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Prevailing view asserts that the disproportionately greater productivities of larger cities, or superlinear urban
scaling, are the result of human interactions channeled by urban networks. But this view was established by
considering the spatial organization of urban infrastructure and social networks—the urban “arteries” effects—
but neglecting the functional organization of urban production and consumption entities—the urban “organs”
effects. Here, adopting a metabolic view and using water consumption as a proxy for metabolism, we empirically
quantify the scaling of entity number, size, and metabolic rate for the functionally specific urban residential,
commercial, public or institutional, and industrial sectors. Sectoral urban metabolic scaling is highlighted by a
disproportionate coordination between residential and enterprise metabolic rates, attributable to the functional
mechanisms of mutualism, specialization, and entity size effect. The resultant whole-city metabolic scaling
exhibits a constant superlinear exponent for water-abundant regions in numerical agreement with superlinear
urban productivity, with varying exponent deviations for water-deficient regions explainable as adaptations
to climate-driven resource constraints. These results present a functional organizational, non-social-network
explanation of superlinear urban scaling.

DOI: 10.1103/PhysRevE.107.034301

I. BACKGROUND

What gives rise to the disproportionately greater productiv-
ities of larger cities? Is it innovation and creativity unique to
humans alone? Or is it also an evolved organizational optimal-
ity intrinsic to cities and organisms alike? An expansive and
integrative understanding in the origins of urban scaling will
help provide a complex systems foundation for developing
effective policies for all aspects of urban sustainability [1].
This level of understanding requires unveiling the multilevel,
multisectoral relations in the complex urban system [2]. Urban
production and consumption can be conceived as metabolism,
which scales nonlinearly with city size [3]. Influenced by
precedences in metabolic scaling in living organisms, in-
terpretations of urban metabolic scaling have so far largely
embraced the concept of networks.

A. Transport-network model of organism
metabolic scaling (sublinear)

In organisms, whole-organism metabolic rate is sublinearly
scaled with organism mass, a phenomenon known as allo-
metric scaling and is explained by energy allometry in the
organism’s optimal resource transport networks [3]. Cities
are like organisms in two important ways in the transport
network. The first is evolution. Cities evolve optimal infras-
tructural transport networks, such as roads [4] and water
mains [5]. As a city grows, its infrastructure networks undergo
dynamical continual and incremental renewals, tracing out in
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time a “common evolutionary track” on a graph containing
cities at all stages of growth and obeying the scaling law
relating infrastructure quantities and city size that signifies
the optimality [6]. The second is efficiency. For example,
the water supply system of a city is likened to “our own
circulatory system” [3], differing only in hydraulic details:
three-dimensional pressurized laminar flows of blood from
the human heart versus two-dimensional pressurized turbulent
flows of drinking water from the city water treatment plant.
In similar ways, the bulk transports of blood in organism
networks [7] and of water in urban networks [5] both exhibit
sublinear (allometric) energy scaling with organism or city
size, explainable by their respective hydraulic mechanisms.

B. Social-network model of urban
metabolic scaling (superlinear)

But cities and organisms differ in one significant way.
Whole-organism metabolism is sublinearly scaled with or-
ganism mass and is explainable by the energy allometry
in organism transport networks; whole-city productivity is
superlinearly scaled with city population and is not simply ex-
plainable by the energy allometry in urban transport networks
[3]. This distinction has led to the speculation that super-
linear urban scaling—the disproportionate increase in urban
productivity with city size as measured by population—is a
unique attribute of human settlements. The search for expla-
nations has naturally been focused on the role of humans.
Individual travels of humans in urban networks modeled after
electrical conduction show superlinear energy scaling with
city size [4]. Social-network models posit that human interac-
tions facilitated by urban networks explain superlinear urban
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scaling, and find exponent agreements with the scaling of
urban socioeconomic productivity with city size as measured
by population [4,8–10], thus establishing the prevailing view
that social-network-driven greater human creative outputs in
larger cities explain superlinear urban scaling.

