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Path integral approach to universal dynamics of reservoir computers
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In this work, we give a characterization of the reservoir computer (RC) by the network structure, especially
the probability distribution of random coupling constants. First, based on the path integral method, we clarify
the universal behavior of the random network dynamics in the thermodynamic limit, which depends only on the
asymptotic behavior of the second cumulant generating functions of the network coupling constants. This result
enables us to classify the random networks into several universality classes, according to the distribution function
of coupling constants chosen for the networks. Interestingly, it is revealed that such a classification has a close
relationship with the distribution of eigenvalues of the random coupling matrix. We also comment on the relation
between our theory and some practical choices of random connectivity in the RC. Subsequently, we investigate
the relationship between the RC’s computational power and the network parameters for several universality
classes. We perform several numerical simulations to evaluate the phase diagrams of the steady reservoir states,
common-signal-induced synchronization, and the computational power in the chaotic time series inference tasks.
As a result, we clarify the close relationship between these quantities, especially a remarkable computational
performance near the phase transitions, which is realized even near a nonchaotic transition boundary. These
results may provide us with a new perspective on the designing principle for the RC.
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I. INTRODUCTION

Artificial neural networks, originally designed to emu-
late biological network systems such as the human brain
[1], serve as an essential basis of modern machine learning
theory. These systems, especially recurrent random net-
work models, exhibit rich dynamical properties, including
collective chaotic dynamics [2–6], common-signal-induced
synchronization [7–12], and noise-induced suppression of
chaos [13–15]. These dynamical aspects of random networks
were investigated in great detail in early seminar works
[2,3,13,16,17] and, more recently, formulated elegantly with
the generating functional formalism [15,18].

Besides, it is pretty remarkable that common signal-
induced synchronization, where any trajectory of the reservoir
state converges under the same input regardless of the pre-
vious history, brings a new informational perspective to the
network dynamics. Accompanied by the rich dynamical pat-
terns of the networks, this phenomenon enables them to serve
as a resource for real-time information processing, such as
time series prediction [19–22], observer problem [23,24], re-
inforcement learning [25,26], and speech recognition [27–29].
Such a framework is referred to as reservoir computing
(RC) (for reviews, see Refs. [30–32]), which was originally
proposed in the context of machine learning [8,19] (called
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Echo state networks: ESNs) and computational neuroscience
[33]. Furthermore, there is also a new ambitious attempt
to exploit the complex dynamics of real physical systems
as information-processing devices based on the RC scheme,
which is referred to as physical reservoir computing (for re-
views, see Refs. [32,34]).

In the last decades, the RC has been generalized to
various network architectures, such as the backpropagation
decorrelation [35] and the FORCE learning [36], to improve
the computational performance or to clarify the working
principles of the RC [37–47]. Their information processing
capacities have ever been evaluated with various informa-
tional or dynamical measures [28,48–51]. However, despite
these efforts for many years, we have yet understood enough
how to design or tune the reservoir network to optimize its
computational performance.

The Edge of chaos, a concept initially introduced in the
context of a cellular automaton [52], is one of the most
common guiding principles to tune the parameters of RCs.
Reservoir networks are known to exhibit various dynamical
phases, such as chaotic or ordered phases, depending on the
values of the parameters. Although some controversies exist
[53], RCs are believed to show a long temporal memory or the
best computational performance near the boundary between
ordered and chaotic phases, that is, the edge of chaos [54–60].
Additionally, it has also been shown that decoding signals
from these networks are robust to noise above and near the
transition to chaos [4]. These dynamical features of neural
networks have ever been attracting much attention even in
neuroscience because of several pieces of evidence that the
cortical circuit has an architecture tuned to such a critical state
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[61–63]. These observations suggest that it is crucial to the
design of the RC to clarify the close relationship between the
informational processing ability of the RC and the dynamical
properties of the random network.

In this work, we aim to characterize the RC by the network
structure and propose a clue to better RC’s design. For this
purpose, we analyze the dependence of the network dynam-
ics on the probability distribution from which the coupling
constants are sampled, based on theoretical and numerical
approaches as follows.

First, using the generating functional formalism for ran-
dom neural networks, we clarify the universality of the
network dynamics in the large-N limit, where the network
size N becomes infinitely large. We show that the reservoir
networks with any probability distribution of the coupling
constant are classified into several universality classes ac-
cording to the asymptotic behavior of their second generating
functions in the limit. The following numerical simula-
tions demonstrate that networks in an identical class yield
equivalent dynamics. Particularly important is that, for some
universality classes, higher-order statistics play a crucial role
in determining the network dynamics and its computational
performance. This contrasts with the case of the Gaussian
networks, which have been most studied so far and can be
described only by the one- and two-point correlation functions
of the reservoir states [2,15,18]. Interestingly, we can prove
that each universality class has a one-to-one correspondence
with the eigenvalue spectrum of the random coupling matrix.
Furthermore, we give some instructive comments on the re-
lation between our theory and practical network structures in
implementing RCs. They include discussions on the sparsity
of coupling constants and their normalization with the spectral
radius.

Next, to verify the validity of our analytical expectation
and the relation with the edge of chaos, we provide several
numerical simulations of random network dynamics without
and with driving input series. In the autonomous case, we
numerically analyze the asymptotic steady state (or the states
after reaching the attractor) of the networks and show the
phase diagrams in the parameter space for each universality
class. We also estimate the finite-size effects in their Lya-
punov exponent. Then, we consider common-signal-induced
synchronization and a time series inference task of chaotic
signals in input-driven networks. Jaeger [64] showed that
common-signal-induced synchronization realizes when the
system exhibits the echo-state property. Thus, we investigate
which parameters in the phase space achieve the synchroniza-
tion. Moreover, we attempt to perform time series forecasting
task using the RC with output feedback. For this task we
calculate its maximum Lyapunov exponent to verify the per-
formance of dynamical reconstruction. More specifically, we
assume the time series of the x-coordinate of the Lorenz
system [65] as input time series and attempt to infer the
concurrent values of other coordinates [23].

The synchronization simulation suggests that the chaotic
input signals shrink an area of the chaotic phase. This result is
consistent with the one discussed in previous studies [13–15].
In the time series inference tasks with an open-loop or a
closed-loop system, we observe a remarkable improvement
in the RC’s performance at the parameters with which the

system undergoes phase transitions. Although our result for
the Gaussian network is essentially equivalent to the one dis-
cussed in previous studies [54–60], it provides us with a new
perspective on the boundary between chaotic and polarized
ordered phases. Particularly interesting is that the Gamma net-
work, where higher-order statistics play a crucial role, exhibits
computational improvement even near the boundary of a
nonchaotic phase. This result may contrast with our conven-
tional understanding of the edge of chaos.

This paper is organized as follows. In Sec. II, we give
a brief summary of the theoretical parts (Secs. III–V).
Section III reviews the generating function formalism for
random neural networks with path integral representations.
We discuss the familiar dynamical mean-field theory for the
averaged network dynamics in the large-N limit and general-
ize it to more general problems. In Sec. IV, we calculate the
concrete form of K (q) defined in Eq. (6) for some distributions
of PJ . The result can be classified into several “universality”
classes, and we give some examples. We also argue the re-
lationship between each universality class and the eigenvalue
spectrum of the random coupling matrix Ji j . In Sec. V, we
consider a practical choice of the network structures, such
as not fully connected networks or controlling the spectral
radius of Ji j , and argue their universality. In Sec. VI, we give
numerical simulations of random network dynamics without
and with driving input signals. We study the phase diagrams in
the parameter space and the Lyapunov exponent in the former
case. In the latter case, we consider common signal-induced
synchronization and a time series inference task of chaotic
signals. Additionally, we attempt to construct a simulator of
chaotic time series without driving input signals based on
an output feedback loop system. Section VII is devoted to
discussion and conclusion.

II. SUMMARY OF THEORETICAL PART

In this section, we give a summary of our theoretical
results, especially for readers who are unfamiliar with the
path-integral formalism and seek to utilize our theoretical
results for actual numerical simulations. If the readers want
to skip the theoretical details (Secs. III and IV), then they can
proceed to Sec. VI after reading this section.

In this paper, we study a recurrent random network model
with nodes ri(t ) ∈ R (i = 1, . . . , N ) that obey the differential
equation in continuous time t ,

dri

dt
(t ) = −ri(t ) +

N∑
j=1

Ji jφ(r j (t )) + bi(t ), (1)

with an initial condition of ri(t ) = r0
i . bi(t ) is an external

input. φ(x) is the activation function. While the activation
function is usually taken as a sigmoid-type function φ(x) =
tanh(x) [2,8,13–15,18,23,66,67] or the Heaviside function
φ(x) = 1 (x � 0), 0 (x < 0) [54,55,68], we take it as an arbi-
trary function for generality in what follows. Ji j is a coupling
constant between nodes and sampled from an independent and
identical distribution PJ (Ji j ; θa(N )), which has N-dependent
tuning parameters {θa(N )} in general. Although the function
PJ (Ji j ; θa(N )) is usually selected as a Gaussian variate with
variance σ 2/N and zero mean in the formalism of the path
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TABLE I. Typical examples of relations between distribution functions PJ (Ji j ) and the corresponding form of K (q). In the column
“Parameter scaling”, we show how to scale the parameters in the large-N limit. χ[a,b] appeared in the probability distribution function of
the uniform distribution is the indicator function.

Distribution PJ (x) Parameter scaling log KJ (q) K (q)

Delta δ(x − μ) μ = μ̄
N iμq iμ̄q

Exponential λ exp(−λx) λ = N
μ̄

− log(1 − iqλ−1) iμ̄q

Log-normal 1√
2πσx

exp(− (log x−μ)2

2σ 2 ) μ = log μ̄
N − σ 2 log(

∑∞
n=0

(it )n

n! enμ+n2 σ2
2 ) iμ̄q

Normal 1√
2πσ 2

exp(− (x−μ)2

2σ 2 ) μ = μ̄
N , σ = σ̄√

N
iμq − σ 2q2

2 iμ̄q − σ̄ 2q2

2

Uniform
χ[a,b]
b−a b = μ̄

N +
√

3
N σ̄ , a = μ̄

N −
√

3
N σ̄ iqμ + log(sinc(

√
3σq)) iμ̄q − σ̄ 2q2

2

Gumbel exp(− exp(− x−μ
η

)) μ = μ̄
N − γ

√
6

π2N
σ̄ , η =

√
6

π2N
σ̄ iμq + log �(1 − iηq) iμ̄q − σ̄ 2q2

2

Stable (undefined) δ = δ̄, γ = γ̄ iδq − γ |z|αsgn(z)ω(z, α) iδ̄q − γ̄ |z|αsgn(z)ω(z, α)
Cauchy 1

π
γ

(x−x0 )2+γ 2 x0 = x̄0
N , γ = γ̄

N ix0q − γ |q| ix̄0q − γ̄ |q|
Gamma xk−1 exp(−x/θ )

�(k)θk k = k̄
N −k log(1 − iθq) −k̄ log(1 − iθ̄q)

symmetrized- Gamma |x−μ|k−1 exp(−|x−μ|/θ )
�(k)θk μ = μ̄

N , k = k̄
N exp(iμq) × Re[exp(−k log(1 − iθq))] iμ̄q − k̄

2 log(1 − iθq)(1 + iθq∗ )

integral method [15,18], we consider an arbitrary distribution
in this work.

In Sec. III, we consider the Ji j-averaged network dynamics
in the thermodynamic limit, where the number of nodes N be-
comes infinitely large N → ∞. To summarize our results, we
show that the network dynamics in Eq. (1) is asymptotically
described by the effective equation of motion

dri

dt
(t ) = −ri(t ) + η(t ) + bi(t ). (2)

Here η(t ) denotes an effective random noise and its time-
correlation functions are given by

〈[η(t1) · · · η(tn)]C〉η = κnC
∗
n (t1, . . . , tn),

where [· · · ]C denotes the cumulant of random variables η(t ),
and the coefficient κn is defined as κn := i−ndnK (q)/dqn|q=0

using the asymptotic function,

K (q) := lim
N→∞

NKJ (q; θa(N )).

Here KJ (q) is the second cumulant generating function of
the probability distribution of Ji j [see also the definition in
Eq. (5)]. C∗

n (t1, . . . , tn) are the n-point connected correlation
functions of φ(ri(t )) which are averaged over Ji j-ensembles
in the sense of the dynamical mean-field approximation. For
example, assuming that Ji j is sampled from the Gaussian dis-
tribution with zero mean and finite variance σ̄ /

√
N , we obtain

K (q) = −σ̄ 2q2/2, leading to κ2 = σ̄ 2 and κi = 0 (i 	= 2). Im-
portantly, Eq. (2) means that, in the large-N limit, the coupling
terms between nodes in Eq. (1) are effectively replaced by the
random time series η(t ), which describes an effective force
resulting from Ji j-averaged dynamics of the network nodes.

From the above result, we notice that effective network
dynamics in Eq. (2) is characterized only by the form of the
function K (q) in the thermodynamic limit. We devote Sec. IV
to analyzing the forms of K (q) for various choices of probabil-
ity distributions PJ (Ji j ) and how to tune their parameters in the
large-N limit. Then, we find that some classes of typical prob-
ability distributions lead to the same form of K (q), when their
parameters are appropriately tuned for K (q) to be finite in
the large-N limit. We classify typical probability distributions

into several classes according to the form of K (q) and call
them “universality classes,” which includes the Delta class,
the Gauss class, the stable class, and the Gamma class. For
convenience, we have shown the typical examples in Table I,
which includes the form of PJ (Ji j ), the corresponding form of
KJ (q) and K (q), and the way to tune the parameter to make
K (q) finite.

