is according to the equation y = φz. Gaussian
random values in φ prove to be one of the most effective ways
in helping recover z from y [90,91]. However, one of the draw-
backs of using a random matrix is that hardly any properties
of the original signal are preserved after compression. Hence
it was intuitive to explore matrices which possess some kind
of structure and also satisfy the essential properties for sparse
signal recovery, so that no information is lost from the signals.

Circulant and Toeplitz matrices have been shown to be ef-
fective sensing matrices for recovery of sparse signals [92,93].
In fact, Toeplitz and partial random circulant matrices have
both been shown to satisfy the RIP property [94,95]. In this
section we provide complete mathematical proofs showing
that signals sensed using either of these matrices are effective
at preserving causality as measured by GC.

A. Circulant sensing matrices

Let C (or Cn) be a circulant matrix of order n × n, com-
posed of random entries a0, a1, a2, . . . , an−1, where ai ∼
N (0, 1) (Gaussian distribution with zero mean and unit vari-
ance):

C =

⎡
⎢⎢⎢⎢⎣

a0 an−1 an−2 · · · a1

a1 a0 an−1 · · · a2

a2 a1 a0 · · · a3
...

...
...

. . .
...

an−1 an−2 an−3 · · · a0

⎤
⎥⎥⎥⎥⎦

n×n

. (6)

It is known that a circulant matrix is diagonalizable by a
discrete Fourier transform (DFT) matrix [96]. Let Fn denote
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the DFT matrix:

Fn =

⎡
⎢⎢⎢⎢⎣

1 1 1 · · · 1
1 (ω)1 (ω)2 · · · (ω)n−1

1 (ω2)1 (ω2)2 · · · (ω2)n−1

...
...

...
. . .

...

(wn−1)1 (wn−1)2 (wn−1)3 · · · (wn−1)n−1

⎤
⎥⎥⎥⎥⎦

n×n

.

(7)

So,

Cn = (
F−1

n

)
DFn, (8)

where D is a diagonal matrix formed by the entries Dk,k =
Gk , where Gk is the kth coefficient of the DFT of �a =
[a0, a1, . . . , an−1]. Let z (of dimension n × 1), when multi-
plied by C, return:

y = Cz. (9)

From Eq. (8),

Cz = [(
F−1

n

)
DFn

]
z

= F−1
n D(Fnz). (10)

So, if Z ( fi ) denotes the Fourier coefficient of z at frequency
fi,

Cz = F−1
n

⎡
⎢⎢⎢⎢⎣

G0 0 0 · · · 0
0 G1 0 · · · 0
0 0 G2 · · · 0
...

...
...

. . .
...

0 0 0 · · · Gn−1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

Z ( f0)
Z ( f1)
Z ( f2)

...

Z ( fn−1)

⎤
⎥⎥⎥⎥⎦

= F−1
n

⎡
⎢⎢⎢⎢⎣

G0Z ( f0)
G1Z ( f1)
G2Z ( f2)

...

Gn−1Z ( fn−1)

⎤
⎥⎥⎥⎥⎦. (11)

Multiplying Eq. (9) with a projection matrix P of order
m × n (with m < n) on both sides,

Py = PCz, (12)

where

P =

⎡
⎢⎢⎣

1 0 · · · 0 0 · · · 0
0 1 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

0 0 · · · 1 0 · · · 0

⎤
⎥⎥⎦

m×n

. (13)

This is equivalent to multiplying z with an m × n compressed
sensing matrix PC = Cm×n, with circulant structure. From
Eqs. (12) and (11),

Py = PF−1
n

⎡
⎢⎢⎣

G0Z ( f0)
G1Z ( f1)

...

Gn−1Z ( fn−1)

⎤
⎥⎥⎦

= F−1
m×n

⎡
⎢⎢⎣

G0Z ( f0)
G1Z ( f1)

...

Gn−1Z ( fn−1)

⎤
⎥⎥⎦, (14)

where

F−1
m×n =

⎡
⎢⎢⎢⎣

1 1 1 · · · 1
1 (ω)1 (ω2)1 · · · (ωn−1)1

...
...

...
. . .

...

1 (ω)m−1 (ω2)m−1 · · · (ωn−1)m−1

⎤
⎥⎥⎥⎦. (15)

Let Py = y′, where y′ is an m × 1 vector. y′ is essentially a
compressively sensed vector. Multiplying Eq. (14) on both
sides with Fourier transform matrix of order m × m,

Fmy′ = FmF−1
m×n

⎡
⎢⎢⎣

G0Z ( f0)
G1Z ( f1)

...

Gn−1Z ( fn−1)

⎤
⎥⎥⎦

= Pm×n

⎡
⎢⎢⎣

G0Z ( f0)
G1Z ( f1)

...

Gn−1Z ( fn−1)

⎤
⎥⎥⎦, (16)

yields
⎡
⎢⎢⎣

Y ′( f0)
Y ′( f1)

...

Y ′( fm−1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

G0Z ( f0)
G1Z ( f1)

...

Gm−1Z ( fm−1)

⎤
⎥⎥⎦,

⎡
⎢⎢⎣

Sy′y′ ( f0)
Sy′y′ ( f1)

...

Sy′y′ ( fm−1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

G2
0Sz,z( f0)

G2
1Sz,z( f1)

...