C. Urban metabolism: From city as
ecosystem to city as organism

The conventional view of urban metabolism conceives the
city in terms of the flows of metabolic resources—energy,
materials, and human resources—as well as wastes [11,12];
this view captures the multiplicity of processes in the city as
a complex ecosystem [13]. An alternative, mostly neglected
view of urban metabolism conceives the city in terms of
the consumption of metabolic resources; this view captures
the evolved organization of the city as an integral organ-
ism. It is the latter view, city as an organism, that provides
the needed grounds for exploring the city as a complex,
but organized system evolved to serve the functions of pro-
duction and consumption. Overlooked for explaining urban
metabolism [14], the organism view found application in
explaining metabolisms in the river basin, helping establish
organizational principles for the runoff [15] and transpira-
tion [16] functions of the basin by considering “each nested
subbasin as an organism” and addressing the “intraspecies
scaling behavior” among a system of subbasins as reflecting
the optimal functions of the whole basin [16].

Thus, the organism view of the city implies two levels
of evolved organization. The first level of organization is
an infrastructural organization within the city, which itself
comprises two types. So far better recognized is the spatial
organization, the hierarchical ordering of urban networks for
efficient resource transports and human interactions. These
roadways, water mains, sanitary canals, etc., are the equiva-
lents of arteries and capillaries in an organism. So far mostly
neglected is the functional organization, the mutual coordina-
tion among urban metabolic entities for efficient production
and consumption. These factories, businesses, and schools,
etc., in the enterprise sectors and households in the residential
sector are the equivalents of major organs and ordinary tissues
in an organism, respectively. The city is a (organismic) system
of (organ and tissue) systems, with the coupling between en-
terprises (organs) and residents (tissues) reflecting the optimal
function of the city (organism) as an overall system.

The second level of organization is a community organi-
zation among cities and communities. Larger cities supply
metabolic products to smaller communities, such as treated
drinking water [17]; in return, distant communities supply raw
resources to large cities, such as human resources [18]. These
symbiotic relations [19] systematically link the developments
of central cities and distant lands [20], fostering an opti-
mal regional community structure of cities and communities
recognizable from the characteristic skewed size-abundance
distribution of cities by population [21] or resource consump-
tion [22]. The region is a (ecological) system of (organismic)
systems, with the abundance of cities (organisms) by size
reflecting the optimal function of the region (ecosystem) as
an overall system.

D. Urban metabolic scaling: From networks to “organ”-ization

From the organism view of urban metabolism, social net-
works may not provide a complete explanation of superlinear
urban scaling, because humans are not the only agents of
urban metabolism and networks are not the only manifest
of urban optimization. First, social-network models account
for only the spatial organization of urban networks and its
effects on human interactions, but they neglect the functional
organization of urban metabolic entities and its effects on pro-
duction and consumption. Second, the urban spatial network
facilitates social interactions mainly within the city, but it
“says little...about the ‘system of cities’ ” [23] or the metabolic
interactions among them. Although a more recent work has
explored exogenous contributions to superlinear urban scal-
ing, it has been restricted to the human factor of demographic
differences [18].

How do urban “organs” and “tissues” functionally orga-
nize? Does this organization entail novel origins of whole-city
metabolic scaling? These questions have remained unan-
swered because previous explorations of urban scaling have
focused on spatial organization at the whole-city level [4,8–
10,24–27] but neglected functional organization at the urban-
sector level.

In this paper, we present a functional organizational in-
terpretation of superlinear urban scaling. We conceptualize
and apply the empirical analytical method of sectoral urban
metabolic scaling (SUMS). With this method and based on
the consumption of water as a resource, we deconstruct [28]
whole-city scaling into scaling in the comprising, functionally
specific urban sectors. We show that a metabolic interpretation
of functional organization at the urban-sector level presents
a numerically agreeable, non-social-network explanation of
superlinear urban scaling at the whole-city level, with the
additional ability of explaining scaling deviation as adaptation
to regional resource constraints.