More interestingly, we can give a more intuitive meaning
to the classification of universality classes. In the end of
Sec. IV, we show that each universality class, i.e., each form
of K (q), has a one-to-one correspondence with the eigenvalue
spectrum of the random matrix Ji j in the N → ∞ limit. This
means that, in the limit, the information of the eigenvectors
of Ji j vanishes and the network dynamics is determined only
by the eigenvalue spectrum of Ji j . This suggest that dynam-
ical properties of the random network, such as dynamical
stability and spectral properties of linear response, crucially
differ depending on the universality class, as discussed in
Refs. [69,70].

As discussed in Sec. V in detail, these analyses can be
extended to more practical cases where the network connec-
tions are not fully connected but sparse, or where the coupling
constants Ji j are tuned by rescaling the spectral radius. Inter-
estingly, we have shown that, in the latter case, the network
dynamics always fall into the Gauss class for any choice of
probability distributions. This point will be quite important
to seek novel types of reservoir computers beyond previous
studies.

III. PATH INTEGRAL REPRESENTATION

This section briefly reviews the generating functional
formalism for random networks in the path integral represen-
tation [15,18,71,72]. We consider the thermodynamic limit,
where the number of nodes N becomes infinitely large N→∞.
We derive the dynamical mean-field (DMF) equation, a tech-
nique initially developed for spin glasses [71,73] and applied
it to describe the time evolution of the averaged network
dynamics in the thermodynamic limit [2,4,5,13,14].

In the following, we attempt to generalize these well-
known frameworks to more general random neural networks
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with an arbitrary activation function and random neural
connectivity. We discuss the universality in the dynamical
properties in Sec. IV.

A. Generating functional formalism
in path integral representation

We are interested in the statistical aspects of the solutions
of Eq. (1) [denoted as r∗

i (t )] and their correlation functions,
such as 〈r∗

i1 (t1) · · · r∗
in (tn)〉J . r∗

i (t ) depends on the realization of
Ji j and 〈· · ·〉J means the average over PJ . To this end, it is con-
venient to consider the generating functional for ri(t ) with the
Martin–Siggia–Rose–de Dominicis–Janssen (MSRDJ) path
integral formalism [74–78], which has been used so far to
describe, for example, dynamic critical phenomena [75,76,79]
and the dynamics of spin glass systems [71,72] in the context
of condensed matter physics. In our case, the generating func-
tional is defined as the moment-generating function of ri(t ),
whose J-averaged distribution is given by

Pr[ri(t )] = 〈�i,tδ(ri(t ) − r∗
i (t ))〉J .

The MSRDJ generating function is defined as the characteris-
tic function of Pr (ri(t )) with an argument b̂i(t ). Introducing
the path integral form with an auxiliary field r̂i(t ), we can
represent the generating function as (for details, see the
Refs. [15,18])

Z[b, b̂] =
∫

Dr̂Dr
∫

[dJi j]

×
∏

i j

PJ (Ji j ) exp

(
iS +

∫
dt

N∑
i=1

b̂iri

)
, (3)

where S[r, r̂] is the action of r̂i and ri given by

S[r, r̂] :=
∫ ∞

0
dt

N∑
i=1

r̂i

⎡⎣− d

dt
ri − ri +

N∑
j=1

Ji jφ(r j ) + bi

⎤⎦.

Here [dJi j] :=∏N
i, j=1 dJi j denotes the integral measure of Ji j .

Dr is defined as Dr :=∏N
i=1 Dri and each Dri represents the

summation over any paths with the initial condition ri(t ) =
r0

i . For the normalization condition, the generating functional
always satisfies the identity Z[b, 0] = 1.

Once the generating functional Z[b, b̂] is obtained, we can
calculate the correlation functions or response functions of the
states ri(t ) by calculating the functional derivative

〈
ri1

(
ti1
) · · · rin

(
tin
)〉 = δ

δb̂i1

(
ti1
) · · · δ

δb̂in

(
tin
)Z

∣∣∣∣∣
b̂i=0

,

where 〈· · ·〉 is the average over the paths weighted by the fac-
tor eiS and δ/δb̂i denotes the functional derivative with respect
to b̂i(t ). Note that since Pr (ri(t )) 	= 0 only if ri(t ) = r∗

i (t ) for
each time t , correlation functions of r∗

i are equivalent to ones
with ri: 〈

r∗
i1

(
ti1
) · · · r∗

in

(
tin
)〉

J = 〈ri1

(
ti1
) · · · rin

(
tin
)〉
.

Therefore, we mainly consider correlation functions of ri in-
stead of r∗

i for the rest of this paper.

By differentiating Z with respect to bi in addition to b̂, we
can formally consider the correlation function of ri and r̂i :〈

ri1

(
ti1
) · · · rin

(
tin
)
r̂ j1

(
t j1

) · · · r̂ jm

(
t jm

)〉
= δ

δb̂i1

(
ti1
) · · · δ

δb̂in

(
tin
) 1

i

δ

δb j1

(
t j1

) · · · 1

i

δ

δb jm

(
t jm

)Z

∣∣∣∣∣
b̂i=0

.

In particular, we readily notice that the correlation functions
only of r̂i always vanish because

〈
r̂ j1

(
t j1

) · · · r̂ jm

(
t jm

)〉 = 1

i

δ

δb j1

(
t j1

) · · · 1

i

δ

δb jm

(
t jm

)Z

∣∣∣∣∣
b̂i=0

= 1

i

δ

δb j1

(
t j1

) · · · 1

i

δ

δb jm

(
t jm

)1

= 0, (4)

due to the normalization condition of Z .
Introducing the second cumulant generating function of the

random variables Ji j (see also the typical examples in Table I),

KJ (q; θa(N )) := log

{∫
dJi jPJ (Ji j ; θa(N ))eiqJi j

}
, (5)

we can rewrite the generating function Eq. (3) as

Z[b, b̂] =
∫

Dr̂Dr exp

(
iS̄ +

∫
dt

N∑
i=1

b̂iri

)
,

where the action S̄[r, r̂] is given by

S̄[r, r̂] :=
∫ ∞

0
dt

N∑
i=1

r̂i

(
− d

dt
ri − ri + bi

)

+ 1

i

N∑
i, j=1

KJ

[∫
dt r̂iφ(r j )

]
.

In the following discussion, for convenience, we denote the
parameters of the probability distribution PJ as θa(N ) (a =
1, . . . , Npara ), where Npara is the number of parameters of PJ ,
and express the N-dependence of PJ (Ji j ) and KJ explicitly
through them. When considering the thermodynamic limit
(N → ∞), we can expand KJ in powers of N as

KJ (q; θa(N )) = 1

N
K (q) + o(N−1),

where K (q) is defined as

K (q) := lim
N→∞

NKJ (q; θa(N )). (6)

We have assumed that the parameters θa(N ) are tuned to
remain the function K (q) finite in the large-N limit. We
have shown some examples of K (q) for typical distribution
functions in Table I. The relation between the probability
distribution PJ (Ji j ) and the form of K (q) is discussed in detail
in Sec. IV.

In the following, we neglect the subleading terms o(N−1)
because, as shown below, they do not contribute to the net-
work dynamics in the N → ∞ limit.

034306-4



PATH INTEGRAL APPROACH TO UNIVERSAL DYNAMICS … PHYSICAL REVIEW E 107, 034306 (2023)

B. Effective equation of motion

Introducing the auxiliary fields Cn(t1, . . . , tn) and using the
dynamical mean-field approximation in the N → ∞ limit, we
can separate the generating function into single-node contri-
butions, Z[b, b̂] ∼∏i Zi[bi, b̂i], and each contribution is given
as follows:

Zi[bi, b̂i] =
∫

Dr̂iDri exp

(
iS̄∗ +

∫
dt b̂iri

)
,

S̄∗ := S̄0 + S̄C,

S̄0 :=
∫

dt r̂i

(
− d

dt
ri − ri + bi

)
,

S̄C := 1

i

∞∑
n=1

κn

n!
in
∫

[dt j]nCn(t1, . . . , tn)r̂i(t1) · · · r̂i(tn).

(7)

See Appendix A for the details of the derivation.
Next, we derive the effective equation of motion of single

nodes ri(t ) from the generating function Eq. (7) under DMF
approximation. Let us consider a random time series variable
η(t ) which satisfies for any n,

〈[η(t1) · · · η(tn)]C〉η = κnC
∗
n (t1, . . . , tn), (8)

where [· · · ]C denotes the cumulant. 〈· · ·〉η denotes the average
over its probability distribution Pη(η), which is defined to
satisfy

eiS̄C = exp

( ∞∑
n=1

κn

n!
in
∫

[dt j]nC
∗
n r̂i(t1) · · · r̂i(tn)

)

=
∫

DηPη(η)ei
∫

dt r̂i (t )η(t ).

This definition means that we can rewrite the contribution
of the action S̄C as the moment generating function of η.
Applying this formula to the Eq. (7), we obtain a renewed
form of Zi with η,

Zi[b, b̂] =
∫

DηDr̂iDri

× Pη(η) exp

(
iS̄0[ri, r̂i; bi + η] +

∫
dt b̂iri

)
.

Finally, following the reverse procedure of derivation of
Eq. (3) from Eq. (1), we arrive at the effective equation of
motion of a single node ri(t ) in the large-N limit as follows:

dri

dt
(t ) = −ri(t ) + η(t ) + bi(t ). (9)

This result shows that, in the large-N limit, the coupling term
between nodes in Eq. (1) is replaced by the random time series
η(t ), which is generated according to the probability distribu-
tion specified by the cumulants Eq. (8) self-consistently.

In particular, most previous studies have been devoted to
the case where only the first and the second cumulants are
nonzero, i.e., κn = 0 (n > 2). (We can find an exceptional
case, for example, in Ref. [68].) As is mentioned in Ap-
pendix B, these conditions are guaranteed in the large-N limit
for wide classes of probability distributions PJ . In such a sim-
ple case, by deriving the self-consistent equations for the first

and the second cumulants (and introducing the two-replica
formalism), we can analytically estimate various dynamical
quantities, such as the maximum Lyapunov exponent with
and without driving signal [2,13,14], signal to noise ratio [4],
and memory curve [15]. Meanwhile, in the general case, it is
possible that the random network possesses an infinite number
of nonzero cumulants κn. As a result, we have to deal with
an infinite number of self-consistent equations. Of course, it
seems analytically intractable, and thus we have no choice but
to execute some numerical analysis for this case (Sec. VI).

Here we give a brief comment on the case of the discrete-
time network models. In the context of the RC, instead of the
continuous-time model Eq. (1), the following discrete-time
network model, so-called Echo state network [8,19], is often
investigated:

ri(T + 1) =
N∑

j=1

Ji jφ(r j (T )) + bi(T ),

where T (∈ Z) denotes the discretized time. Even for this case,
the framework discussed so far can be generalized straightfor-
wardly, and in the end, corresponding to Eq. (9), we obtain the
effective equation,

ri(T + 1) = η(T ) + bi(T ),

where η(t ) is the random time series variable whose cumu-
lants are self-consistently related to the reservoir states as

〈[η(T1) · · · η(Tn)]C〉η = κnCn(T1, . . . , Tn).

Especially for the case where Ji j is a Gaussian variate, the
mean-field theory for these discrete-time models has already
been investigated in several kinds of literature [4,13,60,80].
Qualitative differences between continuous-time models and
discrete-time models have been suggested in the previous
work [15]. In our numerical analyses in Sec. VI, however,
we focus primarily on the continuous-time model, since
we have numerically confirmed that the differences between
continuous-time models and discrete-time models seems not
to be essential for our numerical results from a qualitative
perspective.

Before moving on to the next section, we explain why
K (q) should take a nonzero finite value as N → ∞, from
the point of view of the effective equation of motion. Let
us consider the case where K (q) becomes zero (o(N0)). In
this case, κn becomes o(N0) and vanish in the limit, and then,
all time-correlation functions of η(t ) also become zero from
Eq. (8). These conditions can be achieved only when η(t ) is
identically zero for arbitrary time. Because the effective equa-
tion of motion depends on the probability distribution PJ only
through η(t ), the dynamics are not changed by choice of Pj .
Therefore, we should tune parameters for K to be nonzero in
the limit so that the probability distribution has nonnegligible
effects on the averaged dynamics.

That is, the dynamics of the RCs is mostly controlled by
the external input bi(t ) and subleading terms mentioned above
appears as small perturbations to ri(t ) with small amplitudes
in the order O(N−1). Then, each node behaves as single in-
dependent damping system under the external input bi(t ) in
the case of K (q) = 0. This leads to that the parameters of the
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probability function of the coupling Ji j have only tiny effects
on the RC performance.

How about the case where K (q) becomes divergent? In this
case, each κb in Eq. (A2) is not finite (O(N0)) but divergent,
and all time-correlation functions of η becomes divergent. In
the case where the amplitude of the external input bi(t ) does
not depend on the network size N and has finite (O(N0))
values in the limit, η(t ) takes very large values compared to it.
Therefore, the terms bi(t ) in the effective equation of motion
[Eq. (9)] can be neglected. Actually, the case of K (q) ∼ O(N )
corresponds to a very limited region of the parameter space
in the Figs. 6 and 7, such as 1/J → 0 or J0/J → ∞, where
the computational performance is typically not good. This
argument shows that we should keep K (q) finite to achieve
the RC scheme.

The above arguments show the necessity of tuning to retain
K (q) nonzero and finite (O(N0)) as N → ∞. In the next
section, we investigate the resultant forms of K (q) by this
parameter-tuning and find that they are classified into several
“universality” classes.