G2
1Sz,z( fm−1)

⎤
⎥⎥⎥⎦. (17)

Here, Y ′( f0),Y ′( f1), . . . are the Fourier coefficients of y′.
Squaring the equation on both sides gives a relation between
the spectral power coefficients of y′ and z. Sy′,y′ and Sz,z repre-
sent the spectral coefficients of y′ and z, respectively.

For two processes z1 and z2, which may be coupled and can
be modeled like autoregressive processes,

z1(t ) =
∞∑
j=1

b11, j z1(t − j) +
∞∑
j=1

b12, j z2(t − j) + ε1(t ),

z2(t ) =
∞∑
j=1

b21, j z1(t − j) +
∞∑
j=1

b22, j z2(t − j) + ε2(t ).

(18)

Rewriting the above equation in terms of the lag operator,[
b11(L) b12(L)
b21(L) b22(L)

][
z1(t )
z2(t )

]
=

[
ε1

ε2

]
, (19)

where bi j (L) = ∑∞
k=0 bi j,kLk , with bi j,0 = δi j or the Kro-

necker delta function. The covariance matrix of noise terms
is

� =
[
�11 �12

�21 �22

]
, (20)

where �11 = var(ε1), �22 = var(ε2), and �12 = �21 =
cov(ε1, ε2).
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Taking Fourier transform of Eq. (19) on both sides,[
B11( f ) B12( f )
B21( f ) B22( f )

][
Z1( f )
Z2( f )

]
=

[
E1( f )
E2( f )

]
. (21)

In terms of transfer function matrix H( f ) = [Bi j ( f )]−1,
Eq. (21) can be expressed as[

Z1( f )
Z2( f )

]
=

[
H11( f ) H12( f )
H21( f ) H22( f )

][
E1( f )
E2( f )

]
. (22)

The spectral density matrix for the above is given by

S( f ) = H( f )�H∗( f ), (23)

where ∗ denotes matrix adjoint. To check the causal influence
from z2 to z1 using spectral Granger causality, we need to look
at the autospectrum of z1, which is given by

S11( f ) = H11( f )�11H∗
11( f ) + 2�12Re(H11H∗

12)

+ H12( f )�22H∗
12( f ). (24)

In the above expression, due to the cross terms, causal
power contribution to z1 is not explicit. Geweke, in his work
[97], came up with a transformation that makes the causal
power term and the intrinsic term explicit. To obtain this
transformation for z1, Eq. (21) is left multiplied on both sides
by [

1 0
−�12/�11 1

]
.

This gives[
B11( f ) B12( f )
B̃21( f ) B̃22( f )

][
Z1( f )
Z2( f )

]
=

[
E1( f )
Ẽ2( f )

]
, (25)

where B̃21( f ) = B21( f ) − �12
�11

B11( f ) and B̃22( f ) = B22( f ) −
�12
�11

B12( f ). Let the new transfer function be given by

H̃( f ), whose elements then become H̃11( f ) = H11( f ) +
�12
�11

H12( f ), H̃12( f ) = H12( f ), H̃21( f ) = H21( f ) + �12
�11

H22( f ),

and H̃22( f ) = H22( f ). Ẽ2( f ) = E2( f ) − �12
�11

E1( f ), which re-

sults in the cov(E1, Ẽ2) = 0 and �̃22, the new variance of the
error term of z2, is �22 − �2

12
�11

.

As �̃12 becomes zero, the autospectrum of z1(t ) is now
decomposed into two explicit parts:

S̃11( f ) = H̃11( f )�11H̃∗
11( f ) + H12( f )�̃22H∗

12( f ). (26)

The first term in the decomposition of S̃11( f ) represents an in-
trinsic power term of z1(t ) and the second is due to the “causal
power” contribution from z2(t ). Spectral Granger causality at
a particular frequency f is given by the logarithm of the ratio
of total power to intrinsic power, so GC from z2 to z1 at f :

Iz2→z1 ( f ) = ln
S̃11( f )

S̃11( f ) − (
�22 − �2

12
�11

)|H12( f )|2
. (27)

Multiplying Eq. (21) with a constant, G f , on both sides,
[

B11( f ) B12( f )
B21( f ) B22( f )

][
G f Z1( f )
G f Z2( f )

]
=

[
G f E1( f )
G f E2( f )

]
. (28)

This gives [using Eq. (17)][
B11( f ) B12( f )
B21( f ) B22( f )

][
Y ′

1 ( f )
Y ′

2 ( f )

]
=

[
G f E1( f )
G f E2( f )

]
. (29)

The above gives us a relation between the frequency
components of y′

1 and y′
2, which can be thought of as be-

ing compressed counterparts of z1 and z2. If z1 and z2 are
compressed by the same compressed sensing matrix, their
coefficients corresponding to a particular frequency will be
scaled by the same constant. This follows directly from
Eq. (17).