II. METHODS

Water is a common basic resource; the consumption or
transport of water (or, more generally, any nutrient-carrying
aqueous solution) has been used to measure metabolic scal-
ing in many types of evolved complex systems, including
living organisms [7], coastal estuary ecosystems [29], and
the runoff [15] and transpiration [16] systems in river
basins. Water metabolism is also the most studied process
in conventional urban metabolism [14]. Following prece-
dences, we use the consumption of water as a resource to
measure urban metabolism. Beneficially, the water resource
provides a relatively transport-insensitive measure of urban
metabolism compared to energy resources [4,5] and a rela-
tively demography-insensitive measure compared to human
resources [18].

Resource abundance impacts metabolism. Since water
abundance (along with temperature) defines climate con-
ditions, we use climate zones as indicators of regional
water abundance. Köppen classification of continental cli-
mates divides the midlatitude into humid and dry (arid or
semiarid) climate zones [30]. We consider water-abundant
regions (humid climate zones) as locations ideal for metabolic
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optimization and treat water-deficient regions (dry climate
zones) as locations likely to exhibit adaptive divergence from
optimization.

For sectoral water consumption, we assembled 16 years
of census data (2005–2020, where available) for cities in the
water-abundant US states (regions) of Wisconsin (WI) and
Pennsylvania (PA) in humid climate zones and cities in the
water-deficient states of Utah (UT) and California (CA) in
extensively dry and partially dry climate zones, respectively
[31–34]. For whole-city consumption, we assembled addi-
tional data for cities in the water-abundant states of Illinois
(IL), Missouri (MO), and New York (NY) in humid climate
zones [35–37]. The inclusion of a state, cities within a state,
year, or data type in this study is based solely on data availabil-
ity. In each state, cities are defined as any census-designated
places under local municipal governance, such as a city, vil-
lage, borough, or community service district in a rural or
an unincorporated area. Each city comprises four broadly
defined functional sectors: residential, commercial, public or
institutional, and industrial—the latter three to be collectively
called enterprise sectors. Each sector comprises an ensemble
of metabolic units or entities, e.g., a household in the resi-
dential sector, a school in the institutional sector, or a factory
in the industrial sector. Using a bottom-up approach [38], we
characterize sectoral organization by quantifying the scaling
of number, size, and metabolic rate (water consumption) with
city size. For a city, the number of metabolic entities Ni refers
to the number of water customers in sector i. The size of
a metabolic entity refers to the physical cross-sectional area
of a customer’s water meter, so that the sectoral cumulative
size Si is the summed cross-sectional area of all customer
water meters in sector i. The metabolic rate of a metabolic
entity refers to the annual metered water consumption of a
customer, so that the sectoral cumulative metabolic rate Mi

is the summed annual water consumption of all customers in
sector i.

We develop a fractional scaling analysis; we consider the
scaling of the sectoral variables Ni, Si, and Mi with respect
to the corresponding whole-city (all-sectors) variables N , S,
and M, respectively, where, for example, M = ∑

i Mi. The
whole-city quantity represents city size in this fractional con-
text. We assume a power-law scaling relation. For example,
for metabolic rate, we write

Mi = AMb, (1)

where A is the prefactor and b is the scaling exponent. By
logarithmic transformation, we obtain

log Mi = a + b log M, (2)

where a = log A. Each coordinate data point (x, y) =
(log M, log Mi ) represents a city and the ensemble data set
{x, y} = {log M, log Mi} represents a region of cities. In a
least-square (LS) linear fit of Eq. (2), of the best-fit parameters
a is the intercept and b (the scaling exponent) is the slope of
the ensemble. (For notational simplicity, we omit the scripts
for cities on the variables and the scripts for sectors on the
parameters.)

Both whole-city and sectoral metabolic rates, M and Mi,
respectively, show lognormal abundance distributions. With
the logarithmic transformation, the lognormally distributed M

is converted to normally distributed log M, where the mean of
log M marks the median of M and the standard deviation (SD)
of log M is an indicator of the skewness of M; likewise for Mi.
In the LS formulation, the slope b is defined as [39]

b = R
σi

σ
, (3)

where R is the correlation between log M and log Mi, and
σ and σi are the SDs of the normal distributions of log M
and log Mi, respectively. Slopes of b < 1, b = 1, and b > 1
correspond to sublinear (allometric), linear (proportional), and
superlinear scaling of Mi with M, respectively.