IV. UNIVERSALITY

In this section, we discuss the large-N behavior of the
effective action, especially the cumulant generating function
term K (q). As was shown in the previous sections, only K (q)
controls the dynamics of random networks in the N → ∞
limit, and thus we should tune the parameter of the proba-
bility distribution PJ (Ji j ) to remain K (q) finite. Intriguingly,
it is clarified that various probability distributions fall into
the same form of K (q), and thus, a set of the correspond-
ing networks shows the common dynamical properties in the
thermodynamic limit. This result means that the dynamics
of the random network models can be classified into several
universality classes, according to the large-N behaviors of
the generating functions of the probability distributions of the
coupling constants.

A. Large-N behavior of K

Before entering the general discussion, we give a sim-
ple example where PJ (Ji j ) equals the Gaussian distribution
with variance σ 2 and zero mean. Many previous studies
[2,4,14,15,18] have considered this case. The cumulant gen-
erating function KJ (q) is given by

KJ (q) = −σ 2q2/2,

and hence K (q) is calculated as

K (q) = lim
N→∞

NKJ (q) = − lim
N→∞

Nσ 2q2/2.

To remain K (q) finite as N → ∞, we should set the N-
dependence of the parameter σ (N ) as σ (N )2 = σ̄ 2/N , where
σ̄ 2 is a N-independent parameter. Finally, we obtain the finite
N-independent function K (q) as

K (q) = −σ̄ 2q2/2

for a Gaussian distribution with zero mean. We generalize the
above procedure for an arbitrary distribution and discuss how
to decide the N-dependence of the parameters θa(N ).

First of all, we should identify the values which θa(N )
approach as N → ∞. These values can be readily found from
the definition of K (q) [Eq. (6)]. When K (q) remains finite
in the large-N limit (K (q) = O(N0)), it follows from the
definition of K (q) that the cumulant generating function KJ (q)
should be represented, up to the N-leading order, as

KJ (q; θa(N )) = 1

N
K (q) + o(N−1),

which leads to

lim
N→∞

KJ (q; θa(N )) = KJ (q; θa(∞)) = 0.

This equation means that we should tune parameters to ap-
proach zeros of KJ as N → ∞.

Generally, zero set of the second cumulant generating func-
tion KJ (q; θa) can be decomposed into several manifolds in the
parameter space spanned by {θa(N )}a=1,...,Npara . (Mathemati-
cally, the zero set is represented as a semialgebraic set in this
setting. The semialgebraic set consists of its irreducible com-
ponents, and each component is referred to as a “manifold”
here.) The way of the parameter-tuning depends on a choice
of the manifold which KJ (q) approaches as N → ∞, and so
does the form of K (q) as a result. Each of these manifolds
has a fixed dimension Nfree defined as the number of param-
eters that can have arbitrary values on the manifold. These
parameters are not needed to tune as N → ∞. However, the
other parameters should be controlled to approach asymptot-
ically to the manifold if we want to remain K (q) finite. The
number of these parameters Ntune equals the codimension of
the manifold, that is, Ntune = Npara − Nfree. Note that the value
of Nfree and Ntune differs between the manifolds, even for the
same distribution.

As a demonstration, we give a simple example of the above
argument. Let us consider the Gamma distribution, whose
second cumulant generating function is given by KJ (q; θ, k) =
−k log(1 − iθq), where k and θ are nonnegative real parame-
ters. The set of paramteres {θa} is given by {θ, k} in this case.
The zeros of KJ (q; θ, k) in the θ -k space are (1) {(θ, 0) | θ ∈
R+} and (2) {(0, k) | k ∈ R+}. Therefore, we should tune just
k in the case (1) and θ in the case (2) in the large-N limit.
The detailed way of the parameter-tuning in each case and the
corresponding universality class is given later in Sec. IV B 4.

Let us determine the N-dependence of the parameters
{θa(N )}. We give a practical way of the tuning, which is
sufficient in most cases. (In Appendix C, we discuss it more
precisely with the renormalization group method, which is
often used in studies of quantum field theories in condensed
matter or high-energy physics.) In the following, we choose
one of the zeros of KJ (q), and denote parameters which are
needed to tune as �ζ = (ζa) (a = 1, . . . , Ntune ), and ones which
are not needed to as �ξ = (ξa) (a = 1, . . . , Npara − Ntune ). Re-
member that {θa} = (�ζ , �ξ ) holds.

For simplicity, suppose that PJ can be described with
Ntuneth order Taylor polynomial, in other words, its cumu-
lants are well-defined up to at least Ntuneth order. Then, KJ

is Ntuneth-order differentiable at q = 0 and can be expanded
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as

KJ (q; �ζ , �ξ ) =
Ntune∑
b=1

κb(�ζ , �ξ )
(iq)b

b!
+ R(q; �ζ , �ξ ),

where R(q) is the so-called Peano form of the remainder and
has the order of o(qNtune ) near q = 0. κb is the bth cumulant,
which is a function of �ζ and �ξ . Therefore, K (q) is given by

K (q) = lim
N→∞

Ntune∑
b=1

{
Nκb(�ζ (N ), �ξ )

(iq)b

b!

}
+ NR(q; �ζ (N ), �ξ ).

(10)

From this expression, it is obvious that �ζ (N ) should satisfy
that

κb(�ζ (N ), �ξ ) = κ̄b

N
. (11)

κ̄b is introduced as a N-independent parameter and controls
the form of K (q).

To determine �ζ (N ) concretely, let us consider the map �Fκ :
RNtune � �ζ → �κ ∈ RNtune and its inverse map �F−1

κ , where �κ =
{κa=1,...,Ntune}. More specifically, �Fκ is given by

�Fκ (�ζ ) := �κ (�ζ , �ξ )

for each fixed �ξ . Then, to satisfy Eq. (11), �ζ (N ) is determined
as

�ζ (N ) = �F−1
κ

(
�̄κ
N

)
. (12)

Here, �̄κ = {κ̄a=1,...,Ntune}. We emphasize that �ξ does not need to
be tuned and is a parameter of K (q) as well as �̄κ .

One may worry about finiteness of the term
limN→∞ NR(q; θa(N )) in Eq. (10). Of course this term
may not be finite in some distributions; however this point
does not matter practically. This is because second cumulant
generating function KJ is first-order differentiable at �κ = 0 in
most cases. When KJ is first-order differentiable, K (q) always
becomes finite and is linear in �̄κ . Under this assumption, KJ

is expanded as

KJ =
Ntune∑
b=1

∂KJ

∂κb

∣∣∣∣
�κ=0

κb + o(κb)

as κb � 1. Therefore, with Eq. (11), we get K (q) as

K = lim
N→∞

[
Ntune∑
b=1

κ̄b
∂KJ

∂κb

∣∣∣∣
�κ=0

+ o(N0)

]

=
Ntune∑
a=1

κ̄b
∂KJ

∂κb

∣∣∣∣
�κ=0

. (13)

It should be noted that from Eq. (13), we find that K is linear
function of �̄κ and the corresponding probability distribution
has reproducibility about �̄κ:

K (q; �̄κ ) + K (q; �̄κ ′) = K (q; �̄κ + �̄κ ′).

This tuning method can be also generalized to distributions
which do not have finite cumulants, such as the Cauchy distri-
bution. The second cumulant generating function of a general

probability distribution can be expanded with some linearly
independent functions fk (q, �ξ ) as

K (q) =
∞∑

k=1

�k (�ζ ) fk (q, �ξ ),

where each �k is a expansion coefficient. The linear indepen-
dence means that K (q; �ζ (∞), ξa) = 0 for an arbitrary value
of q is equivalent to �k (�ζ (∞)) = 0. Then in analogy with
the case of distributions with finite cumulants [Eq. (11)], it is
sufficient to tune parameters so that

�b(�ζ (N )) = �̄b

N
.

Let us explain the above procedure with the Cauchy distri-
bution, whose second cumulant generating function is given
by

KJ (q; δ, γ ) = iδq − γ |q|.
It is natural to choose f1(q) = iq and f2(q) = −|q| as the
linearly independent functions. Because �1 = δ and �2 = γ ,
the zero of KJ is given by δ = γ = 0. Note that because
��(�ζ ) = �ζ = (δ, γ ) holds, their inverse function �F−1

κ ( ��) is
given by �F−1

κ ( ��) = ��. Then, the N-dependence of δ and γ

is determined as

δ =
[

�F−1
κ

( �̄�
N

)]
1

= �̄1

N
,

γ =
[

�F−1
κ

( �̄�
N

)]
2

= �̄2

N
,

where each �̄a is a N-independent parameters.
Although the choice of linearly independent functions fk

has ambiguity, our intention here is to give just a practical way
of determining how to tune parameters, rather than a perfect
one. As far as we have investigated, it is sufficient to choose
them so that the numbers of fk are minimized.

Before explaining each universality class, it is instructive
to comment on the difference between our tuning here and
the (generalized) central limit theorem. The limit we have
considered so far is

lim
N→∞

NKJ (q; �θ (N )), (14)

with N-dependent parameters θa(N ), whereas the one dis-
cussed in the (generalized) central limit theorem is

lim
N→∞

NKJ

(
q√
N

; �θ
)

(15)

with N-independent parameters θa. We emphasize that these
limits are different. In fact, we get other forms of K (q) than
the Gaussian or stable distributions, which are conclusions of
the (generalized) central limit theorem. Because these limits
have been sometimes confused in some previous literatures,
we should be careful about this difference.

B. Universality class

In this section, we give some examples of universality
classes. Table I shows the summary of these examples. It
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should be emphasized that the following classes are just ex-
amples and that other classes are possible to be realized if
we consider more complex distribution functions than those
discussed below.

1. Delta class

Let us start to discuss the following form of K (q):

K (q) = iμ̄q. (16)

We notice readily that this is the same as KJ (q) of the Dirac
δ distribution with the mean μ̄. For this reason, we refer to
distributions that have the above form of K (q) as the “delta”
class.

For example, the exponential and Pareto distribution are
included in this class when parameters are tuned to satisfy

E [Ji j] = μ̄

N
.

If we tune θ in the Gamma distribution as θ = θ̄/N and let
k be an N-independent constant, then we also get Eq. (16)
with μ̄ = kθ̄ . This is the case (2) of the Gamma distribution
in Sec. IV A.

As another example, the Log-normal distribution belongs
to this class. Its second cumulant generating function is given
by

KJ (q) = log

⎡⎣1 +
∑
n�1

(iq)n

n!
exp

(
nμ + n2 σ 2

2

)⎤⎦.

The zero of KJ is exp(μ) = 0, that is, μ = −∞. Note that
exp(σ 2) � 1 for any real σ and cannot become zero. The
leading-order term of KJ (q) around exp(μ) = 0 is

KJ (q) = iq exp(μ + σ 2) + O(exp(2μ)).

Therefore, we should tune only μ so that N exp(μ) is finite, as

N exp(μ) = exp(μ′),

that is,

μ = − log N + μ′,

where μ′ is independent of N .
Then, K is given by

K (q) = iq exp(μ′ + σ 2),

which corresponds to K of Dirac δ distribution with the mean
μ̄ = exp(μ′ + σ 2).

2. Gauss class

We introduce the “Gauss class” here, whose K (q) is given
by

K (q) = iμ̄q − σ̄ 2

2
q2. (17)

This corresponds to the second cumulant generating function
of the Gaussian distribution with the mean μ̄ and variance
σ̄ 2. Although Eq. (17) has a very simple form, quite many
distributions that have two or more parameters belongs to this

class when we tune their parameters to satisfy

E (Ji j ) = μ̄

N
, V (Ji j ) = σ̄ 2

N
. (18)

We confirm that the uniform, triangular, Gumbel, and Laplace
distribution also belong to this class. In fact, most of previous
studies has been devoted to the analysis of this class with
μ̄ = 0 [2,14,15,18].

Actually this class is very wide, and in Appendix B, we
show that a distribution belongs to this class if it satisfies some
reasonable conditions.

3. Stable class

The “Stable class” is given by

K (q) = iδ̄q − γ̄ |q|α[1 + iβsgn(q)ω(q, α)],

where δ̄, γ̄ , α and β are arbitrary parameters. ω(q, α) is de-
fined as

ω(q, α) :=
{

tan
(

πα
2

)
(α 	= 1),

2
π

log |q| (α = 1).

This K (q) corresponds to KJ (q) of the stable distribution with
the parameters of

δ = δ̄, γ = γ̄ .

It should be noted that the Gauss class is a special case
of the stable class with identification of δ̄ = μ̄, γ̄ = σ̄ 2/2 and
α = 2.

4. Gamma class

Next, we explain the “Gamma class.” K (q) of this class is
given by

K (q) = −k̄ log(1 − iθq),

where k̄ and θ are arbitrary parameters. This K (q) corresponds
to the limit of KJ (q) for the Gamma distribution with

k = k̄

N

and an arbitrary constant θ , which was discussed as case (1)
in Sec. IV A.

This class is peculiar to the limit Eq. (14) considered in this
study. If we consider the limit (15), then we obtain K (q) of the
Gaussian distribution, not the one given above.

5. Symmetrized Gamma class

The last example is “symmetrized Gamma class,” whose
K (q) has the following form:

K (q) = iμ̄q − k̄

2
log(1 − iθq)(1 + iθq∗),

where μ̄, k̄, and θ are arbitrary parameters. We get this class
by symmetrizing the probability distribution function of the
Gamma distribution and shifting the distribution by μ. That
is, the probability distribution function

PJ (x) = |x − μ|k−1 exp(−|x − μ|/θ )

�(k)θ k
(x ∈ R)
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realizes the above K (q) by tuning μ and k as

μ = μ̄

N
, k = k̄

N
,

with θ fixed.

C. Correspondence between universality class
and eigenvalue spectrum

In this section, we show that, in the large-N limit, the
eigenspectrum of random matrix J is uniquely determined
by specifying the universality class to which the probability
distribution PJ belongs.

