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Persistent homology of coarse-grained state-space networks
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This work is dedicated to the topological analysis of complex transitional networks for dynamic state
detection. Transitional networks are formed from time series data and they leverage graph theory tools to reveal
information about the underlying dynamic system. However, traditional tools can fail to summarize the complex
topology present in such graphs. In this work, we leverage persistent homology from topological data analysis to
study the structure of these networks. We contrast dynamic state detection from time series using a coarse-grained
state-space network (CGSSN) and topological data analysis (TDA) to two state of the art approaches: ordinal
partition networks (OPNs) combined with TDA and the standard application of persistent homology to the
time-delay embedding of the signal. We show that the CGSSN captures rich information about the dynamic
state of the underlying dynamical system as evidenced by a significant improvement in dynamic state detection
and noise robustness in comparison to OPNs. We also show that because the computational time of CGSSN
is not linearly dependent on the signal’s length, it is more computationally efficient than applying TDA to the
time-delay embedding of the time series.
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I. INTRODUCTION

Signal processing has been successfully and widely uti-
lized to extract meaningful information from time series of
dynamical systems including dynamic state detection [1–6],
structural health monitoring for damage detection [7–11], and
biological health monitoring [12–18]. A promising direction
for signal processing is through studying the shape of sig-
nals. This is done by implementing tools from topological
data analysis (TDA) [19,20] to study the shape of the attrac-
tor of the underlying dynamical system. This field of signal
processing is known as topological signal processing (TSP)
[21], which has had many successful applications, including
biological signal processing [22,23], dynamic state detec-
tion [24,25], manufacturing [26–30], financial data analysis
[31–34], video processing [35,36], bifurcation detection [37],
and weather analysis [38,39].

The standard pipeline for TSP constructs a filtration of sim-
plicial complexes (called the Vietoris-Rips complex) based on
point cloud data generated from the state-space reconstruction
(SSR) of an input time series [29,40–42]. Given a uniformly
sampled signal x = [x1, x2, . . . , xL], the SSR (also called the
delay embedding) consists of n-dimensional delayed vectors

X = {vi = [xi, xi+τ , xi+2τ , . . . , xi+τ (n−1)]|
× i ∈ {1, . . . , L − τ (n − 1)}}. (1)
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A simplicial complex is formed by including simplices for
all collections of points which are within distance r of each
other. We can measure the shape of the simplicial complex
by forming simplicial complexes at increasing values of r and
tracking the changing homology through a linear mapping.
This allows for quantifying when specific topologies form and
disappear throughout the filtration giving a sense of shape.
The persistence diagram encodes this information for various
dimensions, e.g., connected components (dimension zero),
loops (dimension one), and voids (dimension two). For exam-
ple, one can examine the one-dimensional homology to track
loop structures in the SSR that are related to the periodicity of
the signal. A problem with this pipeline is its computational
demand having complexity O(N3), where N = ( n

d+1

)
is the

size of the simplicial complex with n as the number of points
in the simplical complex and d as the maximum dimension of
the used homology. For long signals, this makes this standard
pipeline computationally infeasible. A common solution is to
subsample the point cloud, but it can be challenging to select
an appropriate subsampling rate that preserves the topology of
interest.

An alternative, promising direction for signal processing is
analyzing time series via representations as complex networks
[43–45]. Network representations of time series generally fall
within three categories: proximity networks, visibility graphs,
and transitional networks. Proximity networks are formed
from closeness conditions in the reconstructed state space.
Examples include the k-nearest neighbors (k-NN) [46] and
recurrence networks [47], where the recurrence network is the
network underlying the Vietoris-Rips complex of the point
cloud data. For proximity networks, the graph representa-
tion includes all points in the state-space reconstruction as
part of the vertex set and does not reduce the computational

2470-0045/2023/107(3)/034303(17) 034303-1 ©2023 American Physical Society

https://orcid.org/0000-0002-5335-5409
https://orcid.org/0000-0001-7817-7445
https://orcid.org/0000-0002-9459-9493
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.107.034303&domain=pdf&date_stamp=2023-03-02
https://doi.org/10.1103/PhysRevE.107.034303


MYERS, CHUMLEY, KHASAWNEH, AND MUNCH PHYSICAL REVIEW E 107, 034303 (2023)

FIG. 1. Example periodic and chaotic CGSSNs generated from
the x(t ) solution to the Rössler system.

complexity. Additionally, these networks require choosing a
proximity parameter dependent on the signal, where careful
consideration is needed in selecting the number of neighbors
k or proximity distance ε to generate a graph that captures
the correct topology. The visibility graphs [48] are formed
by adding vertices for each data point and adding connecting
edges if a visibility line can be drawn between the two vertices
which does not pass below any other data point between the
two. As our focus in this work is on building upon the strong
theory developed for the SSR embedding, we will not utilize
the visibility graph constructions at this stage. Instead, in this
work we focus on transitional networks.

Transitional networks partition a time series x such that it
has a vertex set of states {si} for each visited state and an edge
for temporal transitions between states. The resulting transi-
tional network constitutes a finite state space A as the alphabet
of possible states. One interpretation of a topological system
on a finite state space is as a finite graph where the edges
describe the action of a function ϕ, i.e., if there is a directed
edge from vertex a to vertex b, then ϕ(a) = b. Therefore, the
transitional networks we obtain from a time series are topo-
logical systems and they yield themselves to further analysis
within the framework of topological dynamics. The two most
common transitional networks for time series analysis are the
ordinal partition network (OPN) [49] and the coarse-grained
state-space network (CGSSN) [50–53]. In Fig. 1 we demon-
strate the rich topological structure of the CGSSN for periodic
and chaotic dynamics from the Rössler system. This example
shows the periodic dynamics corresponding to an approximate
cycle graph while the network of the chaotic signal is highly
intertwined.

To date, the majority of evaluation of these complex net-
work representations is through standard graph theory tools
[45,49,54,55], but the results can only provide local struc-
tural measurements based on the node degree distribution or
shortest path measurements. In our previous work [25], we
studied the global shape of these networks using persistent
homology for dynamic state detection using the ordinal parti-
tion network. However, we only used the shortest unweighted
path to define distances between nodes, which discarded edge
weight and direction information. In our recent work [56] we
investigate the use of weighted edge information based on
the number of edge transitions. We found that this improved
dynamic state detection performance.