Equation (3) connects sectoral scaling and sectoral size
abundance distribution. The fractionally dominant residential
distribution is necessarily strongly associated with the whole-
city distribution in both the rank order of cities and SD,
resulting in R � 1 and σi/σ � 1; the fractionally nondomi-
nant enterprise sectors are freer to have larger sectoral SDs
through tradeoffs among themselves, which necessarily en-
tails rank shifts among cities in sectoral metabolism, resulting
in σi/σ > 1 and R < 1.

Now that the correlation R has a systematic sectoral depen-
dence, we introduce a new ensemble parameter, dispersion s,
to capture this physical (rather than random statistical) behav-
ior, defined as the SD of the fit residuals {y − ŷ} to Eq. (2),
where ŷ is the LS model-predicted value of log Mi, or

s = SD({y − ŷ}). (4)

For metabolism, the set of parameters (a, b, s) of intercept,
slope, and dispersion describe the ensemble characteristics
of sectoral metabolic rate, growth of sectoral metabolic rate
with city size (defined by whole-city metabolic rate), and the
variability of sectoral metabolic rate, respectively.

III. RESULTS

A. Overall observations

SUMS results show that the two key features of urban op-
timality known to manifest at the whole-city level (nonlinear
scaling [3] and skewed abundance distribution [21]) both also
manifest at the urban-sector level, but with sectorally depen-
dent parameters that reflect function specificity. SUMS results
are shown as yearly parameters in time series (2005–2020,
where available) in Fig. 1, as averaged parameters across years
in Table I, as one-year representative scaling data and fits in
Fig. 2, and as one-year representative abundance distribution
data and fits in Fig. 3. The one-year representative data are
from 2018, where available, the most recent complete annual
data sets at the time of study. Complete yearly scaling data
and fits are shown in Figs. S1– S20 [40].

At the sectoral level, for each type of enterprise, the num-
ber of enterprise entities (urban organs) grows more slower
than that of all metabolic entities of the city [Fig. 1(a), 6–8]
while the cumulative physical size of the enterprise entities
grows less slower than that of all metabolic entities of the
city [Fig. 1(b), 6–8], so that the per-entity physical size of
the enterprise entities grows distinctly faster than that of all
metabolic entities of the city [b > 0; Fig. 1(c), 6–8]. Con-
versely, the number of residential entities (urban tissues)
grows marginally faster than that of all entities [Fig. 1(a),
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FIG. 1. Sectoral urban metabolic scaling. Sixteen-year (2005–2020) time series of best-fit slopes b and intercepts a for sectoral vs. whole-
city (fractional) scaling of (a) entity number, (b) size, (c) size per entity, (d) water consumption (as metabolic rate), and (e) water consumption
per entity for cities in WI, PA (both humid), UT (extensively dry), and CA (partially dry). Superlinear urban scaling of consumption with
population results from the inverse of the sublinear residential fractional scaling [(d), panel 5, indicated by the arrow], given that residential
consumption is proportional to residential population under water-abundant (humid) conditions.

5] while the cumulative physical size of the residential en-
tities grows marginally more slowly than that of all entities
[Fig. 1(b), 5], so that the per-entity physical size of the resi-
dential entities grows little differently than that of all entities
[b � 0; Fig. 1(c), 5].

At the per-entity level, the physical size of entities
[Fig. 1(c), 1–4] and the rates of growth of physical
size [Fig. 1(c), 5–8] follow the same trend ordered by
sector. The systematic trend of “large get larger” in per-
entity physical size [Fig. 1(c)] is counterbalanced by the

TABLE I. Fractional scaling parameters by sector in number of entities, size, and water consumption (as metabolic rate).