Hence the transformation of z1 to y′
1 and of z2 to y′

2 changes
the variance of z1, z2, basically scaling E1( f ) and E2( f ) by
the same quantity. Thus the variance and covariance terms
of E1 and E2 are all scaled by G2

f . To compute the causal
influence from y′

2 to y′
1, the same procedure holds as for z2

to z1, with the only difference being that both the numerator
and the denominator in the logarithmic term of Eq. (27) are
multiplied by G2

f as all the error variance and covariance
terms are scaled by this quantity. As this scaling factor exists
both in the numerator and denominator, it gets canceled out,
yielding the same causal influence from Y ′

2 ( f ) → Y ′
1 ( f ) as

exists between Z2( f ) → Z1( f ). Thus

Iy′
2→y′

1
( f ) = Iz2→z1 ( f ). (30)

Geweke [97] showed that for all processes of practical
interest,

1

2π

∫ π

−π

Iz2→z1 ( f ) df = Fz2→z1 , (31)

where Fz2→z1 refers to the time-domain GC from z2 to z1. Now,
since z1 and z2 are sparse and all information contained in
them is equally well represented in the compressed sensing
domain by y1 and y2 (invertability or reconstruction of all
sparse vectors is guaranteed by the RIP property), all the infor-
mation including causal information is present in the limited
and (coarser) frequency components of the compressed signal.
Hence

1

2π

∫ π

−π

Iz2→z1 ( f ) df = 1

2π

∫ π

−π

Iy′
2→y′

1
( f ) df = Fy′

2→y′
1
,

(32)
showing that the time-domain GC is preserved.

To find the causal influence from z1 to z2 or from y′
1 to y′

2
at any frequency f , one can multiply by the transformation
matrix, [1 −�12/�22

0 1 ], to delineate the intrinsic and the causal
terms.

B. Toeplitz sensing matrices

When our compressed signal is obtained by multiplication
with a Toeplitz sensing matrix, the following discussion holds.
Let us start by considering an n × n Toeplitz matrix, T (or Tn):

T =

⎡
⎢⎢⎢⎢⎣

a0 an−1 an−2 · · · a1

a−1 a0 an−1 · · · a2

a−2 a−1 a0 · · · a3
...

...
...

. . .
...

a−(n−1) a−(n−2) a−(n−3) · · · a0

⎤
⎥⎥⎥⎥⎦

n×n

, (33)
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where ai ∼ N (0, 1). Multiplying T with a signal z gives

yn×1 = Tn×nzn×1. (34)

This multiplication can be achieved by embedding Tn into a
circulant matrix, C2n, of dimension 2n × 2n. This embedding
is done in such a manner that the first n entries of C2nz will be
equal to Tnz:[

y
yd

]
= C2n

[
z
0

]
=

[
Tn Bn

Bn Tn

][
z
0

]
=

[
Tnz
Bnz

]
. (35)

Here, the signal z is appended with n zeros, resulting in a
2n × 1 vector. Once again, this circulant matrix is diagonaliz-
able by a DFT matrix. Then, as in Eqs. (10) and (11),[

y
yd

]
= F−1

2n DF2n

[
z
0

]

= F−1
2n

⎡
⎢⎢⎢⎢⎣

G0Z ( f0)
G1Z ( f1)
G2Z ( f2)

...

G2n−1Z ( f2n−1)

⎤
⎥⎥⎥⎥⎦, (36)

where Z ( f ) is the Fourier coefficient at frequency f of
[z
0]. The G’s here are the coefficients of the DFT of

the first column in the entries of C2n, given by �a2n =
[a0, a−1, . . . , a−(n−1), a0, a1, . . . , a(n−1)].

It is known that zero padding a (finite length) signal only
increases its frequency resolution without losing any informa-
tion in the frequency content of the original signal z. Now, we
multiply Eq. (35) on both sides with projection matrix P of
order m × 2n (with m < n),

Pm×2n

[
y
yd

]
= Pm×2n

[
Tnz
Bnz

]
, (37)

which can alternatively be written as

Pm×ny = y′ = Pm×nTnz = Tm×nz, (38)

as m < n. The above equation can be seen as left multiplying
z with a compressed sensing matrix Tm×n with Toeplitz struc-
ture. Going back to the representation of y in Eq. (36),

Pm×2n

[
y
yd

]
= Pm×ny = Pm×2nF−1

2n

⎡
⎢⎢⎢⎢⎣

G0Z ( f0)
G1Z ( f1)
G2Z ( f2)

...

G2n−1Z ( f2n−1)

⎤
⎥⎥⎥⎥⎦. (39)

Multiplying on both sides by Fm,

Fmy′ = Pm×2n

⎡
⎢⎢⎢⎢⎣

G0Z ( f0)
G1Z ( f1)
G2Z ( f2)

...

G2n−1Z ( f2n−1)

⎤
⎥⎥⎥⎥⎦, (40)

results in ⎡
⎢⎢⎣

Y ′( f0)
Y ′( f1)

...

Y ′( fm−1)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

G0Z ( f0)
G1Z ( f1)

...

Gm−1Z ( fm−1)

⎤
⎥⎥⎦. (41)

As the frequency components of y′ are scaled versions
of the frequency components of z′, as seen for circulant
compressed sensing matrices, the entire argument of GC
preservation in the compressed sensing domain follows here
as well. Thus we have proved that GC is preserved if sensing
matrices have circulant or Toeplitz structure.