However, we show here that there is an issue with the OPN;
namely, amplitude information is discarded because the ordi-
nal partition network is built from permutations. Permutations
can be thought of as partitioning the state space via intersec-
tions of hyperplanes of the form xi � x j . As such, the resulting
OPN can have reduced dynamic state detection performance
and extreme sensitivity to additive noise for some signals.
This can be partially explained by noting that proximity of the
trajectory to the hyperdiagonal can cause failures in network
construction, particularly when there is noise in the signal
(details of this issue are provided in Sec. IV D). Further, due to
the hyperdiagonal intersection issue, we cannot guarantee the
stability of the persistence diagram for all signals. Therefore,
we turn our attention to the CGSSN to bypass the limitations
in OPN.

We investigate the applicability of the CGSSN for en-
hanced noise robustness and dynamic state detection com-
pared to the OPN. The results presented are based on
analyzing the complex networks using persistent homology
and tools from information theory and machine learning.
Our results show an improvement in dynamic state detection
performance with 100% separation between periodic from
chaotic dynamics for noise-free signals using a nonlinear sup-
port vector machine compared to at most 95% for the OPN.
Additionally, we show an improved noise robustness with the
CGSSN functioning down to a signal-to-noise ratio of 22 dB
compared to 29 dB for the OPN.

Organization

In Sec. II we overview the necessary background informa-
tion. We begin with an introduction to the two transitional
networks we study—OPN and CGSSN—and an overview of
how they are related to state-space reconstruction. Next, we
introduce four standard methods for measuring the distance
between nodes in a weighted graph. We subsequently describe
persistent homology and how it is applied to study the shape
of the weighted complex networks. In Sec. III, we demon-
strate how to apply our pipeline for studying the shape of
complex transitional networks for a simple periodic example.
In Sec. IV, we show results for studying the persistent ho-
mology of both the OPN and CGSSN. We begin with results
for dynamic state detection for the Lorenz system with a
periodic and chaotic response. We then apply the method to 23
continuous dynamical systems and utilize machine learning to
quantify the dynamic state detection performance over a broad
range of signals. Lastly, we show results on the noise robust-
ness of the CGSSN in comparison to the OPN. In Sec. V, we
provide conclusions and future work on applying persistent
homology to study the structure of transitional networks.

II. BACKGROUND

A. Transitional complex networks

A graph G = (V, E ) is a collection of vertices V and edges
E = (u, v) ⊆ V × V . We assume all graphs are simple (no
self-loops or hypergraphs) and undirected. Additional stored
information comes as a weighted graph, G = (V, E , ω), where
ω : E → R�0 gives a non-negative weight for each edge in
the graph. Given an ordering of the vertices V = {v1, . . . , vn},
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FIG. 2. Example formation of a weighted transitional network as a graph (middle figure) and adjacency matrix (right figure) given a state
sequence S (left figure).

a graph can be stored in an adjacency matrix A where the
weighting information is stored by setting Ai j = w(vi,v j ) if
(vi, v j ) ∈ E and 1 otherwise.

Transitional networks are graphs formed from a chronolog-
ically ordered sequence of symbols or states derived from the
time series data. In our construction, these states are mapped
from the measurement signal by first creating an SSR X from
Eq. (1) and then assigning a symbolic representation for each
vector vi ∈ X. To form a symbolic sequence from the time
series data, we implement a function to map the SSR to
symbol in the alphabet A of possible states as f : vi → s j ,
where s j ∈ A is a symbol from the alphabet. In this work, we
consider the symbols from the alphabet as integers such that
si ∈ Z ∩ [1, N], where N is the number of possible symbols.
Applying this mapping over all embedding vectors we get
a symbol sequence as S = [s1, s2, . . . , sL−τ (n−1)]. This work
investigates two methods for mapping SSR vectors vi to sym-
bols s j . The first is the OPN which is defined in Sec. II A 1 and
is based on permutations. The second method is the CGSSN
defined in Sec. II A 2, which uses an equal-sized hypercube
tessellation.

The symbol sequence S forms a transitional network by
considering a graph G = (V, E ), where the vertices V are the
collection of the used symbols, and the edges are added based
on transitions between symbols in S. We represent the graph
using the adjacency matrix A data structure of size N × N .
We add edges to the adjacency matrix A via the symbolic
transitions with an edge between row si and column si+1 for
each i. This is represented in the adjacency matrix structure
by incrementing the value of Asi,s j by one for each transition
between si and ss+1, where A begins as a zero matrix. We set
the total number of transitions between two nodes as the edge
weight w(si,s j ). We ignore self-loops by setting the diagonal
of A to zero. To better illustrate the transitional network for-
mation process, consider the simple cycle shown in Fig. 2. In
this example, we take the state sequence S on the left side of
Fig. 2 with symbols in the alphabet A = [1, 2, 3, 4] and create
the network shown in the middle of the figure. This network
is represented as a directed and weighted adjacency matrix, as
shown on the right side of Fig. 2. In this paper, we discard the
directionality information and make A symmetric by adding
its transpose, A + AT .

1. Ordinal partition network

To form an OPN, the SSR X must first be constructed
requiring the choice of two parameters: the delay τ and
dimension n. We select the delay τ using the method of

multiscale permutation entropy [57,58] and the dimension
as n = 7 as suggested for permutation entropy [58]. For the
OPN, the vector vi is assigned to a permutation π based on its
ordinal partition. For dimension n there are n! permutations
(e.g., six possible permutations for dimension n = 3 shown
in Fig. 3) which can order arbitrarily π1, . . . , πn!. Then vi

is assigned to a permutation πk following that πk satisfies
vi(πk (0)) � vi(πk (1)) � · · · � vi(πk (n − 1)). An example of
this for the vector vi = [−0.08, 0.48,−0.34] is shown on the
top ordinal partition (OP) route of Fig. 3, where vi is mapped
to permutation π5 and state si = 5.