According to the analogy between the eigenspectrum of
random matrix and electrostatics discussed in Ref. [81], the
number density ρ(ω) (ω = x + iy) of eigenvalues of random
matrix J is given by

ρ(w) = − 1

4π

(
∂2

∂x2
+ ∂2

∂y2

)
�(w).

Here � is the electrostatic potential in two-dimensional space
(x, y) ∈ R2 and defined as

�(w) = 1

N

∫
[dJi j]

×
∏
i, j

P(Ji j ) log det[(w∗EN − JT )(wEN − J )], (19)

where EN is the N×N unit matrix.
In the following, we show that this potential function �

depends on PJ only through K (q) in the large-N limit. With
the Gaussian integral formula, we can rewrite Eq. (19) as

N� =
∫

[dJi j]
∏
i, j

P(Ji j )

×log

{∫
[d2zi] exp[−z∗

i (w∗δi j − Jji )(wδ jk − Ji j )zk]

}
,

where [d2zi] :=∏i d2zi/π .
To evaluate the integration over Ji j , let us use the replica

method to remove the logarithm. We define � (R) as

N� (R) =
∫

[dJi j]
∏
i, j

P(Ji j )

×
{∫

[d2zi] exp[−z∗
i (w∗δi j − Jji )(wδ jk − Jjk )zk]

}R

.

After calculating � (R), we analytically continue � (R) from
R ∈ N to R ∈ R, then the original � is calculated from

� = lim
R→0

� (R) − 1

R
.

It is sufficient to our purpose to show that � (R), instead of
�, depends on PJ only through K (q) in the large-N limit. � (R)

is calculated as

N� (R) =
∫

[dJi j]
[
d2z(r)

i

]∏
i, j

P(Ji j )

× exp
[−z(r)∗

i (w∗δi j − J ji )(wδ jk − Jjk )z(r)
k

]

=
∫

[dJi j]
[
d2z(r)

i

][
d2y(r)

i

]∏
i, j

P(Ji j )

× exp
[−y(r)∗

i y(r)
i − iy(r)∗

j (wδ jk − Jjk )z(r)
k

− iz(r)∗
i (w∗δi j − Jji )y j

]
=
∫ [

d2z(r)
i

][
d2y(r)

i

]
× exp

[
−y(r)∗

i y(r)
i − iwy(r)∗

i z(r)
i − iw∗z(r)∗

i y(r)
i

+
∑
i, j

KJ
(
y(r)∗

i z(r)
j + y(r)

i z(r)∗
j

)]
.

We have used the Gaussian integral formula to introduce the
integration variables of y(r)

i s in the second equality and exe-
cuted the integration over Ji j in the third equality.

Let us introduce auxiliary fields in the same way as we
did in Appendix A 1. KJ can be expanded as KJ = K/N +
O(N−2) in the large-N limit, and then K/N is expanded as

1

N

∑
j

K
(
y(r)∗

i z(r)
j + y(r)

i z(r)∗
j

)
= 1

N

∑
n

κn

n!
in
∑

j

(
y(r)∗

i z(r)
j + y(r)

i z(r)∗
j

)n
= 1

N

∑
n

κn

n!
in

n∑
a=0

N∑
j=1

(
n

a

)(
y(r)∗

i

)a(
z(r)

j

)a
× (y(r)

i

)n−a(
z(r)∗

j

)n−a
.

We also use the following identity:

1 =
∫

dCa
n δ

[
Ca

n − 1

N

(
z(r)

i

)a(
z(r)∗

i

)n−a
]

= N

2π

∫
dĈa

n dCa
n

× exp

{
−iĈa

n

[
Ca

n − 1

N

(
z(r)

i

)a(
z(r)∗

i

)n−a
]}

.

Performing these transformations, finally we obtain the av-
eraged generating function and the effective action in the
following form:

� (R) =
∫ ∞∏

n=1

n∏
a=1

DCa
n DĈa

n e−NI1 .

I1 is defined as

I1[C, Ĉ] := − 1

N

N∑
i=1

log

[∫
[dzidyi]e

iĪ1[yi,zi,C,Ĉ]

]

+ i
∞∑

n=1

n∑
a=1

Ca
nĈa

n , (20)

where Ī1 is given by

Ī1[yi, zi,C, Ĉ]

:= −y(r)∗
i y(r)

i − iwy(r)∗
i z(r)

i − iw∗z(r)∗
i y(r)

i
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FIG. 1. Eigenvalue spectrum density of the random coupling matrix on the complex plane. Each random matrix is sampled from (a) the
Gaussian distribution, (b) the Gamma distribution, (c) the symmetrized-Gamma distribution with J0/J = 1.5, 1/J = 1, N = 500, and the mean
of the symmetrized-Gamma distribution is set to be zero. Each of the figures in the center of (a)–(c) is a color map of the eigenvalue spectrum
density ρ(ω). The upper and right figures are integrated density in the directions of imaginary and real axis, respectively.

+ 1

i

∞∑
n=1

n∑
a=1

[
κn

n!
in

(
n

a

)
Ĉa

n

(
y(r)∗

i

)a(
y(r)

i

)n−a

+ Ca
n

(
z(r)

i

)a(
z(r)∗

i

)n−a
]
. (21)

Although Eqs. (20) and (21) are a little bit complicated, we
do not have to calculate any more. In the large-N limit, the
saddle point approximation for the integration over Ca

n and Ĉa
n

becomes exact. From Eqs. (20) and (21), it is obvious that the
saddle point depends PJ only through κn, i.e., K (q), and so
does �.

The above result means that the eigenvalue spectrum ρ can
be classified by K (q) in the large-N limit. In other words, we
have proved that each class of the eigenvalue spectrum of the
large random matrix J has one-to-one correspondence to each
universality class. In particular, when we apply this discussion
to the Gauss class, we reproduce the Girko’s circular law
[81,82].

For demonstrations of the above correspondence, we have
performed numerical calculations of eigenvalue spectrum for
several universality classes, shown in Fig. 1. As for the Gaus-
sian distribution [Fig. 1(a)], the eigenvalues are located almost
uniformly in the unit disk, except the real axis and the region
around z = 1.5. This uniformness is the result of Girko’s
circular law. The dense region of eigenvalues on the real axis
is caused by the finite size effect, which has been discussed
in Ref. [81]. Furthermore, the dense region around z = 1.5
is caused from the effect of nonzero mean (E [Ji j] = J0/N =
1.5/N ) of the random matrix Ji j . This is because the peak of
this region appears around the mean μ̄ = J0 of K , when we
change the mean to J0 = 1, 1.5, 2.

However, the eigenvalues of the random matrix sampled
from the Gamma distribution [Fig. 1(b)] and symmetrized-
Gamma distribution [Fig. 1(c)] do not show such uniformness
and are located almost on the origin. Especially in the former
case, the distribution also has a dense region on the real
axis and a small peak around z = 1.5. From the comparison
between Figs. 1(b) and 1(c), we understand that these charac-

teristics can be regarded as the same effect as in the Gaussian
case. In particular, it is noteworthy that the concentration of
eigenvalues at the origin is far from the circular law. These
differences between the Gauss and Gamma classes are ex-
pected to distinguish their response characteristics, such as the
dynamic range against input signals.

These numerical results support the correspondence be-
tween universality and the eigenvalue spectrum in the large-N
limit.

V. COMMENTS ON PRACTICAL CHOICES
OF NETWORK STRUCTURE

In a practical implementation of RCs, we often select
the random coupling constant Ji j to be not fully connected.
Moreover, it is also customary to choose the spectral radius
of Ji j as a control parameter, rather than the parameters of
the probability distribution. In this section, we comment on
the relation between the theory discussed above and these
practical choices of Ji j .

A. Sparse networks

In Sec. IV, the way of parameter tuning was demonstrated
only for “fully connected” networks. Whereas previous stud-
ies often use a not fully connected network, such as the
Erdős-Rényi network, in the implementation of RC to reduce
the computational cost [22,23]. In this case, we need to take
a different way of tuning from the previous one. Here, we ex-
plain that not fully connected networks also have universality.

To classify the sparsity of the networks, we introduce the
average number of connected nodes for every node as k(N )
(0<k(N )�N ). The network is fully connected if k(N )=N ,
dense if k(N ) = O(N ), and sparse if k(N )=o(N ) as N→∞.
Especially if k(N ) = O(N0), the network is called truly
sparse.

In the following, we show that dense and (not truly) sparse
networks have universality. Because each of the coupling con-
stants Ji j are set to be zero with the probability of 1 − k(N )/N ,
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the probability distribution function of Ji j is described as

PJ (Ji j ) =
[

1 − k(N )

N

]
δ(Ji j ) + k(N )

N
Ps(Ji j ),

where Ps is some probability distribution function. Then KJ (q)
is given by

KJ (q) = log

[
1 − k(N )

N
+ k(N )

N
exp(Ks)

]
, (22)

where Ks(q) is the second cumulant generating function of Ps.
Recall that we should tune parameters in the way to satisfy
limN→∞ KJ (q) = 0. This fact and Eq. (22) deduce that Ks(q)
should be tuned to satisfy

lim
N→∞

k(N )

N
{exp[Ks(q)] − 1} = 0.

Therefore, KJ (q) is expressed up to the leading-order in the
N → ∞ limit as

KJ (q) = k(N )

N
{exp[Ks(q)] − 1} + (higher-order terms).

With this expression, K (q) is given by

K (q) = lim
N→∞

k(N ){exp[Ks(q)] − 1}.
In the dense and (not truly) sparse network, k(q) has an

asymptotic form such as

k(N ) ∼ cNα,

with some positive constant and α (0 < α � 1). Note that the
case α = 0 corresponds to the truly sparse network and that
the fully connected network is realized in the case α = c =
1. We take k(N ) = cNα in the following for simplicity. Our
argument holds straightforwardly for any function k(N ) which
diverges in the N → ∞, such as log N , because all we need to
do is exchange Nα to k(N ).

Since k(N ) diverges as N → ∞, Ks(q) should becomes
zero in this limit to keep K (q) finite. Then, to calculate K (q),
we may just consider the limit

K (q) = lim
N→∞

k(N )Ks(q) = c lim
N→∞

NαKs(q). (23)

This expression is the same as the definition of K (q) [Eq. (6)],
where N is replaced to Nα . Therefore, the discussion in
Sec. IV A can be applied for dense or sparse networks, and
it is sufficient to determine the N-dependence of parameters
ζa(N ) as

ζa(N ) = [F−1
κ (κ̄b/Nα )

]
a, (24)

where F−1
κ is given in Eq. (12). As a result, Eqs. (6) and (12)

become Eqs. (23) and (24) by replacing N to Nα , respectively.
Therefore, we find that K (q) in dense or sparse networks can
be classified into the same universality classes for the fully
connected networks.

B. Universality in controlling spectral radius

Here we study the relationship between rescaling of the
coupling matrix Ji j and the universality. In the previous stud-
ies, the matrix Ji j is usually rescaled to control its spectral
radius, defined as the absolute maximum of its eigenvalues.

We denote the spectral radius of the matrix Ji j by ρ(Ji j ). The
reason for adjusting ρ(Ji j ) is that it plays a crucial role in
determining the dynamics and computational performance of
the RC. Actually, in the case ρ(Ji j ) < 1, the network holds the
echo-state property [8], which is believed to be necessary for
the RC to work well at the learning tasks.

Let us control the spectral radius of Ji j in the following
way. We first sample J ′

i j from some probability distribution
P′(J ′

i j ) with N-independent parameters. Then, we determine
Ji j as

Ji j = J ′
i j × r

ρ(J ′
i j )

(25)

to set its spectral radius to be an arbitrary nonnegative number
r, that is, ρ(Ji j ) = r. This is because ρ(Ji j ) = ρ(J ′

i j× r
ρ(J ′

i j )
) =

r
ρ(J ′

i j )
×ρ(J ′

i j ) = r.

Let us consider the case that the spectral radius scales as

ρ(J ′
i j ) ∼ c

√
N, (26)

with some positive constant c, which is determined from P′
i j as

N → ∞. A typical example is the circular law in the random
matrix theory [82,83]. It states that an eigenvalue distribution
function of a N×N matrix sampled from i.i.d with zero mean
and finite variance is asymptotically given by the probability
density function of the uniform distribution on a disk of radius
σ
√

N such as

Psc(ε) =
{

1
πσ 2N (|ε| < σ

√
N ),

0 (otherwise),

in the N → ∞ limit. σ is the variance of the sampling prob-
ability distribution for the components. It follows from this
law that the spectral radius ρ is σ

√
N , the value at the edge of

support of Psc.
Given this behavior, we can discuss the effect of rescaling

of Ji j and the probability distribution of Ji j . Equations (25)
and (26) lead to scaling of Ji j as Ji j = r

c
√

N
J ′

i j . Let K ′(q) be
the second cumulant generating function of J ′

i j , then KJ (q) is
given by

KJ (q) = K ′
(

r

c
√

N
q

)
.

Therefore, we get

K (q) = lim
N→∞

NK ′
(

r

c
√

N
q

)
,

which is essentially the same limit as one considered in the
(generalized) central limit theorem [Eq. (15)]. As a result, we
find that K (q) belongs to just the Gauss or stable class when
we control the spectral radius of the random coupling matrix
Ji j .