III. RESULTS

A. Simulations

Sparse input signals z1 and z2 were first simulated. Here,
“sparse” refers to the signals for which most entries are zero
and should not be confused with signals with missing values
or irregular sampling. These signals were then passed as an in-
put to the same sensing matrix C in order to obtain compressed
signals y1 and y2, respectively. The length of input signals was
kept as n = 2000 and that of the compressed signals was kept
as m = 200, except in the cases where the results are obtained
for varying m. Sparsity of the input signals, k, was kept as 20,
except in the cases where results were specifically obtained
for varying k.

Let the signals z1 and z2 be defined over a set T =
{1, 2, 3, . . . , n}, which can be considered to be a set of time
points. Let T1 ⊂ T such that T1 consists of k elements chosen
from T in a uniformly random manner. Also, let T2 ⊂ T be
defined as T2 = {t2 : t2 = t1 + 1,∀ t1 ∈ T1}. T c

1 and T c
2 denote

the complement sets of T1 and T2, respectively (T being the
universal set). The signals z1 and z2 were generated by sparsi-
fying a pair of autoregressive (AR) processes Z1 and Z2. These
were generated as per the following equations:

Z1(t ) = αZ1(t − 1) + ε1(t ), ∀t ∈ T,

z1(t ) =
{

Z1(t ), ∀ {t ∈ T1},
0, ∀ {

t ∈ T c
1

}
,

(42)

Z2(t ) = βZ2(t − 1) + γ z1(t − 1) + ε2(t ), ∀t ∈ T,

z2(t ) =
{

Z2(t ), ∀{t ∈ T2},
0, ∀{

t ∈ T c
2

}
,

(43)

where ε1 and ε2 are independent Gaussian noise drawn from
N (0, 0.1), α = 0.8, β = 0.08, and γ = 0.75. At k randomly
selected time points, z1(t ) takes the values of Z1(t ) and is
set to zero elsewhere (at the rest n − k time points). z2(t ) is
zero whenever z1(t − 1) = 0. At the rest k time points, z2(t )
retains the values of Z2(t ). Defined this way, both z1 and z2

are k-sparse signals. As can be seen from the above equations,
z1 has a causal influence on z2 (with coupling coefficient γ

controlling the strength of causation) and there is no causal
influence from z2 to z1.

1. Performance of structured matrices

Performance of circulant and Toeplitz matrices was evalu-
ated for sparse signal recovery and causality estimation, while
varying the level of sparsity, k. 100 realizations of z1 and z2

with random initial values were simulated. Percentage suc-
cess in signal reconstruction and correct causality detection is
shown in Fig. 1. k was varied from 5 to 50 in steps of 5. CVX,
a MATLAB package for convex optimization [98], was used for
l1 minimization and subsequent sparse signal reconstruction
for all results in this paper. For each realization, sparse signal
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FIG. 1. Percentage success (using 100 realizations) in sparse sig-
nal reconstruction (n = 2000 length signal) and causality estimation
for varying sparsity (k) in case of (a) circulant and (b) Toeplitz
sensing matrices. Number of measurements m is fixed at 200.
Signal recovery degrades for higher values of k as expected by
compressed sensing theory and practice [2]. However, causality esti-
mation improves.

reconstruction (z1 and z2 from y1 and y2, respectively) is
counted as successful if the mean squared error between the
original and reconstructed signal is less than 10−5 for both
z1 and z2. The mean squared error of reconstruction for a
realization of z1 is estimated as

MSE(z1) = 1

n

n∑
i=1

[z1(i) − ẑ1(i)]2, (44)

where i denotes the temporal index of samples in z1, n is
the length of z1, and ẑ1 is the reconstructed signal for z1.
For each realization causality estimation is counted as being
successful if the Granger causality F statistic from y1 to y2

is found to be statistically significant and from y2 to y1 is
found to be statistically insignificant. Since the F statistic
computed as per Eq. (3) is non-negative, GC is known to
be positively biased. Hence statistical significance of the es-
timated causality against the null hypothesis of zero causality
should be established for each case. The distribution of the
GC estimator under the null hypothesis of zero causality has
been well studied [39]. The multivariate Granger causality
(MVGC) toolbox [39] was used for the computation of GC
F statistic and its statistical significance for all experiments
in this work. The order of the AR processes was determined
using Akaike information criterion with maximum number of
lags to be considered for the processes set to 30. Significance
testing was done using the χ2 method with significance level,
α, set to 0.01. For α = 0.05, the number of false positives
increased and so it was set to 0.01. The rest of the parameters
of the toolbox were set to their default values [39]. These
settings for the computation of GC and its significance were
kept constant for all experiments in this paper.

Percentage success in causality estimation when the level
of sparsity is kept constant at k = 20 but the degree of cir-
culant or Toeplitz structure is varied is shown in Fig. 2. The
degree of structure was varied by allowing only the first S �
m rows of the sensing matrix to have circulant or Toeplitz
structure, while the entries for the rest of the m − S rows
were selected randomly from N (0, 1). S was varied from 0
to m (=200) in steps of 20. For each S, 100 realizations of

FIG. 2. Percentage success (using 100 realizations) in correct
causality estimation for varying number of structured rows, S, in
case of circulant and Toeplitz sensing matrices. Causality estimation
improves as the number of structured rows increases for both types
of matrices.

z1 and z2 were simulated and compressed to obtain y1 and y2,
respectively (using a different sensing matrix for each realiza-
tion). Reconstruction of z1 and z2 was found to be successful
for all the realizations for all the values of S here. Hence the
depiction of percentage success in sparse signal recovery is
omitted in Fig. 2.