2. Coarse-grained state-space network

The CGSSN begins by constructing the SSR, where we
select the delay τ using the multiscale permutation entropy
method [57,58] and dimension n using the false nearest neigh-
bors [59] based on only needing a dimension great enough
for periodic orbits to not self-intersect. For the CGSSN, the
vector vi ∈ X is assigned to a state based on which partitioned
region the vector vi lies within. We define the domain D of
the SSR as the nonempty connected, open set that encloses
all vectors of the SSR. Specifically, we use an n-dimensional
hypercube domain bounded by the intervals [min(x), max(x)]
for each dimension. In this work we cover this domain using a
tessellation of N = bn hypercubes with side length [max(x) −
min(x)]/b, where b is the number of bins per dimension.
We assign each n-dimensional hypercube in the tessellation
a unique symbol by converting it to a decimal representation
denoted as si. An introductory example formation of the entire
CGSSN for a sinusoidal function is provided in Sec. III. Some
generalizations exist to the described method where, instead
of assigning symbols to the individual hypercubes, we could
assign words of length m which would allow for studying a
sequence of coarse-grained states of the system which reduces
the information load in the process [60]. For the purpose of
this paper, a symbolic representation was sufficient.

B. Vertex similarity and dissimilarity measures

To study the structure of the complex network we define
functions of the form V × V → R�0 combining information
about path lengths and weights from the graph in various
ways. Some of these definitions are distances, but not all.
Despite this, the framework can still be used to define a filtered
simplicial complex in the spirit of the Vietoris Rips complex
which will be required in the next section.

The measures are encoded in a matrix D, where D(a, b)
is the similarity or dissimilarity between vertices a and b.
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FIG. 3. Example state assignment using the ordinal partition (OP) method (top) and coarse-graining (CG) method (bottom). The state for
the OP method is based on the assigned permutation number with si = 5 for the example. The state assignment for the CG method is based
on the number of bins where si = 1 + ∑n−1

j=0 ρi( j)bj ; ρi is the digitization of vector vi based on binning into b equal-sized bins spanning
[min(x), max(x)]. For this example, si = 3(80) + 5(81) + 2(82) + 1 = 172 with b = 8 bins.

Note that D can optionally be normalized by dividing all
entries by its maximum value to contain values between 0
and 1. We investigated the use of four choices of measures:
the unweighted shortest path distance, the shortest weighted
path dissimilarity, the weighted shortest path distance, and the
diffusion distance.

1. Shortest path distances and dissimilarities

Commonly used in graph theory, the shortest path distance
is based on minimizing the cost of taking a path from node
a to b. This assumes a path P = [n0, n1, . . . , ns] consisting
of s nodes where a = n0 and b = ns exists, but we note that
all graphs in this paper are connected by construction. The
path P can alternatively be represented as the sequence of
connected edges between a and b: P = [e0,1, e1,2, . . . , es−1,s].
The shortest path is determined based on minimizing the path
cost function

C(P) =
∑
e∈P

w(e). (2)

In the case of a weighted graph, we then define D(a, b) =
minP C(P). Note that, in the case of an unweighted graph, we
have all weights equal to 1 and thus the cost of a path is simply
the number of edges included in it.

We next define two variations on this idea, although they
are not quite distances but are useful for the kinds of input
graph data we study. In particular, the weights on edges are
higher for those that are more highly traversed with the tran-
sitional networks. We thus want these paths to be considered
more important than those only traversed a few times. To that

end, we will focus on paths whose length using the reciprocal
of the weights is as small as possible.

The first variation, called the weighted shortest path mea-
sure, is defined as follows. First, we find the path from a to b
with the minimum total path weight in terms of the reciprocal
weights. That is, P such that

C′(P) =
∑
e∈P

1/w(e) (3)

is minimized. We then define D(a, b) = ∑
e∈P w(e). For this

definition, D encodes information about frequency of traversal
of the edges.

The second variation, called the shortest weighted path,
still uses the path P for which C′(P) is minimized. However,
in this case, we define D(a, b) to be the length of the path; i.e.,
the number of edges in P. For this variant, we are essentially
giving higher priority to well traveled paths, but using a mea-
surement of this path related to the number of regions of state
space that are traversed.

2. Diffusion distance

The final vertex similarity measure we use is the diffusion
distance for graphs [61]. The diffusion distance leverages the
transition probability distribution matrix P of the graph, where
P(a, b) is the probability of transitioning to b when at a in
a single step based on the random walk framework. Specifi-
cally, given the weighted, undirected adjacency matrix A with
no self-loops (i.e., zero diagonal), the transitional probability
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D

K0.0 K0.5 K1.0 K1.5 K2.0

FIG. 4. Example demonstrating persistent homology of a graph using the matrix D with resulting persistence diagram shown top right.
The filtration of simplicial complexes are shown in the bottom row.

matrix is

P(i, j) = A(i, j)∑|V |
k=1 A(i, k)

. (4)

Equation (4) can be extended to calculate the transition prob-
abilities for nonadjacent neighbors by raising them to higher
powers. For example, transitioning to vertex b from vertex a
in t random walk steps is Pt (a, b). A common modification
of Eq. (4) is to include a probability that a random walk can
stay at the current vertex, which is commonly referred to as
the lazy transition probability matrix. This is given by

P̃ = 1
2 [P(a, b) + I], (5)

where I is the identity matrix matching the size of P. The dif-
fusion distance measures how similar two nodes are based on
comparing their t-step random walk probability distributions.
This is done by taking the degree-normalized �2 norm of the
probability distributions between nodes and is calculated as

dt (a, b) =
√∑

c∈V

1

d(c)
[̃Pt (a, c) − P̃t (b, c)]

2
, (6)

where d is the degree vector of the graph with d(i) as the
degree of node i. Applying the diffusion distance to all node
pairs results in the distance matrix Dt .