VI. NUMERICAL CALCULATION

In the previous sections, we have clarified the relation
between the network structure, especially the probability dis-
tribution of the coupling constant PJ (Ji j ), and the universality
of the network dynamics in the large-N limit. The Delta and
the Gauss class have already been investigated in detail in
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previous studies [2,14,15,18]. Importantly, in these cases, we
can describe the network dynamics with a closed set of (self-
consistent) equations for the one- and two-point correlation
functions of the reservoir states. Owing to this simplicity,
for these classes, we can analytically determine the phase
diagram (introduced later in Sec. VI A) in the parameter space
[2,6,15,84] and evaluate various dynamical quantities under
driving signals, such as the maximum Lyapunov exponent
and the memory curve [15,60,80]. However, for more general
universality classes such as the Gamma and the stable class,
we need to deal with an infinite number of the self-consistent
equations for all cumulants, which would be intractable with-
out a numerical approach in general.

For these reasons, in this section, we perform some nu-
merical calculations for the Gauss and the Gamma classes
and compare each result to clarify the role of the higher-
order statistics in the network dynamics. Furthermore, we
give a discussion on the relation between these results and
the edge of chaos. More specifically, we give the numeri-
cal analyses for the following observations, respectively, for
both the Gauss and the Gamma classes: (A) the phase di-
agram and the Lyapunov exponents under no driving input,
(B) common signal-induced synchronization, and time series
inference task, and (C) time-series forecasting task using the
closed-loop network systems.

As a result, we will show that each universality class has
different phase diagram defined by the asymptotic behavior
of the reservoir states, and the phase boundaries is desired
areas to improve the computational performance. These obser-
vations suggest the following strategy for designing the RCs
to improve their computational performance: ( i ) following
Table I, determine the proper scaling of the parameters of the
probability distribution PJ , ( ii ) by performing numerical sim-
ulations, investigate the phase diagram of asymptotic network
dynamics in the parameter space obtained in the first step, and
( iii ) tuning the parameters near the phase boundary obtained
in the second step, and execute the computational tasks.

All numerical results below were obtained in the follow-
ing way unless otherwise stated. We simulate the discretized
version of Eq. (1) given by

ri(t + 1) = (1 − α)ri(t ) + α

⎡⎣ N∑
j=1

Ji jφ(r j (t )) + bi(t )

⎤⎦,

(27)

where α is the learning rate and set to be α = 0.2 in this
study. We set the network size as N = 500 throughout this
paper, and we average simulation results over 100 trials, each
of which has a different ensemble of the random coupling
constant Ji j and the initial state of the reservoir ri(0). Fur-
thermore, for simplicity, we put the activation function as
φ(x) = tanh(x) in the following. Although this choice may
lose the generality of our discussion, it enables us, as shown
below, to investigate several fascinating dynamical properties
of random networks, including the dynamical transition from
a fixed point to chaotic behavior and the edge of chaos in the
computational performance.

The numerical codes used in the following calculations are
freely available in Ref. [85].

A. Phase diagram

Here we investigate phase diagrams of the steady state
of random neural networks under no driving input (we refer
to it as merely “a phase diagram”). To this end, for every
value in the parameter space, we iterate Eq. (27) over enough
time steps (5000 steps) for the reservoir state to reach the
steady state and record the reservoir state at the final time step
t f = 5000. The results for the Gaussian and Gamma networks
are shown in Figs. 2 and 3, respectively. Their vertical and
horizontal axes are set to be 1/J and J0/J with the mean
E [Ji j] = J0/N and the variance V [Ji j] = J2/N for each net-
work. More specifically, we set μ = J0/N and σ 2 = J2/N for
the Gaussian network and θ = J2/J0 and k = J2

0 /J2N for the
Gamma network. In panels (a) and (b) in these figures, respec-
tively, we show the site mean and site variance of φ(ri(t f )),
averaged over all trials. These figures are combined into a
single color map in panel (c), with the mean and variance of
the sites represented in blue and orange, respectively.

We have also confirmed that the phase diagrams discussed
here can be reproduced robustly and universally for various
system sizes ranging from N = 100 to N = 1000, and also
for any distribution within an identical class (for example, the
Gaussian distribution, uniform distribution, and the Laplace
distribution for the Gauss class). In this sense, the theory of
random network dynamics in the large-N limit, discussed in
the previous section, gives a good description of their phase
diagrams even for large- but finite-size networks.

Figures 2(c) and 3(c) can be understood from a physical
viewpoint as follows. The white regime has vanishing site
mean and site variance of the reservoir states. It illustrates
the realization of a trivial quiescent regime, where all the
network nodes converge to a stable fixed point ri = 0 for
i = 1, . . . , N . The blue regime is also a quiescent regime,
but it has two stable fixed points ri = ±r∗ (i = 1, . . . , N ),
where r∗ is determined by the parameter values (1/J, J/J0).
Our simulations sampled the initial reservoir states ri(0) from
the uniform distribution on the interval of [0, 1] to make only
one fixed point (ri = r∗) appear in the long time limit. The
transition from the white regime to the blue one is analogous
to a paramagnetic-ferromagnetic transition in spin systems,
and so we refer to each regime as the unpolarized and the
polarized ordered regime. However, the orange (gray) regime,
which has zero (nonzero) mean and finite variance of the
reservoir states, is more complicated to understand because
each regime has different attractor structures, respectively, for
the Gauss and Gamma classes. In the case of the Gauss class,
the finite variance suggests the appearance of chaotic dynam-
ics. It is well-known that the analytical results for Ji j-averaged
networks show the direct transition from the quiescent regime
to the chaotic one at the boundary of the white and orange
regimes on the contour line of 1/J = 1 in the large-N limit
[2,18]. However, the actual simulation indicates multiple tran-
sitions from a fixed point ri = 0 to a limit cycle (torus) or
chaotic behavior around 1/J = 1 due to the finite size effect.
This observation is qualitatively guaranteed by the following
discussion.

To evaluate whether the network dynamics is chaotic or
not, we evaluate the Lyapunov exponent of our autonomous
model. The Lyapunov exponent quantitatively measures the
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FIG. 2. Phase diagram of the Gaussian network with the network size N = 500 and the mean E [Ji j] = J0/N and the variance V [Ji j] =
J2/N . (a) Site mean and (b) site variance of φ(ri ), which are averaged over 100 trials. (c) Phase diagram of the steady state of the Gaussian
network. We show the site mean (blue) and the site variance (orange) of φ(ri ) in the parameter space. We set the RGB color values by (R, G, B)
= {255(1 − σ̃ 2), 255[1 − (σ̃ 2 + μ̃)/2], 255(1 − μ̃)}, where μ̃ and σ̃ 2 are the ensemble normalized mean and variance of MSE. The maximum
and minimum values of the normalized quantities are set to be unity and zero, respectively. The contours with the dotted and dash-dotted lines
indicate σ̃ 2 = 0.1 and μ̃2 = 0.1, respectively. (d) Color map of the spectral radius of a random matrix for N = 500 sampled from the Gaussian
distribution. The contour lines are indicated by the common logarithm scale and their levels are displayed as labels of the colorbar. The solid
lines are empirical contours and the dotted ones are loci of (1/J, J0/J ) satisfying 1/J = 10−0.2k × max{J0, J} (k = −2, −1, . . . , 5). (e) Color
map of the ensemble median of the Lyapunov exponent for Eq. (27) for the Gaussian Network with N = 500. The black line shows the zero
contour and the gray area indicates that the exponent is in the range [0, 0.001]. The white dotted line indicates the theoretical 0 contour of the
spectral radius of Ji j . (f) Median of the Lyapunov exponent for 100 ensembles. Here, we set J0 = 0 and plot the results for N = 100, 500 and
1000 by green, orange and blue dots, respectively. The error bars indicate the interquartile range.

rate of separation in the time evolution of orbits with different
initial states. Figure 2(e) shows the color map of the median of
the Lyapunov exponent of the Gaussian network with E [Ji j] =
J0/N and V [Ji j] = J2/N in the (J0/J, 1/J ) space with N =
500. The black line shows the zero contour and the gray area
indicates that the exponent is in the range [0, 0.001]. The
tendency of the distribution of the exponent in the parameter
space is consistent with the phase diagram Fig. 2(c).

The random network becomes chaotic in the region below
the black line in the sense of the Lyapunov exponent. This
curve is different from the contour of J’s spectral radius of 1
that is represented by the white dotted line in the Fig. 2(e). In
the area 1/J < 1, the zero contour of the Lyapunov exponent
asymptotically reaches the dotted line, as shown in Fig. 2(f).
Figure 2(f) shows the median of the Lyapunov exponents for
100 ensembles for the networks with J0 = 0, corresponding to
the left-end in the two-dimensional phase space, for N = 100,
500, 1000 with green, orange, and blue dots, respectively. The
error bars represent the interquartile range (IQR). In each case

of the network size N , the ranges only appear in either the
positive or negative regions of the exponent. Thus, one can
immediately identify whether the system is ordered or chaotic.
The switching point of the sign of the region containing the
IQR approaches zero as N increases.

Furthermore, it is noteworthy that Fig. 2(c) has the similar
structure as the phase diagram of the Sherrington-Kirkpatrick
(SK) model for spin glass [86]. These structures of the phase
diagram and analogy with the SK model have been discussed
in detail in several previous works [2,15,84,87].

Contrary to this, for the Gamma class, higher-order statis-
tics drastically change the attractor structures in the phase
diagram. We obtain a finite variance of the reservoir states in a
narrow region in the phase space [Fig. 3(b)]. However, it never
indicates the appearance of dynamical states such as a chaotic
dynamics or a limit cycle because the Lyapunov exponent
of the Gamma networks is always negative in any parameter
[Fig. 3(e)]. The absence of chaos is a notable feature of the
Gamma network.
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FIG. 3. Phase diagram of the Gamma-distributed random neural network with the network size N = 500 and the mean E [Ji j] = J0/N and
the variance V [Ji j] = J2/N . (a) Site mean and (b) site variance of φ(ri ), which are averaged over 100 trials. (c) Phase diagram of the steady state
of the Gamma-distributed random neural network. We show the site mean (orange) and the site variance (blue) of φ(ri ) in the parameter space.
The RGB colors are the same as Fig. 2(c). The contours with the dotted and dash-dotted lines indicate σ̃ 2 = 0.1 and μ̃2 = 0.1, respectively.
(d) Color map of the ensemble mean of the spectral radius of random matrix sampled from the Gamma distribution for N = 500. The solid
lines are empirical contours and the dotted ones are loci of (1/J, J0/J ) satisfying 1/J = 10−0.2k+0.05 × (J0/J )0.8 (k = −2, −1, . . . , 5). (e) The
color map of the ensemble median of the Lyapunov exponent for Eq. (27) for the Gamma network with N = 500. The white dotted line is
same as the contour of μ̃2 = 0.1 showed in panel (c).

In this case, reservoir states converge to a site-dependent
fixed point throughout the regime with finite variance in
Fig. 3(c). Each reservoir state {ri} has a different value at
this fixed point, depending on the site and the trial of Ji j . For
this reason, we refer to such a phase as random fixed point
phase.

Furthermore, while the spectral radius of the connectivity
matrix Ji j affects the location of the phase boundary for the
Gaussian network, such a correspondence does not seem to
exist for the Gamma network [see panel (d) in Figs. 2 and 3].
Instead, the boundaries’ location appears along the contour of
the Lyapunov exponent showed in Fig. 3(e).

As another example of networks with the contribution
of higher-order statistics, let us consider the symmetrized
Gamma network, a network with the connectivity matrix J
sampled from the symmetrized Gamma distribution param-
eterized as the mean E [Ji j] = 0, the variance V [Ji j] = J2/N
and the fourth cumulant 〈J4

i j〉c = J6/(J0N ). This distribution
can be implemented by symmetrizing the Gamma distribution
with the mean E [Ji j] = J0/N and the variance V [Ji j] = J2/N .
The components of J in this network distribute symmetrically
around the origin and the symmetrized Gamma distribu-

tion has nonnegligible higher-order cumulants in K (q). We
show the numerical results of the phase diagram in Fig. 4,
where the vertical and horizontal axes are set to be 1/J
and J0/J . Figure 4(c) shows the ensemble median of the
Lyapunov exponent with N = 500 for 100 ensembles. The
black line and the gray area are the same as in Fig. 2,
respectively.

The symmetrized Gamma network always shows the zero
mean of φ(ri) for any parameter value and is possible to
have the nonzero variance for J0/J � 0.5. We notice that
the tendency of the distribution of the exponent is consistent
with the phase diagram shown in Fig. 4(a) and also with
the spectral radius in Fig. 4(b). Unlike the Gamma network,
we can find the chaotic phase in the bottom right in the
phase space. Especially when we fix the value of J0/J above
0.5, the phase diagram for 1/J has a similar structure to
that for the Gaussian network with vanishing mean. Actu-
ally, as shown in Fig. 4, numerical results of the maximum
Lyapunov exponent suggest that the symmetrized Gamma
class shows multiple transitions from an ordered phase to a
limit cycle (torus) phase to a chaotic phase, as well as the
Gaussian network.
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FIG. 4. Phase diagram of the symmetrized Gamma-distributed random neural network with the network size N = 500 and the mean
E [Ji j] = J0/N and the variance V [Ji j] = J2/N . (a) Phase diagram of the steady state of the symmetrized Gamma-distributed random neural
network. We plot site-variance of φ(ri ), which is averaged over 100 trials. (b) color map of the spectral radius of random matrix sampled from
the symmetrized Gamma distribution for N = 500. (c) The color map of the ensemble median of the Lyapunov exponent for Eq. (27) for the
symmetrized Gamma network with N = 500. The gray area indicates that the exponent is in the range [0, 0.001].