2. Varying the coefficient of causation

For simulated input signals z1 and z2, the coupling coeffi-
cient γ [see Eqs. (42) and (43)] was varied from 0 to 4 in steps
of 0.5. The GC F statistic was estimated from y1 to y2 (F1)
and from y2 to y1 (F2) for both fully circulant and Toeplitz
sensing matrices. In Figs. 3(a) and 3(b), mean values of F1

and F2, obtained using 100 random realizations, are shown for
circulant and Toeplitz matrices, respectively, as the coefficient
γ is varied.

FIG. 3. Mean Granger causality values (using 100 realizations)
from y1 → y2 (F1) and y2 → y1 (F2) as the coupling coefficient γ is
varied in case of sensing by (a) circulant and (b) Toeplitz matrices.
With increasing γ , strength of GC estimated in the direction of
coupling between the compressed signals increases.
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FIG. 4. (a) Percentage success in correct causality estimation
and (b) mean computational time taken for GC estimation, using
100 realizations of compressed sparse AR processes, for varying
length of the compressed signal, m, in case of circulant and Toeplitz
sensing matrices. Success in causality estimation becomes >90% for
m � 60.

3. Computational time considerations

In this section, we study the effect of variation in the length
of the compressed signal on success in causality estimation
using GC. The length of the compressed signal, m, depends
on the size of the compressed sensing matrix. m is varied from
20 to 300 in steps of 20. The maximum possible order of the
processes for GC estimation in this section was set to 10 as
the total length of the considered signal was as low as 20 for
some cases. The rest of the settings in the MVGC toolbox
were kept the same as before. For compressed counterparts, y1

and y2, of simulated sparse signals [z1 and z2, as per Eqs. (42)
and (43)], percentage success in correct causality detection is
shown in Fig. 4(a). This is shown for 100 realizations of z1

and z2 with random initial conditions. Percentage success in
causality estimation was found to be >90% for m � 60.

Another aspect that becomes important when looking at
causality detection from varying compressed signal length
is the computational time taken for GC estimation. Since
the computation is now happening from very short length
signals relative to the length of the original sparse signal,
it is expected that the time for GC estimation will be con-
siderably reduced as compared to that taken for equivalent
uncompressed signals. Figure 4(b) shows the total compu-
tational time taken for generating the compressed sensing
matrix, compressing the sparse signal and then GC estimation
in both directions using the MVGC toolbox. The system used
for the experiment had the following specifications: Windows
10 Pro, with 32GB RAM, Processor: AMD Ryzen 9 3900X
12-Core, 3.80 GHz, 64 bit, MATLAB 2019b. Estimation of time
domain GC from sparse point processes is not considered to
be meaningful and may even encounter technical difficulties
[69,77]. Hence we note here the computational time taken for
GC estimation for 2000 length regular coupled AR processes
(not sparse). These AR processes were generated as per the
following equations:

X1(t ) = α1X1(t − 1) + ε1(t ), (45)

X2(t ) = β1X2(t − 1) + γ1X1(t − 1) + ε2(t ). (46)

FIG. 5. (a) Percentage success in correct causality estimation
and (b) mean computational time taken for GC estimation, using
100 realizations of compressed nonsparse AR processes, for varying
length of the compressed signal, m, in case of circulant and Toeplitz
sensing matrices. Success in causality estimation becomes >90% for
m � 40.

Here, α1 = 0.8, β1 = 0.2, γ1 = 0.6, and ε1 and ε2 are in-
dependent Gaussian noise drawn from N (0, 0.1). The mean
time for GC estimation in both directions across 100 random
realizations was found to be 14.5 ms.

The computational time for GC computation of 2000
length signals is 2 to 3.5 times the total time taken for GC
estimation (including compression) from compressed signals
in Fig. 4(b) (depending on the length of the compressed sig-
nal). In other words, using compression based GC analysis
gives a speedup of 2 to 3.5 times. So, there seems to be direct
computational time advantage in using compressed signals for
GC estimation rather than the full length signals.

In view of the above promising results, we also try to com-
press the regular (nonsparse) AR processes and then check the
performance of circulant and Toeplitz matrices both in terms
of computational time and percentage success in causality
estimation. Regular AR processes X1 and X2 generated as per
Eqs. (45) and (46) were compressed to give signals Y1 and
Y2, in the same manner as discussed for sparse AR processes
before. Figure 5 shows the results for varying m, which was
varied from 20 to 300 in steps of 20. The original length of
the processes taken here was also 2000. Interestingly, it was
found that the percentage success in causality estimation here
was >90% for m � 40. The time taken for uncompressed
coupled processes can be seen to be 1–1.8 times the total com-
putational time of generating the compressed sensing matrix,
compressing the signal, and then GC estimation (depending
on the length of the compressed signal). Hence the use of
compression based GC gives a speedup of 1–1.8 times for
nonsparse AR processes. The specifications for the machine
used for computation were the same as mentioned before for
Fig. 4(b).