C. Persistent homology of complex networks

A simplicial complex is a generalization of a graph to
higher dimensions, which are collections of simplices at var-
ious dimensions (e.g., points are zero-dimensional, edges are
one-dimensional, and faces are two-dimensional simplices).
These simplices are subsets of a vertex set σ ⊂ V , and we
require for the complex that if σ ∈ K and τ ⊆ σ , then τ

is also in K . Using a distance matrix to describe similar-
ity between nodes, or indeed any function of the form d :

V × V → R where d (v, v) = 0, although we still call this
a distance matrix for simplicity, we can construct simpli-
cial complex representations from graphs at a distance level
r. This idea is related to the Vietoris Rips complex, where
we build a simplicial complex Kr for any fixed parameter
r � 0 by including all simplices with pairwise relationships
at most r; i.e., Kr = {σ ⊆ V | d (u, v) � r for all u, v ∈ σ }.
Zero-dimensional simplices, the vertices of the complex, are
all added at r = 0. An edge uv, which is a one-dimensional
simplex, is present in Kr for any r value above d (u, v). Higher-
dimensional simplices such as triangles are included when all
subedges are present; equivalently this means a simplex is
added for every clique in the complex. For example, consider
Fig. 4, which shows a graph with four nodes, and the asso-
ciated distance matrix D. For each r ∈ [0.0, 0.5, 1.0, 1.5, 2.0]
the associated simplicial complex is shown as Kr in the bottom
row.

We can use homology [62,63] to measure the shape of
any such simplicial complex K which is denoted Hd (K ). This
mathematical object is a vector space, where elements are
representative of d-dimensional features (i.e., connected com-
ponents (zero-dimensional structure), loops (one-dimensional
structure), voids (two-dimensional structure), and higher-
dimensional analogs) in K . In this work we will only utilize
the zero-dimensional and one-dimensional features to mea-
sure the connected components and holes in the simplicial
complex. For example, consider the simplicial complex Kr

at r = 1.0 in Fig. 4, which has one H0 class with a single
connected component and one H1 class with a single loop or
hole in the simplicial complex.

An issue with just using homology to measure the shape of
a simplicial complex to understand the shape of a graph is that
the correct distance value r needs to be selected. Additionally,
it does not provide any information on the geometry or size of
the underlying graph. To alleviate these issues we use persis-
tent homology [64], which studies the changing homology of
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FIG. 5. Pipeline for studying transitional networks using persistent homology. From left to right, we begin with a signal or time series
and represent it as a state sequence which is summarized using a transitional network as described in Sec. II A. A distance between nodes is
then used to create a distance matrix (see Sec. II B for graph distances), which can be directly analyzed using persistent homology shown in
Sec. II C.

a sequence of simplicial complexes. We will again use Fig. 4
as an example for demonstrating how the persistent homology
is calculated. To calculate the persistent homology we begin
with a collection of nested simplicial complexes

Kr1 ⊆ Kr2 ⊆ · · · ⊆ KrN .

The bottom row of Fig. 4 shows an example of this filtration
over the distance parameter r with Kr=1.0 ⊆ Kr=0.5 ⊆ · · · ⊆
Kr=2.0. We then calculate the homology of each simplicial
complex and create linear maps between each homology class
for each dimension d as

Hd
(
Kr1

) → Hd
(
Kr1

) → · · · → Hd
(
KrN

)
.

By studying the formation and disappearance of homology
classes we can understand the shape of the underlying graph.
Specifically, class [α] ∈ Hd (Kri ) is said to be born at ri if it is
not in the image of the map Hd (Kri−1 ) → Hd (Kri ). The same
class dies at r j if [α] �= 0 in Hd (Krj−1 ) but [α] = 0 in Hd (Krj ).
In the case of zero-dimensional persistence, this feature is
encoding the appearance of a new connected component at Kri

that was not there previously, and which merges with an older
component entering Krj . For one-dimensional homology, this
is the formation (birth) and disappearance (death) of a loop
structure. We store this information in what is known as the
persistence diagram using the persistence pair xi = (bi, di ) ∈
Dd , where Dd is the persistence diagram of dimension d with
a homology class of dimension d being born at filtration value
bi and dying at di. We also define the lifetime or persistence
of a persistence pair as �i = pers(xi ) = di − bi. The set of
lifetimes for dimension d is defined as Ld . For a more detailed
road map for the calculation of persistent homology we direct
the reader to the work of Otter et al. [65].

Returning to our example, the persistence diagram is
shown in Fig. 4 for both D0 and D1. For D0 all four persistence
pairs were born at r = 0.0 with one dying at r = 0.5 and two
dying at r = 1.0. The fourth persistence pair in D0, not drawn,
is an infinite-class dying at ∞ since there is a single compo-
nent for r � 1.0. In this work we do not utilize infinite-class
persistence pairs and will not include them in the persistence
diagrams. For D1 there is a single persistence pair born at
r = 1.0 with the formation of the loop in K1 and filling in
at K2.

III. METHOD

This section describes the method for studying complex
transitional networks using persistent homology. The pipeline
for doing this is outlined in Fig. 5. We begin with a signal
or time series and represent it as a state sequence described
in Sec. II A. The state sequence can be summarized using
a weighted transitional network as described in Sec. II A. A
distance between nodes (see Sec. II B) is then used to create a
distance matrix which can be directly analyzed using persis-
tent homology as described in Sec. II C.

To further describe the method we develop here, we use a
simple periodic signal example shown in Fig. 6. The signal is
defined as x(t ) = sin(πt ) sampled at a uniform rate of fs =
50 Hz. The SSR was constructed using n = 2 and τ = 26.
For this example, we create the CGSSN by partitioning the
SSR domain into 100 rectangular regions as states, each with
a unique symbol. The states visited through the SSR trajectory
are highlighted in red. The temporal tracking of the states
used creates the state sequence, which is then represented as
the cycle graph. This example demonstrates how the periodic

(a) (b)

FIG. 6. Example demonstrating CGSSN formation procedure (b = 10) with the signal x(t ) = sin(t ) embedded into R2 space using an SSR
and analysis using persistent homology with the unweighted shortest path distance. (a) Formation of the CGSSN from a time series signal and
its delayed signal. (b) The distance matrix and associated persistence diagram using the unweighted shortest path distance.
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Transitional complex network topology comparison between OPN and CGSSN for the x(t ) simulation of the Rössler system
described in Eq. (7). (a) Periodic Rössler simulation x(t ), (b) periodic OPN (n = 7) E ′(D1) = 0.503, (c) periodic CGSSN (n = 4 and b = 12),
E ′(D1) = 0.026, (d) chaotic Rössler simulation x(t ), (e) chaotic OPN (n = 7), E ′(D1) = 0.893, and (f) chaotic CGSSN (n = 4 and b = 12),
E ′(D1) = 0.905.

nature of the signal is captured by the cycle structure of the
corresponding CGSSN.