B. Open-loop networks

In this subsection, we consider what changes arise in the
response properties to external signals due to the higher-order
statistics and the resulting difference in the phase diagram
of each universality class. First, we simulate the common
signal-induced synchronization under chaotic signals, which
is essential for the RC. Second, we demonstrate the time series
inference task for the chaotic inputs with the RC scheme and
show that the best computational performance is achieved
near the boundary of the regime with finite site variance.
Throughout this subsection, we use a time series of the x-
coordinate x(t ) of the Lorenz system

dx

dt
(t ) = σ (y(t ) − x(t )),

dy

dt
(t ) = −y(t ) + x(t )(ρ − z(t )),

dz

dt
(t ) = x(t )y(t ) − βz(t ),

with the parameters σ = 10, ρ = 28, and β = 8/3 introduced
in Ref. [65] as a chaotic input signal and put bi(t ) in Eq. (27)
as bi(t ) = Wix(t ), where Wi are sampled from independent
uniform distribution over [−1, 1]. x(t ) are normalized to have
zero mean and a unit of variance over the total time steps.

1. Common-signal-induced synchronization

Here we analyze the relationship between the phase di-
agram and the common-signal-induced synchronization. For
this purpose, we iterate Eq. (27) under chaotic inputs over
100 000 time steps and record the reservoir state at the final
time step t f . We take 100 trials of this calculation, more
precisely, ten samples of J and ten ensembles of the ini-
tial states of r for each J . The initial states are sampled
independently from the uniform distribution on the interval
[0, 1]. Then, we calculate the variance of φ(ri(t f )) over all
the ensemble of initial states ri(0) for each J , and average it
over all sites. In particular, vanishing variance suggests that
common signal-induced synchronization is accomplished in
the random network.

The numerical result for the Gaussian network is shown
in Fig. 5. Comparing with Fig. 2(e), we readily find that the
chaotic phase shrinks by the driving input, especially in the
left half in the phase space, which means that the external
input effectively decreases the Lyapunov exponent of the net-
work system. This behavior is known as stimulus-dependent
suppression of chaos and investigated analytically, especially
for the Gaussian networks in previous studies [13–15].

However, we can confirm that the Gamma networks show
common signal-induced synchronization for any parameter,
and thus the ensemble variance of ri(t f ) becomes zero all
over the parameter space. (Figure for this case is not shown.)
Namely, the input time series always causes common signal-
induced synchronization for any parameters in the Gamma
networks.
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FIG. 5. Common signal-induced synchronization for input signal
of the Lorenz system in Gaussian network (N = 500). The color map
shows the site averege and J-average of the variance of tanh(ri(t f ))
over all the ensemble of initial state ri(0). Common signal-induced
synchronization is realized only in the regime where the values
become zero. The white dotted line represents the zero contour of the
Lyapunov exponent of the Gaussian network without input shown in
Fig. 2(e) for comparison.
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FIG. 6. Ensemble median (upper) and interquartile range (lower) of the MSE of the time series inference task for the test data using the
Gaussian (a), (d), the Gamma (b), (e), and the symmetrized Gamma networks (c), (f) with N = 500. The white point and the white dashed line
in each figure indicate the minimum point of the MSE and the contour of 95% level of the minimum, respectively. The MSEs plotted here are
used in a common logarithm scale.

2. Time-series inference task

In this part, we perform a time series inference task for
the Lorenz system time series [23,24]. Our computational
scheme is essentially based on that in Ref. [23]. In the present
task, as in Sec. VI B 1, we use the normalized x-coordinate of
the Lorenz systems x(t ) as input data, and attempt to predict
the concurrent y-coordinate of the system y(t ). First, in the
training process, we sample a random initial state ri(0) from
the uniform distribution on [0, 1] and iterate Eq. (27) under
the driving signal x(t ) up to the transient time Ttrans. Here
we choose Ttrans to be large enough to guarantee that the
reservoir state loses the memory of its initial state by com-
mon signal-induced synchronization. After that, we record
all reservoir states generated from Eq. (27) over 100 000
(=: Ttrain) time steps. Then we train linear readout parameters
W out

i to minimize the mean squared error (MSE) between the
estimated values ŷ(t ) =∑ j W out

j φ(r j (t )) and the actual value
y(t ). Since this is a simple linear regression problem, we can
solve it analytically and obtain the optimal value of W out

i as

W out
i =

N∑
j=1

(R−1)i jB j,

where

Ri j :=
Ttrain∑

t=Ttran

φ(ri(t ))φ(r j (t )), Bj :=
Ttrain∑

t=Ttran

φ(r j (t ))y(t ).

If the training is successfully done, then the readout of
the reservoir output ŷ(t ) =∑ j W out

j φ(r j (t )) should yield a
good approximation for the actual value of y(t ). Preparing
another time series of the Lorenz system generated from the
other random initial state as the test data, we perform the time
series inference task and evaluate the MSE. Here we drop
the early time series up to the transient time Ttrans, as in the
training case. We perform this procedure for any parameter
values (1/J, J0/J ) over 100 ensembles of the random coupling
constant Ji j , and lastly, calculate the median and the IQR of
MSE over all the ensembles.

We show the numerical results in Fig. 6 for the Gauss,
Gamma, and symmetrized Gamma classes. First, paying at-
tention to the results for the Gauss class, we readily notice the
remarkable improvement of the computational performance –
a sharp decrease of the median and the IQR of MSE—around
the boundary of the chaotic phase, namely, edge of chaos
[4,15,54–58]. In these previous works other than Ref. [55],
they focused mainly on the case where the coupling constant
sampled from the Gaussian distribution with vanishing mean.
Thus, it was still unclear what role the nonzero mean value of
the coupling plays in computation at the edge of chaos. As we
can understand by comparison with Figs. 2(e) and 5, the dras-
tic behavior mentioned above appears only in the particular
regime where the maximum Lyapunov exponent is near zero
and the common signal-induced synchronization is realized.
We can confirm that similar behavior can be observed even
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in the symmetrized Gamma class, as shown in Figs. 6(c) and
6(f).

Further remarkable is that the best computational perfor-
mance is achieved around the boundary between the polarized
ordered and chaotic regimes. It seems that the minimum of the
MSE is attained near the tricritical point (J0/J, 1/J ) = (1, 1),
which is a point at which three-phase coexistence terminates
in the phase diagram [Fig. 2(c)]. Interestingly, we get bet-
ter computational performance in the ordered phases than in
the chaotic phase, around the minimum point. This behavior
contrasts with the results on the line J0 = 0, where the edge
of chaos has been most investigated, and the computational
performance is relatively better in the chaotic regime (see also
Refs. [4,15]).

However, the Gamma class [Figs. 6(b) and 6(e)] provides
us with a further notable feature. Even though the Gamma
network does not exhibit chaotic dynamics as shown in
Sec. VI A, drastic improvement of the computational perfor-
mance appears around the boundary of the random fixed point
phase. This behavior is analogous to that at the edge of chaos
in the Gaussian network, and the best value of MSE is quan-
titatively comparable to that in the Gaussian network. These
results suggest that a chaotic phase (or the boundary) is not
necessarily needed to improve computational performance.

In addition, although the fact that the Gamma network
holds common-signal-induced synchronization for any pa-
rameters, the network has worse inference performance in the
bottom-right region in the parameter space [Figs. 6(b) and
6(e)]. Thus, the echo-state property is a necessary but not
sufficient condition to learn the appropriate readout Wout. This
fact has yet to be found in the previous studies examining
cases for J0 = 0.

C. Closed-loop networks

In this subsection, we investigate the performance in a time
series forecasting task using the RC with output feedback. The
procedure is given as follows. First, we set a one-step ahead
prediction task

ri(t + 1) = (1 − α)ri(t ) + α

⎧⎨⎩
N∑

j=1

Ji jφ(r j (t )) + Wix(t )

⎫⎬⎭,

(28)

x̂(t + 1) =
N∑

j=1

W out
j φ(r j (t + 1)), (29)

with the input x(t ), and we learn W out
j in the same way de-

scribed in Sec. VI B 2. Then, substituting the predicted input
x̂(t ) for x(t ) in Eq. (28), we obtain the closed-loop system

ri(t + 1) = (1 − α)ri(t ) + α

⎧⎨⎩
N∑

j=1

(
Ji j + WiW

out
j

)
φ(r j (t ))

⎫⎬⎭.

(30)

When starting a forecasting task, we feed the correct input
time series x(t ) to Eq. (28) for a warm-up until Ttrans to adjust
the reservoir states to the appropriate states. After that, we
stop to provide the proper input. Then, we run the closed-loop

system Eq. (30) for t > Ttrans without the actual input x(t ), and
we forecast x(t ) by x̂(t ) from Eq. (29).

In this study, we apply this procedure to the normalized
x-coordinate of the Lorenz system and perform a time series
forecasting task. Since its dynamics is chaotic, the predicted
time series is also highly sensitive to the initial conditions.
Therefore, we attempt to forecast the time series until the Lya-
punov time defined by TL = 1/λLorenz, where λLorenz ≈ 0.905
is the Lyapunov exponent of the Lorenz system. Then we
evaluate the computational performance from the MSE of the
test data for Ttrans � t � Ttrans + TL.

Moreover, since the closed-loop system constructed in the
forecasting task is autonomous, it is also important to evaluate
the similarity between the RC and the original Lorenz system
as a dynamical system. Reference [21] suggested the impor-
tance of matching their Lyapunov exponents for prediction
tasks. Therefore, we measure the reproducibility of the Lya-
punov exponent of the closed-loop system by comparing it to
λLorenz so that we can estimate the degree of the reconstruction
of the original dynamics.

In Fig. 7, we show our results for the Lyapunov exponent
and the MSE of our prediction task for each pair of the param-
eters (1/J, J0/J ) over 100 ensembles of the random coupling
constant Ji j and the initial states ri. These figures include
the median [Figs. 7(b) and 7(e)] and the IQR [Figs. 7(c) and
7(f)] of MSE over all the ensembles for the Gaussian and the
Gamma networks.

The ensemble medians of the Lyapunov exponents are
shown in Figs. 7(a) and 7(d) for the Gaussian and the Gamma
networks, respectively. The parameter space can be divided
into four areas, numbered in ascending order of the ensemble
medians from (i) to (iv) in Fig. 7(a) for the Gaussian case, and
into three areas, numbered from (i), (ii), and (iii)′ in Fig. 7(d)
for the Gamma case.

The darker blue area (i), found at a distance from the
phase boundaries in both unpolarized and polarized ordered
regimes, shows the negative exponents; namely, the system is
not chaotic. This nonchaotic property is common to both the
Gaussian and the Gamma cases. Thus, the forecasting system
in this parameter area is unsuitable for emulating the original
chaotic dynamics. We can also find severely large errors in the
area (i) even in figures for the Gaussian [Figs. 7(b) and 7(c)]
and the Gamma networks [Figs. 7(e) and 7(f)]. Therefore,
adopting parameter pairs (J0, J ) from this area is not suitable
for our prediction task.

The purple area (ii) is close to the 1-contour of the spec-
tral radius of the connecting matrices shown in Figs. 2(d)
and 3(d), the closed-loop networks have positive Lyapunov
exponents. However, they are considerably smaller than that
of the Lorenz system λLorenz. Consequently, the network can
only predict with the accuracy of MSE of 10−1.

The orange area (iii), found near the tricritical point in the
Gaussian case, achieved the best performance in reproduc-
ing the Lyapunov exponent. The network with the parameter
(J0, J ) from this area also accomplishes the smallest ensemble
median and IQR of MSE of the test data.

Similar to this result, the best reproducibility in the Gamma
case is obtained in the area (iii)′, which is near the phase
boundary between the random fixed point phase and the the
other phases in Fig. 3. Remind that the Gamma network does
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FIG. 7. (a), (d) Ensemble median of the Lyapunov exponent of the closed loop dynamics, (b), (e) Ensemble median, and (c), (f) interquartile
range of the MSE of test data of the closed loop system constructed by (upper) Gaussian and (lower) Gamma networks with N = 500. The
values showed in panels (b), (c), (e), (f) are given in the common logarithmic scale.

not have a chaotic regime, unlike the Gaussian case. How-
ever, the optimal parameter can still be found near the phase
boundary. The smallest IQR of MSE is found in the bottom
right in the parameter space [Fig. 3(f)]. All the reservoir states
take values close to 1 due to the magnitude of Ji j being
considerably large in this parameter area. Therefore, it would
be more appropriate to take the parameters from the area (iii)′
for the computational performance.

The yellow area (iv), particular to the Gaussian case, found
in the chaotic regime, indicates that the closed-loop system
has a significantly greater Lyapunov exponent than λLorenz.
The systems with the parameters from this area are likely to
have a larger Lyapunov dimension [88] than the original one.
Thus, they hardly generate a time series qualitatively similar
to that produced by the original attractor.

As observed in previous task for the open-loop system, the
above results for the closed-loop system also imply that RCs
show their best performance around the phase boundary in
both cases of the Gauss class and the Gamma class.

VII. DISCUSSION AND CONCLUSION

In this paper, we have described a path integral approach to
the dynamics of general randomly connected neural networks
beyond the Gaussian assumption. We have provided a dynam-
ical mean-field method to these problems, which describes the
network dynamics exactly in the large-N limit and classified
these networks into several universality classes. Under this
approximation, the internodes coupling term in Eq. (1) is

replaced by an effective random noise η(t ), as described in
Eq. (9), and its time-correlation functions are determined by
the N-leading contribution of the cumulant generating func-
tion K (q) for Ji j . At the end of Sec. IV, we have also shown
that this function K (q) is closely related to the eigenvalue
spectrum of the random coupling matrix Ji j in the large-N
limit. In particular, throughout this paper, we have empha-
sized that higher-order statistics play nonnegligible roles in
the dynamics of general neural networks, such as the Gamma
and the stable class. This fact contrasts that the usual Gaus-
sian networks are described only by the one- and two-point
correlation functions of the reservoir states. In the last part
of Sec. IV, we have proved that each universality class has
a one-to-one correspondence with the eigenvalue spectrum of
the random coupling matrix. In Sec. V, we have studied the
universality of not fully connected networks and showed that
they could be classified with the same universality classes of
fully connected networks. We have also argued that networks
with the controlled spectral radius belong to the Gauss class.