Since the causality detection from compressed versions of
regular AR processes was found to be successful and also had
some computational time advantage, the GC F statistic for
the compressed and uncompressed versions was computed in
order to compare the accuracy of the results from compressed
signals with those of original length. The mean value of F
statistic using 100 realizations obtained for varying coupling
coefficient γ1 in Eq. (46) is shown in Fig. 6. (F1)Comp and
(F2)Comp represent the F statistic from Y1 to Y2 and from Y2 to
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FIG. 6. Mean Granger causality values (using 100 realizations)
from Y1 → Y2 [(F1)Comp], Y2 → Y1 [(F2)Comp], X1 → X2 [(F1)Orig],
and X2 → X1 [(F2)Orig] as the coupling coefficient γ1 is varied in case
of sensing by (a) circulant and (b) Toeplitz matrices. With increasing
γ1, strength of GC estimated in the direction of coupling between the
compressed and original signals increases.

Y1, respectively. Similarly, (F1)Orig and (F2)Orig represent the F
statistic from X1 to X2 and from X2 to X1, respectively. γ1 was
varied from 0 to 1 in steps of 0.2 and m here was set to 40. This
value of m is the lowest value that gave a good performance
for success in GC based causality detection. It was found that
(F1)Comp and (F1)Orig increase with increasing γ1 and remain
close together. (F2)Comp and (F2)Orig remain close to zero and
do not change with increasing γ1.

4. Multivariate neural spike trains

A simple network of simulated spike trains from 10 neu-
rons was generated as in [79]. MATLAB scripts from [79] are
openly available and were directly used for the purpose. These
spike trains are based on the generalized linear model (GLM)
for conditional intensity of neuron firing. Let the whole ex-
periment time period, (0, T ], be divided into n1 equally sized
bins, with each bin of length δ = T/n1. Let the kth time bin be
given by τk = (tk−1, tk], where tk = kδ, k = 0, 1, . . . , n1. Let
g be a neuron in a network of G neurons, Ng(τk ) denote the
number of spikes fired by this neuron in the kth time bin, τk ,
and N1:G(τ0:k ) be the spiking history of all neurons up to time
tk , where τ0:k = (0, tk]. Then the Poisson-type variable Ng(τk )

is modeled as

ln[λg(τk|N1:G(τ0:k−1))]

= γg;0 +
P∑

p=1

γg;pNg(τk−p) +
∑

i∈{1,...,G}\g

Q∑
q=1

γg,i;qNi(τk−q ),

k = 1, 2, . . . , n1, (47)

where

λg(τk|·) = E(Ng(τk )|·) (48)

is the conditional intensity function of neuron g. The parame-
ters for the model were kept as in [79].

The true connectivity matrix for the network is as shown in
Fig. 7 (leftmost plot, marked as “Ground Truth”). Excitatory
and inhibitory connections are not differentiated in the dis-
played connectivity matrix. 20 realizations with each of the
10 nodes generating spike trains of length 10 000 time points
were simulated. Each spike train had a sparsity of around
400–500.

Each of the spike trains were compressed using circulant
and Toeplitz sensing matrices with m = 2000. m was chosen
to be greater than four times the sparsity of the signal with
maximum sparsity. Conditional MVGC was estimated using
the MVGC toolbox with the parameters of the toolbox set as
discussed in Sec. III A 1. The connectivity matrix recovered
from the compressed signal using circulant and Toeplitz sens-
ing matrices is shown in Fig. 7. It is found that both types of
matrices perfectly recover all the existing causal connections
in the simulated network and do not detect any false positives.
Thus the sensitivity as well as the specificity of the estimated
connections is found to be 1.

B. Real data

Sparse neuronal spike train data, recorded from the pre-
frontal cortex of adult male Sprague-Dawley rats, acquired for
the study in [79], are available open source (CC BY 4.0 Li-
cense). These recordings are made from putative single units
in the prelimbic region of the prefrontal cortex of the rats,
while they performed a T-maze based delayed-alternation task
of working memory. To describe the task briefly, rats (already

FIG. 7. Granger causality connectivity matrices recovered using circulant and Toeplitz sensing matrices for a simple simulated network of
10 spiking neurons using 20 realizations of the processes. The leftmost subfigure represents the ground truth connectivity matrix. The ground
truth connections and significant connections are represented with black squares and no connections are represented in white.
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FIG. 8. Granger causality connectivity matrices recovered using circulant and Toeplitz sensing matrices for a real network comprised of 63
neurons, with spike trains recorded from a rat prefrontal cortex [79]. The leftmost subfigure represents the connectivity matrix obtained using
the “SGL” method [79]. The significant connections are represented with black squares and no connections are represented in white.

trained for a number of trials) had to navigate the runway of
a T maze and choose one of the two arms opposite to the one
visited last time in order to obtain food rewards given by the
experimenter. Since the prefrontal cortex plays an important
role in cognitive and behavioral processes, the construction
of functional connectivity based neuronal networks can give
insight into its working.

We use neuronal spike data for “Experiment 6” from the
available data set from [79] and check for GC estimates be-
tween the considered network of 63 neurons. We analyze the
entire time series of length 20 114 time points from these
neurons. Thus n = 20 114 and m is taken to be 7000 (set to
be greater than two times the sparsity of the signal having the
maximum sparsity).