We define a distance between nodes using the unweighted
shortest path distance for this example due to its simplicity.
The corresponding distance matrix and resulting persistence
diagram are shown. The resulting persistence diagram shows
that the periodic structure of the underlying time series and
corresponding CGSSN is captured by the single point in the
persistence diagram D1 at coordinate (1,12) with the loop
structure being born at a filtration distance of 1 and filling
in 12.

IV. RESULTS

This section shows that the CGSSN outperforms the previ-
ously used OPN for both noise robustness and dynamic state
detection performance. We first begin in Sec. IV A, where
we provide a simple example highlighting improved dynamic
state detection performance of the CGSSN over the OPN for
a periodic and chaotic Rössler system simulation. We show
these results using the persistent entropy summary statistic.
The second result in Sec. IV B quantifies the dynamic state
detection of the OPN and CGSSN using lower dimensional
embedding on 23 continuous dynamical systems with periodic
and chaotic simulations. Lastly, in Sec. IV D, we empirically
investigate the noise robustness of the CGSSN compared to
the OPN.

A. Dynamic state detection for Rössler system

Our first result is from a study of the complex network
topology of OPNs compared to CGSSNs. To demonstrate
the difference and motivate why the CGSSN outperforms the
OPN in terms of dynamic state detection, we use an x(t )
simulation of the Rössler system defined as

dx

dt
= −y − z,

dy

dt
= x + ay,

dz

dt
= b + z(x − c). (7)

We simulated Eq. (7) using the scipy odeint solver for t ∈
[0, 1000] with only the last 230 s used to avoid transients. The
signal was sampled at a rate of fs = 22 Hz. For periodic dy-
namics we use system parameters of [a, b, c] = [0.1, 0.2, 14]
and for chaotic we set a = 0.15. These simulated signals are
shown in Fig. 7. To create the OPNs for both signals, we
used an embedding delay τ = 43 selected using the multi-
scale permutation entropy method and dimension n = 7. The
corresponding networks are shown in the second column of
Fig. 7. To form the CGSSNs we similarly chose τ = 43, but
used dimension n = 4 and b = 12 for partitioning the SSR
with resulting networks shown in the third column.

The resulting OPN and CGSSN from the Rössler system
simulations of periodic and chaotic dynamics both capture the
increasing complexity of the signal with the dynamic state
change. For the periodic signal, the OPN show overarching
large loops relating to the periodic nature of the SSR. How-
ever, the CGSSN better captures the periodic nature of the
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Diffusion distance of OPN Diffusion distance of CGSSN

FIG. 8. Two-dimensional MDS projection of the bottleneck distances between persistence diagrams of the chaotic and periodic dynamics
with an SVM radial bias function kernel separation. This separation analysis was repeated for the OPNs and CGSSNs using the diffusion
distance.

trajectory with only a single loop forming. This characteristic
of the CGSSN is due to periodic flows never intersecting in
the SSR if the signal is sampled at a high enough frequency,
there is no or little additive noise, and an appropriately sized
delay and dimension are selected. While correctly choosing
the delay and dimension is not a trivial task, there is a broad
literature on their selection for the SSR task. This work relies
on the multiscale permutation entropy method for selecting
the delay and the false-nearest-neighbors algorithm [59] for
selecting an appropriate SSR dimension. However, we found
that increasing the dimension one higher than that suggested
using false nearest neighbors more reliably formed a single
loop structure in the CGSSN. Additionally, in Appendix A we
demonstrate that, for 23 dynamical systems, setting b � 12
resulted in only a single loop structure for periodic signals
while minimizing the computational demand when using the
CGSSN. As such, we set b = 12 unless otherwise stated.

For the chaotic x(t ), the OPN and CGSSN both summarize
the topology of the attractor with both networks having a high
degree of entanglement with nodes being highly intertwined.
This is a typical characteristic of complex transitional net-
works formed from chaotic signals. Furthermore, it should be
noted that the CGSSN tends to be more entangled than its
OPN counterpart, suggesting that the CGSSN better captures
the increase in complexity of the chaotic signal.

To quantify how well the OPN and CGSSN capture the
complexity of the signals, we rely on persistent entropy [66],
which was previously adapted [25] to study the resulting
persistence diagram using the unweighted shortest path dis-
tance of complex networks. The normalized persistent entropy
[67,68] is defined as

E ′(D) =
−∑

x∈D
pers(x)
L (D) log2

( pers(x)
L (D)

)
log2(L (D))

, (8)

where L (D) = ∑
x∈D pers(x) with pers(x) = |b − d| as the

lifetime or persistence of point x = (b, d ) in a persistence
diagram D. For studying the complexity of the transitional
network we apply this score to the one-dimensional persis-
tent diagram D1, which measures the loop structures in the
network. This score yields a value close to zero for net-
works with a single loop structure corresponding to periodic
dynamics and a value close to one for chaotic dynamics
with highly intertwined networks. For our example OPN and
CGSSNs in Fig. 7 we get normalized persistent entropy scores
of 0.503 and 0.893 for periodic and chaotic OPNs, respec-
tively, and 0.026 and 0.905 for CGSSNs. These statistics
show that the CGSSN outperforms the OPN with a signifi-
cantly larger difference in the entropy values. This is mainly
due to the CGSSN having a score near zero for periodic
dynamics due to its general loop structure compared to the

TABLE I. Accuracies for SVM seperation of MDS projections for dynamic state detection. Uncertainties are recorded as one standard
deviation for random seeds 1–100.