In the latter half of this paper, we have performed several
numerical simulations to demonstrate how the contribution
of higher-order statistics changes the dynamical or informa-
tional properties. First, we have confirmed that the Gamma
(and symmetrized Gamma) network has different attractor
structures in the parameter space compared with the Gaussian
network. We have also mentioned a finite size effect in the
attractor structures of the Gaussian network with an analysis
of the maximum Lyapunov exponents. We have confirmed no
direct transition of the attractor from the fixed point to the
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chaotic behavior in a finite Gaussian network, but a limit-cycle
phase appears between them. Interestingly, the differences in
the attractor structures have appeared clearly in the computa-
tional performance, and especially, the best performance has
been realized in the boundary of the phase with finite vari-
ance in Figs. 2 and 3. In particular, these observations in the
Gamma network suggest that the boundary of a chaotic phase
is not necessarily needed to improve the computational perfor-
mance, and instead, the complexity of the attractor structure
is crucial. These results seem to be beyond our conventional
understanding and may provide a new perspective on the
discussion of the edge of chaos.

Finally, we would like to give our future perspective. As
a major premise, it is crucial to understand the origin of the
dynamical or informational functionality of structured net-
works, such as brains or trained artificial neural networks, in
the research of neurophysics or machine learning. In these
networks, essentially, we cannot neglect the influence of
higher-order statistics, and their effects are never tractable
in the picture based on the Gaussian network model. We
believe that our work might provide some clues to understand
their role in network dynamics. It is interesting to investigate
the relation between the eigenvalue spectrum of Ji j and the
dynamical range of random networks. It is also curious to
determine in which types of tasks higher-order statistics play
an essential role. These issues will be an interesting future
work bridging the random network models and more realistic
structured network systems.

Another important direction is to develop a method to
calculate the measure of computational performance, such as
the mean squared error in the path integral framework. Pri-
marily, a recent study [89] has reported that the double decent
phenomenon occurs when the node size N becomes extremely
large, i.e., the computational performance first gets worse and
then gets better. This phenomenon may be understood from
the point of view of large-N expansion in the path integral
framework with such a method.

We have given some examples of the universality classes
in Sec. IV B, and the complete classification of them is left
as another future problem. Although this classification can
be done with which cumulant does not vanish in principle, it
is nontrivial what classes are realized under some constraints
such as finiteness of cumulants, the number of parameters, dif-
ferentiability of the cumulant generating function with respect
to the parameters.

Furthermore, it is left to be solved as a purely mathematical
problem to determine the concrete form of the eigenvalue
spectrum density in the large-N limit for each universality
class.
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APPENDIX A: DERIVATION OF PATH-INTEGRAL
REPRESENTATION

We briefly review the path-integral formalism in random
networks in this Appendix. In particular, we show the detailed
calculation to derive Eq. (7).

1. Auxiliary fields

Supposed that K (q) can be described in the Taylor series
expansion for q, the action S̄[r, r̂] generally has a series of
time-nonlocal terms (n = 1, 2, . . .)

1

N

∑
j

K

(∫
dt r̂iφ(r j )

)

= 1

N

∞∑
n=0

κn

n!
in
∑

j

(∫
dt r̂iφ(r j )

)n

= κn

n!
in
∫

dt1 · · ·
∫

dtn r̂i(t1) · · · r̂i(tn)

×
⎧⎨⎩ 1

N

∑
j

φ(r j (t1)) · · · φ(r j (tn))

⎫⎬⎭,

where κn := i−ndnK/dqn|q=0. κn correspond to N times the
nth order cumulant of the probability distribution PJ . These
nonlocal terms can be simplified by introducing the auxiliary
fields Cn(t1, . . . , tn) and Ĉn(t1, . . . , tn) with the identity

1 =
∫

DCnδ

⎧⎨⎩Cn − 1

N

∑
j

φ(r j (t1)) · · · φ(r j (tn))

⎫⎬⎭
= N

2π

∫
DĈnDCn

× exp

⎛⎝−iĈn

⎧⎨⎩NCn −
∑

j

φ(r j (t1)) · · · φ(r j (tn))

⎫⎬⎭
⎞⎠.

Performing these transformations, we obtain the averaged
generating function and the effective action in the following
form:

Z[b, b̂] =
∫ ( ∞∏

n=1

DCnDĈn

)
eiNS1[C,Ĉ;b,b̂]. (A1)

S1 is defined as

S1[C, Ĉ; b, b̂]

:= −W [C, Ĉ; b, b̂]

+ i
∞∑

n=1

∫
dt1 · · ·

∫
dtnCn(t1, . . . , tn)Ĉn(t1, . . . , tn),

and W is given by

NW [C, Ĉ; b, b̂]

:=
N∑

i=1

log

[∫
Dr̂iDri exp(iS̄1[ri, r̂i,C, Ĉ] +

∫
dt b̂iri )

]
,
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where S̄1 is the single node contribution to W :

S̄1[ri, r̂i,C, Ĉ]

:=
∫

dt
N∑

i=1

r̂i

(
− d

dt
ri − ri + bi

)

+ 1

i

N∑
i=1

∞∑
n=1

{
κn

n!
in
∫

[dt j]nCn(t1, . . . , tn)r̂i(t1) · · · r̂i(tn)

+
∫

[dt j]nĈn(t1, . . . , tn)φ(ri(t1)) · · · φ(ri(tn))

}
. (A2)

We denote
∏n

j=1 dt j as [dt j]n. It should be noted that the func-

tional W [C, Ĉ; b, b̂] is the generating function of connected
time-correlation functions of ri and r̂i weighted by the factor
exp(iS̄1[ri, r̂i,C, Ĉ] + ∫ dt b̂iri ).

2. Dynamical mean-field approximation

In the thermodynamic limit, the path integral with re-
spect to C and Ĉ can be evaluated by the saddle point
approximation, which is so-called the dynamical mean-field
(DMF) approximation [2,15,18]. The saddle point trajectories
C∗

n (t1, . . . , tn) and Ĉ∗
n (t1, . . . , tn) of the action S1[C, Ĉ; b, b̂]

dominate the integral and the generating functional Eq. (A1)
is approximately evaluated in the following form:

Z[b, b̂] ∼ eiNS1[C∗,Ĉ∗;b,b̂].

The saddle point trajectories C∗
n (t1, . . . , tn) and Ĉ∗

n (t1, . . . , tn)
are determined to satisfy the following saddle-point equations:

δS1

δCn

∣∣∣∣
C=C∗,Ĉ=Ĉ∗

= δS1

δĈn

∣∣∣∣
C=C∗,Ĉ=Ĉ∗

= 0.

These equations lead to

iĈ∗
n (t1, . . . , tn) = 1

N

N∑
i=1

κn

n!
〈r̂i(t1) · · · r̂i(tn)〉∗,

C∗
n (t1, . . . , tn) = 1

N

N∑
i=1

〈φ(ri(t1)) · · · φ(ri(tn))〉∗,

where 〈· · ·〉∗ denotes the average over the paths weighted
by the factor eiS̄1[ri,r̂i,C∗,Ĉ∗]+∫ dt b̂iri . This means that the saddle
point of the auxiliary fields iĈ∗

n ,C∗
n are given by the site-

average of n-point correlation functions of r̂i(t ) or φ(ri(t )).
Here we readily find that Eq. (4) implies that Ĉ∗

n = 0 is the
solution to the self-consistent equations.

Under the DMF approximation, the generating func-
tion is separated into single-node contributions, Z[b, b̂] ∼∏

i Zi[bi, b̂i], and each contribution is given as follows:

Zi[bi, b̂i] =
∫

Dr̂iDri exp(iS̄∗ +
∫

dt b̂iri ),

which is Eq. (7).

APPENDIX B: WIDENESS OF GAUSS CLASS

In this Appendix, we give a theorem related to the wideness
of the Gauss Class, which states that if the distributions satisfy
some conditions, their K has a Gauss-like form.

Theorem 1. If (i) a distribution has finite mean μ and
variance σ 2, (ii) Ntune is two or more at some of it zeros,
(iii) its second cumulant generating function KJ is first-order
differentiable at μ = σ 2 = 0, and (iv) there exists a proba-
bility distribution PK whose has K as the second cumulant
generating function, then the form of K at the zero is given
by the following form:

K = iμ̄q − σ̄ 2

2
q2 + σ̄ 2R(q), (B1)

where R(q) is some function of q and o(q) quantity around
q = 0.

In the following, we give the proof. We denote parameters
to tune as cn for n = 1, 2, . . . , Ntune. Because of the supposi-
tion (i) and (ii), we can regard the mean μ and variance σ 2 as
parameters instead of c1 and c2, without loss of generality.

From the supposition (iii) and Taylor’s theorem, KJ is ex-
pressed as

KJ (q; μ, σ, ζa�3) = KJ (q; 0, 0, ζa�3) + μ
∂KJ

∂μ

∣∣∣∣∣
μ=σ 2=0

+ σ 2 ∂KJ

∂σ 2

∣∣∣∣
μ=σ 2=0

+ o(μ, σ 2).

It is obvious that we should tune μ and σ 2 in the same way as
Eq. (18), like

μ = μ̄

N
, σ 2 = σ̄ 2

N
.

As for ζa�3, we do not have to specify their tuning in the
following argument.

Then, K (q) becomes

K = μ̄Fμ(q) + σ̄ 2Fσ (q) + F (q), (B2)

where

Fμ(q) := ∂KJ

∂μ
(q; 0, 0, ζa�3(∞)),

Fσ (q) := ∂KJ

∂σ 2
(q; 0, 0, ζa�3(∞)),

F (q) := lim
N→∞

NKJ (q; 0, 0, ζa�3(N )).

It should also be noted that Fμ, Fσ and F do not depend on
μ̄ and σ̄ 2, and also that Fμ(q) is expanded around q = 0 as
Fμ = iq + o(q2), and Fσ (q) is Fσ = −q2/2 + o(q2) by their
definitions.

Under the supposition (iv), let us consider the limit σ̄ 2 →
0. Note that because we get K (q) as a result of the limit of
KJ (q), this supposition is not necessarily obvious. With this
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limit, PK satisfies1

0 = σ̄ 2 =
∫ ∞

−∞
dX (X − μ̄)2PK (X ).

This equation is saturated only if PK (X ) = 0 for X 	= μ̄,
which means that the support of PK (X ) is a point X = μ̄.
Therefore, by the definition of the Dirac δ function, it follows
that

PK (X )|σ̄ 2=0 = δ(X − μ̄). (B3)

Because the second cumulant generating function of the Dirac
δ function is exp(iμ̄q), Eq. (B3) states that

K (q)|σ̄ 2=0 = iμ̄q. (B4)

Comparing Eqs. (B4) and (B2), we get a dramatic relation,

Fμ(q) = iq, F (q) = 0.

Remember that Fμ(q) and F (q) are independent of σ̄ 2.
Finally, we find that K (q) has the form of Eq. (B1), where

R(q) is defined as R(q) := Fσ − (−q2)/2, and is o(q2) quan-
tity around q = 0. This is the end of the proof.

Moreover, we give a sufficient condition that R(q) becomes
zero, i.e., K (q) belongs to the Gauss Class, although we have
not yet identified necessary one for it.

Theorem 2. If PK is expressed as

PK (X )|μ̄=0,ca�3=ca�3(∞) = σ̄−1 f

(
X

σ̄

)
,

with some function f , then R(q) = 0.
It is very easy to show this theorem. Under the above

condition, K (q) is calculated as

K (q)|μ̄=0,ca�3=ca�3(∞)

:= log

[∫ ∞

−∞
dX exp(iqX )PK (X )

]
= log

[∫ ∞

−∞
dX σ̄−1 exp(iqX ) f

(
X

σ̄

)]
= log

[∫ ∞

−∞
dY exp(iσ̄qY ) f (Y )

]
= log f̃ (σ̄q).

We have changed the integration variable X to Y := Xσ−1 in
the third equality, and defined the Fourier transform of f as f̃ .
This f̃ is expanded around q = 0 as

f̃ (σ̄q) = 1 − σ̄ 2

2
q2 + o((σ̄q)2).

We have used the fact that f̃ is the characteristic function
of PK , from which f̃ (0) = 1 follows, and the fact that μ̄ is
set to zero, which results in d f̃ /dq(0) = 0. Therefore, K (q)
satisfies

K (q)|μ̄=0,ca�3=ca�3(∞) = 1 − σ̄ 2

2
q2 + o((σ̄q)2), (B5)

because log(1 + x) = x + O(x2) holds around x = 0.

1Here, we have assumed that domain of definition of X is
(−∞,∞), which does not lose generality. If support of PK is [a, b],
then it is enough to take PK (X ) as zero for X < a and X > b.

Comparing the linear term of Eqs. (B5) and (B1) with
respect to σ̄ 2, we get R(q) = 0. This is the end of the proof
of Theorem 2.

APPENDIX C: HOW TO TUNE PARAMETERS
AND RENORMALIZATION GROUP

In this Appendix, we give general discussion of parameter-
tuning. This is essentially same as renormalization group
analysis in field theories in condensed matter or high-energy
physics:

NKJ (q; ca(N )) = K (q) + o(N0).