In [79], a “structural information enhanced” regulariza-
tion method has been developed in order to aid the GLM
framework to better estimate functional connectivity between
neurons. This technique is mainly for large sparse spike train
data sets. As discussed in the Introduction, GLM is a model-
based method. Simulation results in [79] indicate that when
the parameter selection for GLM is done using the proposed
regularized method (abbreviated as SGL), the technique per-
forms better than existing approaches. As a result, the authors
display a confidence in functional connectivity estimated in
the rats’ prefrontal cortex using the above discussed data
recordings. However, even for the simple network simulation
of 10 neurons discussed in the previous section, the method
does not perfectly estimate the network connections. For the
simulation case considered in this manuscript, the best that
the method does is to discover an average 7.23 correct connec-
tions (that is, true positives) out of the existing 10 connections,
using 100 realizations of the simulation. This result is given
in Table 1 of [79]. Our method, on the other hand, recovers
the connectivity matrix perfectly (see Fig. 7). It is found that
the SGL method has high specificity but low sensitivity. In
other words, most truly zero-valued connections are estimated
to be zero; however, the sensitivity of detecting significant
connections is not as good.

For the real data used in this section, we compare the
performance of fully circulant and Toeplitz sensing matri-
ces to discover causal connections for the network with the

connectivity discovered by the SGL method. This was done
as there is no ground truth available to compare with. Figure 8
shows the connectivity matrices obtained by the three meth-
ods. Significant connections are displayed as black squares.
Any nonzero couplings discovered by SGL are displayed as
significant, while conditional GC estimation and its statistical
significance detection were done by the MVGC toolbox using
the same parameters as in Sec. III A 1. The SGL results are
basically a reproduction of the results for Experiment 6, dis-
played in Fig. 10 of [79]. True negative rate or specificity of
the results using circulant and Toeplitz sensing matrices with
respect to the SGL results were found to be 0.998 and 0.999,
respectively. True positive rate or sensitivity was found to be
0.333 for both circulant and Toeplitz sensing.

In other words, out of the total possible 3906 [(63 × 63) −
63] connections, �99.8% of the zero-valued connections we
identified using circulant and Toeplitz were the same as SGL.
However, only 33.3% of the nonzero connections obtained us-
ing circulant and Toeplitz were the same as SGL. As discussed
before, for the simulated network in Fig. 7, SGL showed high
specificity but relatively low sensitivity (0.723). Our method
showed a specificity and sensitivity of 1.0 for the simulation
network, which is superior to the performance of SGL for
the simulation. Thus we can expect the relative specificity of
our method obtained here to be close to the true specificity
(correct identification of true zero-valued connections). On
the other hand, we would expect the true sensitivity (correct
identification of true nonzero connections) of our method to
be much better than the relative sensitivity obtained here.

IV. DISCUSSION AND CONCLUSIONS

This work discusses the task of discovering causal connec-
tions for signals in the compressed sensing domain. It solves
the problem of causality estimation between compressed
measurement signals without the need to reconstruct sparse
signals. Causal inference is fundamental to understanding the
interaction and underlying dynamics of processes in many
disciplines of science. With the widespread use of compressed
sensing for acquisition, transfer, and storage of signals, it
becomes essential that causal analyses be performed in the
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compressed domain. This will save the computational cost of
reconstruction of sparse signals. Furthermore, it is known that
for sparse temporal data such as sparse point processes, it is
not directly possible to estimate “model-free” causality for
time-domain data. For such data as well, causal analysis di-
rectly in the compressed domain or after transforming sparse
signals to the compressed domain can be very useful.

We have mathematically proved that structured com-
pressed sensing matrices, specifically circulant and Toeplitz
matrices, preserve GC for sparse signals in the compressed
domain. These signals need not necessarily be sparse in the
temporal domain and may possess a sparse representation in
another domain. However, the processes must be covariance
stationary in the temporal domain for GC to be applicable.
GC is the oldest and most widely used method for data-driven
causality estimation and has been applied in a large number of
studies across disciplines. Our proof opens up numerous more
useful applications of GC.

To verify the proof and demonstrate its significance in prac-
tical applications, the performance of the structured sensing
matrices is tested for GC based causality detection using a
number of simulation experiments. For two coupled sparse
processes, when the amount of signal sparsity k is varied
and the structure of the sensing matrix is kept as circulant or
Toeplitz, percentage success in causality estimation increases
and reaches 100% at high values of k (>30). On the other
hand, percentage success in signal reconstruction deteriorates
with increasing values of k as expected according to com-
pressed sensing theory and practice [2]. This can be seen
from Fig. 1. When the input signal sparsity level is constant,
but the number of structured rows in the sensing matrix are
increased, then, as seen in Fig. 2, the percentage success in
causality estimation increases and approaches 100% for the
fully structured (circulant or Toeplitz) matrix. This illustrates
that these structured sensing matrices are capable of preserv-
ing time domain GC owing to the preservation of spectral GC
at different frequencies. As the number of structured rows in
these matrices increases from zero to higher values, causal
content at more and more frequencies is preserved, resulting
in an improved causality detection performance. For a fully
structured matrix, spectral GC at all frequencies is preserved.