Network Distance Average Separation Accuracy Uncertainty

OPN Shortest unweighted path distance 80.7% 1.5%
OPN Shortest weighted path distance 88.9% 0.0%
OPN Weighted shortest path distance 88.9% 0.0%
OPN Lazy diffusion distance 95.0% 0.9%
CGSSN Shortest unweighted path distance 98.1% 0.9%
CGSSN Shortest weighted path distance 100.0% 0.0%
CGSSN Weighted shortest path distance 98.1% 0.9%
CGSSN Lazy diffusion distance 100.0% 0.0%
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FIG. 9. CGSSN results for four multiperiodic cases of the Lorenz system. The sequence of A’s and B’s below each image indicates the
orbital sequence around the attractors A and B in the system. (a) AB ρ = 350, (b) AAB ρ = 100.5, (c) AABB ρ = 160, and (d) ABBABB
ρ = 99.65. As expected, all four cases result in a single loop CGSSN. These networks were generated using n = 4 and b = 12.

periodic OPN having several loops. This result comparing
the OPN and CGSSN suggests that the CGSSN will out-
perform the OPN for the dynamic state detection task. With
this single case under our belt, we turn our attention to an
empirical study of this characteristic over more dynamical
systems.

B. Empirical testing of dynamic state detection
for 23 continuous dynamical systems

The previous example in Sec. IV A showed the improved
dynamic state detection performance of the CGSSN over the
OPN for a single example (Rössler system). However, we
want to show that this improvement is present over various

systems. To do this, we use 23 continuous dynamical sys-
tems listed in Appendix B with details on the simulation
method—each system was simulated for both periodic and
chaotic dynamics.

For each periodic and chaotic signal, we calculate the
resulting persistence diagram of the OPN and CGSSN us-
ing each of the distance methods (unweighted shortest path,
shortest weighted path, weighted shortest path, and diffu-
sion distance). We then compare the collection of persistence
diagrams for a specific network type (OPN or CGSSN)
and distance measure by calculating the bottleneck distance
matrix between each persistence diagram. The bottleneck
distance dBN (D, F ) is a similarity measure between two per-
sistence diagrams (D and F ). It is calculated as the sup norm

FIG. 10. CGSSN results for the periodic (top row) and chaotic (bottom row) logistic map using the unweighted shortest path. The system
responses are shown on the left along with the permutation sequence. The network representations are in the middle with the persistence
diagrams on the right. Both networks exhibit the same persistence diagram due to the limited possible system states for the periodic case.
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FIG. 11. CGSSN results for the periodic (top row) and chaotic (bottom row) linear congruential generator map using the unweighted
shortest path. The system responses are shown on the left along with the permutation sequence. The network representations are in the middle
with the persistence diagrams on the right. Both networks exhibit the distinct persistence diagram structures due to the larger loop in the
periodic network.

distance between the persistence diagrams, where the per-
sistence diagrams are optimally matched with the distance
between matched persistence points being at most dBN . The
bottleneck distance matrix DBN is calculated by finding dBN

between all persistence diagrams.
The question we are trying to answer is if periodic

and chaotic dynamics result in similar persistence diagrams
across multiple systems. To answer this, we first use a
lower-dimensional projection of DBN by implementing the
multidimensional scaling (MDS) projection to two dimen-
sions. To measure how well the dynamics delineate on the
MDS projection, we use a support vector machine (SVM)

FIG. 12. Three-dimensional state space reconstruction (d) from
the signal x(t ) with and without additive noise (a) shows as the
distance to the hyperdiagonal dH (c) becomes small; undesired
permutation transitions (b)—with zoomed-in section shown in (e)—
occur as shown in the orange highlighted regions.

with a radial basis function (RBF). Note that because the MDS
does not allow for the mapping of previously unseen points,
we cannot use this procedure for a proper classification test as
we cannot approximate training error. However, we can use
this procedure to see if the persistence diagrams of different
classes are separated with respect to the bottleneck distance.

We fit the SVM using the default SKLearn SVM pa-
rameters package. The resulting separations for periodic and
chaotic dynamics using the OPN (left) and CGSSN (right)
are shown in Appendix C. These separations are for the dif-
fusion distance calculation as it provided the best results for
both the OPN and CGSSN. However, we also include similar
figures for other choices of distances in Appendix C.

Figure 8 demonstrates the significant improvement in dy-
namic state detection of the CGSSN over the OPN. This is
shown with the periodic and chaotic networks being clustered
for the CGSSN (right of Fig. 8) with no overlap compared
to the OPN (left of Fig. 8) having some overlap between
periodic and chaotic dynamics. This is further shown with the
SVM kernel being able to separate the periodic and chaotic
regions for the CGSSN easily. To better compare all distance
measures and complex network combinations, we quantify the
performance of each SVM kernel using the accuracy of the
separation. We repeated this accuracy calculation 100 times
for each combination using 100 random seeds to generate the
SVM kernels. The resulting average accuracies with standard
deviation uncertainties are reported in Table I.

Based on the results in Table I, the CGSSN outperforms
the OPN for all distance measures. Additionally, we found
100% separation accuracy for both the shortest weighted path
and diffusion distances when combined with the CGSSN. We
believe this performance improvement is due to the coarse-
graining procedure capturing the SSR vector’s amplitude
information, which is discarded when identifying permuta-
tions in the OPN.
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FIG. 13. Example demonstrating the importance of choosing an appropriate network formation method when there is additive noise in the
signal. The CGSSN retains the graph structure even with additive noise; in contrast, the OPN network loses all resemblance to the noise-free
topological structure even with a small amount of additive noise. x(t ) is the signal, N is additive noise, and G(x) is the graph representation
of x.

1. n-periodic systems

Based on the state-space embedding structure of a system,
one may expect that for a two- or three-periodic system that
the CGSSN may result in two and three loops, respectively,
but this is not the case. In general, for an n-periodic system,
we expect the CGSSN to contain only a single loop, and so
we caution the user that this method will likely not be able
to differentiate differences in the periodicity. We demonstrate
this nuance by showing CGSSN results on the Lorenz system
for multiperiodic responses. Figure 9 shows the corresponding
CGSSNs for the Lorenz system varying the ρ parameter to
obtain multiperiodic responses. The networks are labeled with
a sequence of A’s and B’s, where each letter corresponds
to a loop in the trajectory around one of the attractors. For
example, AAB trajectory would be two loops around A and
one around B before repeating the cycle. For all four cases
shown, a single loop is obtained in the CGSSN even though
the system exhibits multiperiodicity.