If we N ∂
∂N and ignore o(N0) quantities, then we get

KJ (q) +
∑

a

βa
∂KJ (q)

∂ca
= 0, (C1)

which represents N-dependence of KJ (q), called “renormal-
ization group equation” in field-theoretical physics, where βa

is defined as

βa := N
∂ca(N )

∂N
,

called “beta function,” which represents N-dependence of pa-
rameters.

If we change parameters via diffeomorphism of

ca = ca(c′
a),

then we get

β ′
a = N

∂c′
a

∂N
=
∑

b

N
∂cb

∂N

∂c′
a

∂cb
=
∑

b

βb
∂c′

a

∂cb

and

∂KJ

∂c′
a

=
∑

b

∂cb

∂c′
a

∂KJ

∂cb
,

∑
a

β ′
a

∂KJ

∂c′
a

=
∑
a,b,c

βb
∂c′

a

∂cb

∂cc

∂c′
a

∂KJ

∂cc
=
∑

c

βc
∂KJ

∂cc
;

we have used ∑
a

∂c′
a

∂cb

∂cc

∂c′
a

= δbc,

which shows the renormalization group equation is invariant
under parameter-changing, which can be regarded as diffeo-
morphism.

Requiring that the RG equation should hold for arbitrary q,
let us derive RG equations of cumulants when all of them are
finite. Remember that RG equation comes from the Large-N
scaling of KJ , which is given by O(N−1). Therefore, cumu-
lants κn should have scaling of N like

κn := i−n

n!

∂nKJ

∂qn

∣∣∣∣
q=0

= O(N−1) or o(N−1),
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because the generating function (K) of them is O(N−1). This
leads to2

N
∂log |κn|

∂N
=

Ntune∑
a=1

βa
∂log |κn|

∂ca
� −1. (C2)

This is a simultaneous linear equation of βa. The range of
summation can be reduced to N = 1, . . . , Ntune, because

∂KJ (q; cb)

∂cb
= 0

holds when KJ (q; cb) = 0 for arbitrary value of cb,
We do not have to determine βa exactly if we want to know

just large-N behavior of parameters. The large-N behaviors of
βa can be discussed as follows. Because K (ca(N ) = ca(∞)) is
zero, log(K ) and therefore its derivative diverge with δca = 0.
From this fact, it is expected that

∂

∂ca
log κn ∼ O((δca)−1). (C3)

Even if Eq. (C3) is not O((δca)−1) quantity, we can apply
diffeomorphism for new parameters c′

a to satisfy Eq. (C3).
Therefore, we assume that Eq. (C3) holds without loss of gen-
erality. Precise discussion comes in the following paragraphs.

Singularity in Eq. (C3) must be canceled by βa for Eq. (C2)
to hold, which leads to

βa ∼ O(δca).

Therefore, the leading-order terms in βa are linear about pa-
rameters.

Let us evaluate βa concretely. We define Rnb as

Rnb := ∂log κn

∂cb
,

then Eq. (C2) is rewritten as∑
b

Rnbβb � −1. (C4)

It is important that Eq. (C4) should hold for n ∈ N. We choose
some set of Rnb which saturate the inequality, and denote their
linearly independent components as Mab := Riab for a, ia ∈ N.
That is, Mab satisfies ∑

b

Mabβb = −1.

These are simultaneous linear equations for βa. Because of
the linear independence of Mab, there exists inverse matrix of
Mab. Denoting this as M−1

ab , Eq. (C4) can be solved by

βa = −
Ntune∑
b=1

M−1
ab .

2Note that equality in Eq. (C1) holds only after taking the limit of
N = ∞. Eq. (C2) follows from this relation:

lim
N→∞

N
∂

∂N
log(c1Nα + c2Nβ ) = max(α, β ).

Because Mab transforms via diffeomorphism as

Mab →
∑

d

Mad
∂cid

∂c′
ib

,

and therefore M−1
ab transforms as

M−1
ab →

∑
d

∂c′
ia

∂cid

M−1
db ,

we can take parameters to satisfy

M−1
ab = O(δca).

In the following, we neglect higher-order terms. Let us define
the O(δca) terms as

M−1
ab =

∑
d

fabdδcd ,

and then βa can be determined as

βa = −
∑

b

rabδcb,

where

rab :=
∑

c

facb.

Then from the definition of βa, parameters should satisfy

N
∂

∂N
δca = −

∑
b

rabδcb. (C5)

Equation (C5) describes large-N behavior of δca near N =
∞. Let us solve it and determine them. We define �xa as left
eigenvector of rab with eigenvalue of εa, which obeys∑

b

(�xa)brbc = εa(�xa)c,

and γa as

γa :=
∑

b

(�xa)bδcb.

Large-N of γa is determined from

N
∂

∂N
γa = −εaγa,

whose solution is given by

γa(N ) = γ̄aN−εa ,

with some constants γ̄ a. Then, letting �ya be dual vectors of �xa,
such as right eigenvector of rab, δca can be calculated by

δca =
∑

b

(�ya)bγb.

Therefore, the solution of Eq. (C5) is

δca(N ) =
∑

b

(�ya)bγ̄bN−εb,

which gives complete N-dependence of δca.
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Here we give an easy example of the above procedure. Let
us consider uniform distribution, whose probability distribu-
tion function is given by

PJ (X ) =
{

1
b−a for a < X < b,
0 otherwise,

and whose second cumulant generating function is

KJ = i
b + a

2
q + log

(
sin b−a

2 q
b−a

2 q

)
.

Its cumulants are given by

κn =
{

a+b
2 (n = 1),

αn(b − a)n (n � 2),
(C6)

with some constants αn. These satisfy

∂log κ1

∂a
= ∂log κ1

∂b
= 1

b + a
,

∂log κn

∂a
= −∂log κn

∂b
= n

b − a
(n � 2). (C7)

Because zero of KJ is given by a = b = 0, we should choose
two among κns and impose

N
∂log |κn|

∂N
= −1.

Let us discuss which cumulants saturates Eq. (C4). If we
adopt both from κn�2, then there is no solution to Eq. (C5). So
we choose κ1 and κn�2, which leads to

N
∂

∂N
log(b + a) = N

∂

∂N
log(b − a)n = −1. (C8)

There is another constraint for κn. κns which does not saturate
Eq. (C4) must obey

N
∂

∂N
log |κm 	=1,n| < −1.

From Eqs. (C6) and (C8), this inequality can be calculated as

N
∂

∂N
log(b − a)m = −m

n
< −1 (C9)

for m ∈ N ∩ m 	=1, n. Equation (C9) holds if and only if n=2.
Therefore, we should choose κ1 and κ2 to saturate Eq. (C4).

According to Eq. (C7), Mab is given by

M11 = M12 = 1

b + a
, M21 = −M22 = − 2

b − a
,

where we have taken i1 = 1 and i2 = 2. The inverse matrix of
Mab is given by

M−1 = 1

4

(
2(b + a) −b − a
2(b + a) b − a

)
.

Note that M−1 is linear in terms of a and b. Then βa is given
by (

β1

β2

)
= −1

4

(
3 1
1 3

)(
a
b

)
,

and rab is

r = 1

4

(
3 1
1 3

)
.

Right eigenvectors of rab and their eigenvalue are

�x1 = 1√
2

(−1
1

)
, ε1 = 1

2
,

�x2 = 1√
2

(
1
1

)
, ε2 = 1.

Because r is symmetric matrix, right- and left-eigenvectors
are identical (�xa = �ya). Therefore, N-dependence of a is given
by

a =
2∑

b=1

(�y1)bγ̄bN−εb = − γ̄1√
2

N−1/2 + γ̄2√
2

N−1,

and one of b is

b =
2∑

b=1

(�y2)bγ̄bN−εb = γ̄1√
2

N−1/2 + γ̄2√
2

N−1.

Note that mean (μ = κ1) and variance (σ 2 = κ2) scales as

μ = γ̄2√
2

1

N
, σ 2 = γ̄1

6

1

N
,

which agree with Eq. (18) with identification of

μ̄ = γ̄2√
2
, σ̄ 2 = γ̄1

6
.

[1] M. I. Rabinovich, P. Varona, A. I. Selverston, and H. D. I.
Abarbanel, Dynamical principles in neuroscience, Rev. Mod.
Phys. 78, 1213 (2006).

[2] H. Sompolinsky, A. Crisanti, and H. J. Sommers, Chaos in
Random Neural Networks, Phys. Rev. Lett. 61, 259 (1988).

[3] C. van Vreeswijk and H. Sompolinsky, Chaos in neuronal net-
works with balanced excitatory and inhibitory activity, Science
274, 1724 (1996).

[4] T. Toyoizumi and L. F. Abbott, Beyond the edge of chaos:
Amplification and temporal integration by recurrent networks
in the chaotic regime, Phys. Rev. E 84, 051908 (2011).

[5] J. Kadmon and H. Sompolinsky, Transition to Chaos in Random
Neuronal Networks, Phys. Rev. X 5, 041030 (2015).

[6] C. Keup, T. Kühn, D. Dahmen, and M. Helias, Transient
Chaotic Dimensionality Expansion by Recurrent Networks,
Phys. Rev. X 11, 021064 (2021).

[7] R. Toral, C. R. Mirasso, E. Hernandez-Garcia, and O. Piro, An-
alytical and numerical studies of noise-induced synchronization
of chaotic systems, Chaos 11, 665 (2001).

[8] H. Jaeger, The “echo state” approach to analysing and training
recurrent neural networks, GMD Report 148 (German National
Research Institute for Computer Science, Berlin, 2001).

034306-23

https://doi.org/10.1103/RevModPhys.78.1213
https://doi.org/10.1103/PhysRevLett.61.259
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.1103/PhysRevE.84.051908
https://doi.org/10.1103/PhysRevX.5.041030
https://doi.org/10.1103/PhysRevX.11.021064
https://doi.org/10.1063/1.1386397


HARUNA, TOSHIO, AND NAKANO PHYSICAL REVIEW E 107, 034306 (2023)

[9] C. Zhou and J. Kurths, Noise-Induced Phase Synchroniza-
tion and Synchronization Transitions in Chaotic Oscillators,
Phys. Rev. Lett. 88, 230602 (2002).

[10] J.-N. Teramae and D. Tanaka, Robustness of the Noise-Induced
Phase Synchronization in a General Class of Limit Cycle Oscil-
lators, Phys. Rev. Lett. 93, 204103 (2004).

[11] A. Uchida, R. McAllister, and R. Roy, Consistency of Non-
linear System Response to Complex Drive Signals, Phys. Rev.
Lett. 93, 244102 (2004).

[12] Z. Lu, B. R. Hunt, and E. Ott, Attractor reconstruction by
machine learning, Chaos 28, 061104 (2018).

[13] L. Molgedey, J. Schuchhardt, and H. G. Schuster, Suppressing
Chaos in Neural Networks by Noise, Phys. Rev. Lett. 69, 3717
(1992).

[14] K. Rajan, L. F. Abbott, and H. Sompolinsky, Stimulus-
dependent suppression of chaos in recurrent neural networks,
Phys. Rev. E 82, 011903 (2010).

[15] J. Schuecker, S. Goedeke, and M. Helias, Optimal Sequence
Memory in Driven Random Networks, Phys. Rev. X 8, 041029
(2018).

[16] S.-I. Amari, Characteristics of random nets of analog neuron-
like elements, IEEE Trans. Syst. Man Cybern. SMC-2, 643
(1972).

[17] G. Parisi, Asymmetric neural networks and the process of learn-
ing, J. Phys. A: Math. Gen. 19, L675 (1986).

[18] A. Crisanti and H. Sompolinsky, Path integral approach to ran-
dom neural networks, Phys. Rev. E 98, 062120 (2018).

[19] H. Jaeger and H. Haas, Harnessing nonlinearity: Predicting
chaotic systems and saving energy in wireless communication,
Science 304, 78 (2004).

[20] D. Li, M. Han, and J. Wang, Chaotic time series prediction
based on a novel robust echo state network, IEEE Trans. Neural
Netw. Learn. Syst. 23, 787 (2012).

[21] J. Pathak, Z. Lu, B. R. Hunt, M. Girvan, and E. Ott, Using
machine learning to replicate chaotic attractors and calculate
Lyapunov exponents from data, Chaos 27, 121102 (2017).

[22] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Model-Free
Prediction of Large Spatiotemporally Chaotic Systems from
Data: A Reservoir Computing Approach, Phys. Rev. Lett. 120,
024102 (2018).

[23] Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, and E.
Ott, Reservoir observers: Model-free inference of unmeasured
variables in chaotic systems, Chaos 27, 041102 (2017).

[24] R. S. Zimmermann and U. Parlitz, Observing spatio-temporal
dynamics of excitable media using reservoir computing, Chaos
28, 043118 (2018).

[25] K. Bush and C. Anderson, Modeling reward functions for
incomplete state representations via echo state networks, in
Proceedings of the IEEE International Joint Conference on
Neural Networks 5, 2995 (IEEE, Piscataway, NJ, 2005).

[26] R. Legenstein, D. Pecevski, and W. Maass, A learning theory
for reward-modulated spike-timing-dependent plasticity with
application to biofeedback, PLoS Comput. Biol. 4, e1000180
(2008).

[27] D. Verstraeten, B. Schrauwen, D. Stroobandt, and J. Van
Campenhout, Isolated word recognition with the liquid state
machine: A case study, Inf. Process. Lett. 95, 521 (2005).

[28] D. Verstraeten, B. Schrauwen, M. D’Haene, and D. Stroobandt,
An experimental unification of reservoir computing methods,
Neural Netw. 20, 391 (2007).

[29] M. Skowronski and J. Harris, Minimum mean-squared error
time series classification using an echo state network prediction
model, in Proceedings of the IEEE International Symposium on
Circuits and Systems 4, 3156 (IEEE, Piscataway, NJ, 2006).
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