Along with preserving the direction of causation, the struc-
tured sensing matrices used here also preserve the relative
strength of causation in the compressed domain. This is ev-
ident from Fig. 3, where the strength of the estimated GC
F statistic in the actual causal direction increases in the
compressed domain, when γ , the unidirectional coupling co-
efficient, is increased. In the direction in which there is no
coupling, estimated causal strengths are observed to be close
to zero in the compressed domain.

The advantage of the proposed scheme of GC estimation
from compressed signals was also evident from the compu-
tational time experiments. Here, it was found that the total
time taken for compression and then GC estimation from com-
pressed signals was less than the time taken for GC estimation
from full length signals. A speedup of up to 3.5 times was ob-
tained for compressed sparse signals. Since time domain GC
cannot be estimated reliably from sparse signals, regular AR
processes of length equivalent to the sparse processes were
used for estimating the time taken for GC computation from

uncompressed signals. This analysis indicates that the amount
of time saved in comparison to when compressively sensed
signals have to be reconstructed and then causality estimated
using specialized causality methods for sparse processes will
be considerably large.

Due to the discovered advantage in terms of computa-
tional time, it was thought that compressing regular nonsparse
signals may also be time saving in GC computation. Hence
experiments were done to observe success in causality es-
timation using GC and corresponding computational time
advantage by compressing them also using circulant and
Toeplitz matrices. The results as shown in Figs. 5 and 6
were very promising. Computational time speedup of up
to 1.8 times was observed. The GC F statistic estimated
from compressed signals in these cases almost replicated the
F statistic from uncompressed counterparts for the differ-
ent coupling coefficients taken. These results indicate that
GC estimation after compressing even nonsparse signals can
prove to be advantageous when large scale processing is to
be done and hence time saving options become valuable.
One of the reasons the technique works could be because the
compression matrix operations may be acting as filters that do
not dissipate the causal information. It is known that GC is
theoretically invariant to filtering by stable, invertible filters
[99]. Since the results obtained are not exhaustive or theoret-
ically proven, it is not possible to make conclusive remarks
about GC preservation in compressed nonsparse signals.

In the case of multivariate simulations of sparse neural
spike trains, it is seen that the use of conditional GC on
compressed signals helps to discover the connectivity struc-
ture of the network perfectly for both circulant and Toeplitz
structured sensing matrices. 100% specificity and sensitivity
of the technique is observed in this case and the perfor-
mance of our method is shown to be superior to SGL [79], a
GLM model-based method of discovering causal connectivity.
Model-based methods are widely used for discovering func-
tional (causal) connectivity from sparse neural spike trains;
however, they may have limited scope because of specific
model assumptions and high computational costs.

We also demonstrate a real world application of our method
on neural spike train recordings from a rat prefrontal cortex,
where the rat was performing a delayed-alternation task of
working memory. These results shown in Fig. 8 are promising,
as many common connections are discovered by circulant and
Toeplitz sensing matrices and some of these overlap with the
connections reported by a GLM based method, SGL [79]. It is
found that over 99.8% of the zero valued connections identi-
fied using circulant and Toeplitz sensing matrices overlap with
SGL, while only 33.3% of the nonzero connections identified
are the same as SGL.

For networks that are required to be analyzed based on
causal connections, and for which signals are acquired in the
compressed domain, the use of structured sensing matrices
would help to solve the causal estimation task within the
compressed domain. Preservation of Granger causality by
circulant and Toeplitz matrices would then be the deciding
criteria for design of sensors in various systems. In fact, even
currently, many measurement technologies impose structure
on the matrix. This is because structured matrices possess
other advantages, for example, requirement of a lesser number
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of independent random variables for matrix generation and
better efficiency of recovery algorithms as the matrix admits
a fast matrix-vector multiply [94,95]. Causal inference in the
compressed domain in these cases is a useful and powerful
technique.

Also, in case of naturally occurring sensors that can be
approximated to be sensing the signals based on operation by
a structured matrix like partial or full circulant or Toeplitz,
causality analysis for the signals can be easily and reliably
performed. One way by which the operation performed by a
sensing matrix can be deciphered is by checking the proper-
ties of the sensed signal. For example, Toeplitz matrices are
known to perform a moving average operation on the input
signals [100]. Some neural signals are known to be com-
pressed signals [101,102], while most single unit neuronal
signals are sparse spike trains [103]. Also, some neuroimaging
modalities, such as the fMRI, widely employ compressed
sensing approaches for acquisition of signals [104–106]. On
a separate note, direct Granger causal analysis of fMRI data
has faced criticisms, one of the reasons for this being the
unreliability of results due to low temporal resolution of
acquired data [25]. Hence recognition and design of causality-
preserving sensing matrices can prove to be extremely useful
for analyzing functional neural connections and brain connec-
tivity.

It will be interesting to check if any other type of sens-
ing matrices with binary or real-valued entries preserve GC.
Further, it will be useful to test if other causality measures,
such as nonlinear variations of GC, transfer entropy [46],
and compression complexity causality [48], preserve causality
under circulant, Toeplitz, or other types of sensing matrices.
We would also like to estimate GC directly from real com-
pressively sensed signals acquired using structured sensing
matrices discussed in this work and try to cross-verify the
validity of the proposed scheme in such cases.
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