C. Remark on discrete maps

As we demonstrated in Sec. IV B, the CGSSN method
allows for efficient and accurate dynamic state detection over
a range of continuous dynamical systems. Discrete maps are
another subset of dynamical systems where it would be useful
to apply these tools; however, care must be taken for this type
of system to ensure that the CGSSN is a suitable approach.
This is because, in discrete systems, there are typically far
fewer states that the system can exhibit so in some cases
the CGSSN may not contain any loops, but the response

is still periodic, leading to an incorrect classification in the
model. To demonstrate, we show the CGSSNs for the periodic
and chaotic logistic map in Fig. 10, where the unweighted
shortest path distance was used to compute persistence. We
see that the CGSSNs show vastly different structures where
the periodic network contains a single loop and the chaotic
network is tangled. However, the persistence diagrams for
these networks appear to be equivalent because the networks
were unweighted and all of the loops in the chaotic network
are exactly the same size as the periodic case. Due to only
having four possible states in the periodic logistic map here,
the network loop does not provide enough of a difference to
automatically classify it as either dynamic state. We note that
the chaotic persistence diagram contains more loops than the
periodic case here, but all are the same persistence lifetime.
In the case of a continuous system where many more states
are possible, these loops will be larger in size and the per-
sistence diagram will reflect those differences allowing for
classification of the dynamic state. In this case, when other
distances are used, such as the shortest weighted path, the
resulting persistence diagrams have the forms that we expect
for periodic and chaotic behaviors due to the weighting of the
edges influencing the persistence lifetime of that loop.

In the case where the system being studied can exhibit
many possible states in its periodic response, a single loop
will form the CGSSN and the persistence diagram will show a
persistence pair with a long lifetime. For example, we demon-
strate this behavior on the three periodic linear congruential
generator map in Fig. 11. The results in Figs. 10 and 11
demonstrate that this method should be used with caution

OPN CGSSN

FIG. 14. Noise robustness analysis of dynamic state detection using the summary statistic persistent entropy [see Eq. (8)] for OPN and
CGSSN with increasing SNR on a periodic Rössler simulation from Eq. (7).
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FIG. 15. CGSSN results for the forced single magnetic pendulum under conditions that yield a periodic response. The top left images
show the time series and permutation sequence and the top right shows the coarse-grained state-space network. The bottom row shows the
corresponding persistence diagrams for the network under the distance metric in the title of each diagram.

on discrete systems and, for systems with enough states that
approach the behavior of a continuous system, the CGSSN
persistence diagrams can provide a correct dynamic state de-
tection.

D. Noise sensitivity

One issue with ordinal partition networks is they are not
exceptionally resilient to noise. Indeed, one can think of the
ordinal partition network as being the one skeleton of the

nerve of a particular closed cover of the state space, delin-
eated by the hyperplanes xi � x j . Consequently, when noise
is injected into the system, there are superfluous transitions
when nearing one of these boundaries. For example, con-
sider the signal and its embedding into R3 in Fig. 12. This
effect becomes even more prominent near an intersection
of multiple hyperplanes. As the distance to the hyperdiag-
onal dH becomes small, we see a significant increase in
seemingly superfluous transitions between permutations π

FIG. 16. CGSSN results for the forced single magnetic pendulum under conditions that yield a chaotic response. The top left images
show the time series and permutation sequence and the top right shows the coarse-grained state-space network. The bottom row shows the
corresponding persistence diagrams for the network under the distance metric in the title of each diagram.
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(highlighted in orange in Fig. 12). This issue is even more
exaggerated when the embedded signal is consistently close
to the hyperdiagonal, which results in network representa-
tions whose shape carries no information on the underlying
dynamical system (e.g., see the signal and far-right OPN
in Fig. 13). This is particularly detrimental when we at-
tempt to include the weighting information, as the flips
can skew the count for the number of times a boundary is
crossed.

Certain network representations of time series are natu-
rally more noise robust than others. For example, Fig. 13
shows the OPN and CGSSN for the signal with and without
noise. This example demonstrates that the CGSSN is the
best choice for this signal with only minor changes in its
shape, while the OPN loses all resemblance to the noise-free
network.

Outside of this sensitivity to the hyperdiagonal, we also
found that the CGSSN is more noise robust than the OPN
for other signals. For example, in Fig. 14 we show the
normalized persistent entropy statistic from Eq. (8) calcu-
lated for the periodic and chaotic simulations of the Rössler
system defined in Eq. (7) when additive noise is present
in the signal. We incremented the additive noise using the
signal-to-noise ratio (SNR). The SNR (units of decibels) is
defined as SNR = 20 log10(Asignal/Anoise ), where Asignal and
Anoise are the root-mean-square amplitudes of the signal and
additive noise, respectively. This result shows that for this
signal the OPN network is only robust down to an SNR
of approximately 32 dB of additive Gaussian noise, while
the CGSSN is able to separate periodic from chaotic dy-
namics down to approximately 23 dB. We found similar
results for the other 22 dynamical systems investigated in this
work.

E. Experimental results

To validate these tools, we apply them to experimental data
collected from a base excited magnetic pendulum [69]. This
system was shown to exhibit periodic and chaotic behavior un-
der different parameters and the CGSSN persistence diagrams
were generated for each case using all four distance measures
presented in this paper. Figure 15 shows the corresponding
time series, permutation sequence, CGSSN, and persistence
diagrams for the periodic response. We see that, for all of
the distance metrics, there is a clear singular cycle that forms
with a significant persistence lifetime. Conversely, the same
results are presented for the chaotic response in Fig. 16 where
we see a drastically different distribution of persistence pairs
corresponding to the high number of cycles present in the
chaotic CGSSN. The results presented here are in agreement
with our work in [69].

V. CONCLUSION

In this work, we developed a framework for studying
CGSSNs using persistent homology. We showed that the
CGSSN outperformed the standard ordinal partition network
in both noise robustness and dynamic state detection perfor-
mance, with the CGSSN reaching 100% separation accuracy
for dynamic state detection for 23 continuous dynamical sys-

tems. This is in comparison to the OPN, which could at
most reach 95% accuracy. This approach was validated using
data from a magnetic pendulum experiment to show that the
topological structure for periodic and chaotic time series are
captured in the resulting persistence diagrams.

In this work, we only investigated the most straightfor-
ward construction of the CGSSN. Namely, the equal-sized
hypercube tessellation cover of the SSR domain. Possible
improvements to the CGSSN could be through a data-
dependent adaptive cover algorithm. We also suspect that
other choices of distances could provide improvements for the
given pipeline.

Another future direction would be to prove a stability the-
orem for the CGSSN. That is, can we show that, for a noisy
version of a signal, the resulting CGSSN, and subsequently
the computed persistence diagram, is similar to the ground
truth? It would also be interesting to study how the CGSSN
could serve to detect quasiperiodicity. We believe that the
torus shape associated to the SSR of quasiperiodic signals
could be captured using the CGSSN as it accounts for the
signal amplitude.
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APPENDIX A: COARSE-GRAINING SIZE ANALYSIS

To determine the optimal binning size we investigate how
the structure of the resulting CGSSN changes as more states
are used with b increasing. We considered b ∈ [2, 20] as
more than 20 bins per dimension becomes computationally
expensive without increasing the performance (see Fig. 17).
To summarize the shape of the network we use the maximum
lifetime of one-dimensional features (loops) as max(L1) and
the normalized persistence entropy E ′(D1) defined in Eq. (8)
using the shortest unweighted path distance. The goal is to
find a fine enough granularity (large enough b) that a periodic,
noise-free signal will create a signal loop structure in the
CGSSN. This loop structure should result with a persistent
entropy of approximately zero. The idea behind this is based
on a periodic attractor’s SSR never intersecting if a suitably
high dimension is selected.

We point the reader to our work in [58] for a comprehensive
analysis to choosing a suitable embedding dimension for the
problem. It was found that dimensions of n = 4 or 5 are
suitable for most continuous systems. For the 23 dynamical
systems selected a dimension n = 4 is greater than the dimen-
sion of the attractor and will be used unless otherwise stated.
Let us first investigate a suitable number of bins b for the
Rössler system defined in Eq. (7) with the E ′(D1), max(L1),
and computation time tcomp calculated as b is increased from
2 to 20 shown in Fig. 17. This result shows a sudden drop
in E ′(D1) and increase in max(L1) from going from 10 to 11
bins. This is due the the granularity of the coarse-graining pro-
cedure being fine enough that the hypercubes do not capture
multiple segments of the periodic flow. This is shown with the
two CGSSNs at b = 10 and b = 12, where at b = 10 we have
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FIG. 17. Normalized persistent entropy E ′(D1), the maximum lifetime max(L1), and computation time tcomp for the CGSSN formed with
dimension n = 4 and b ∈ [2, 20] for the Rössler system in Eq. (7) with example CGSSNs shown at b = 10 and b = 12.

multiple intersections of the network, while at b = 12 there
are no intersections and we only have a single loop structure.
Another characteristic is the exponentially increasing compu-
tation time tcomp as b increases. As such, we want to optimize
the choice of b to capture the necessary complexity of the
attractor while also minimizing the computation time. For this
example a suitable b = 12 would be the best choice. The next
question we want to ask is if b = 12 is a good option for other
dynamical systems. To test this we again calculate the E ′(D1)
and max(L1) for b ∈ [2, 20] for the 23 dynamical systems
listed in Table II. Figure 18 shows these statistics for all of
the dynamical systems and it demonstrates that a choice of
b ∈ [11, 13] does work well for all of the dynamical systems
with a drop in E ′(D1). Based on this seemingly universal
choice of b in this work we use b = 12 unless otherwise stated.

APPENDIX B: DATA

In this work we heavily rely on 23 dynamical systems
commonly used in dynamical systems analysis. All of these
systems are continuous flow opposed to maps. The 23 systems
are listed in Table II. The equations of motion for each system
can be found in the python topological signal processing pack-
age Teaspoon under the module MakeData [70]. Specifically,
these systems are described in the dynamical systems function
of the MakeData module [71].

Each system was solved to have a time delay τ = 50,
which was estimated from the multiscale permutation entropy
method [58]. The signals were simulated for 750τ/ fs seconds
with only the last fifth of the signal used to avoid transients.
It should be noted that we did not need to normalize the
amplitude of the signal since the ordinal partition network is
not dependent on the signal amplitude.

APPENDIX C: ADDITIONAL RESULTS

Here we provide the additional SVM projections to visual-
ize the dynamic state detection performance of the shortest
path distances: unweighted shortest path, shortest weighted
path, and weighted shortest path. Table I provides the corre-
sponding average accuracies. (See also Fig. 19.)

TABLE II. Continuous dynamical systems used in this work.

Autonomous Flows Driven Dissipative Flows

Lorenz Driven Van der Pol oscillator
Rössler Shaw Van der Pol oscillator
Double pendulum Forced Brusselator
Diffusionless Lorenz Ueda oscillator

attractor
Complex butterfly Duffing Van der Pol oscillator
Chen’s system Base excited magnetic pendulum
ACT attractor
Rabinovich Frabrikant

attractor
Linear feedback rigid body

motion system
Moore Spiegel oscillator
Thomas cyclically

symmetric attractor
Halvorsen’s cyclically

symmetric attractor
Burke Shaw attractor
Rucklidge attractor
WINDMI
Simplest cubic chaotic

flow
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FIG. 18. Binning size analysis using the normalized persistent entropy E ′(D1) and maximum lifetime max(L1) for 23 dynamical systems
listed in Table II with b ∈ [2, 20].

(a) (b) (c)

(d) (e) (f)

FIG. 19. Two-dimensional MDS projection of the bottleneck distances between persistence diagrams of the chaotic and periodic dynamics
with an SVM radial bias function kernel separation. This separation analysis was repeated for the OPNs and CGSSNs using the unweighted
shortest path, shortest weighted path, and weighted shortest path distances. (a) Unweighted shortest path distance of OPN, (b) shortest weighted
path distance of OPN, (c) weighted shortest path distance of OPN, (d) unweighted shortest path distance of CGSSN, (e) shortest weighted path
distance of CGSSN, and (f) weighted shortest path distance of CGSSN.
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