Sector Cities Number Size Water consumption

exponent prefactor disp. exponent prefactor disp. exponent prefactor disp. correlation distribution
n b A s b A (in2) s b A (106gal/d) s R2 σi/σ

Residential WI 570 1.01 (0.01) 858 (6) 0.04 0.98 (0.02) 564 (16) 0.12 0.87 (0.02) 0.40 (0.02) 0.19 0.92 0.87 (0.02)
PA 633 1.00 (0.01) 915 (6) 0.03 0.90 (0.02) 0.56 (0.02) 0.16 0.94 0.92 (0.01)
UT 181 1.01 (0.01) 913 (11) 0.04 0.97 (0.03) 0.69 (0.04) 0.14 0.96 0.97 (0.04)
CA 358 1.01 (0.03) 846 (87) 0.05 0.97 (0.02) 0.68 (0.03) 0.10 0.96 1.01 (0.01)

Commercial WI 563 0.95 (0.04) 95 (4) 0.23 1.09 (0.03) 155 (9) 0.24 1.05 (0.04) 0.17 (0.02) 0.32 0.87 1.11 (0.01)
PA 621 1.01 (0.05) 52 (4) 0.37 1.19 (0.05) 0.13 (0.02) 0.43 0.80 1.36 (0.01)
UT 157 1.09 (0.11) 35 (6) 0.45 1.23 (0.13) 0.09 (0.02) 0.56 0.71 1.45 (0.05)
CA 339 1.11 (0.07) 0.09 (0.01) 0.30 0.76 1.23 (0.01)

Public WI 531 0.59 (0.04) 15 (1) 0.27 0.90 (0.05) 55 (5) 0.38 1.03 (0.06) 0.04 (0.01) 0.51 0.68 1.07 (0.02)
PA 380 0.75 (0.07) 8 (1) 0.44 1.09 (0.09) 0.03 (0.01) 0.59 0.59 1.30 (0.01)
UT 131 0.79 (0.10) 12 (2) 0.35 1.14 (0.14) 0.04 (0.01) 0.55 0.66 1.40 (0.05)
CA 195 1.01 (0.11) 0.03 (0.01) 0.38 0.63 1.26 (0.02)

Industrial WI 392 0.76 (0.06) 9 (1) 0.36 1.04 (0.08) 35 (5) 0.49 1.38 (0.09) 0.16 (0.04) 0.66 0.68 1.49 (0.03)
PA 391 0.69 (0.08) 6 (1) 0.44 1.34 (0.12) 0.06 (0.01) 0.72 0.59 1.68 (0.02)
UT 80 0.36 (0.18) 6 (2) 0.50 0.85 (0.26) 0.02 (0.01) 0.75 0.28 1.36 (0.05)
CA 197 1.25 (0.23) 0.01 (0.01) 0.74 0.36 1.85 (0.03)
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FIG. 2. Data (colored circles, each representing a city) and fits (solid black lines) for the scaling of (a)–(d) sectoral cumulative water
consumption and (e)–(g) sectoral per-entity water consumption with whole-city water consumption for cities in WI, PA (both humid), UT
(extensively dry), and CA (partially dry). Histograms show log-transformed distributions of whole-city consumptions with log-space normal
distribution fits (red curves). Highlighted data points indicate the functionally specialized cities of Madison (MAD; public), Kohler (KOH;
industrial), Macungie (MAC; industrial), and Gettysburg (GET; commercial). For clarity, the plots for the residential, commercial, public, and
industrial sectors are shifted on the vertical axis by 2.5, 5, 7.5, and 10, respectively. The largest city in each state is labeled: Milwaukee (MIL),
Philadelphia (PHI), Salt Lake City (SLC), and Los Angeles (LA).

systematic trend of “large get fewer” in entity number
[Fig. 1(a), 1–4]. This counterbalance between number and
size lays the foundation for the organization in consumption
(metabolism), which shows an increasing trend in per-entity
metabolic rate [Fig. 1(e), 1–4] but a (mostly) decreasing trend
in cumulative metabolic rate [Fig. 1(d), 1–4] across the sectors
as ordered by increasing per-entity size. Sectoral scaling pa-
rameters in consumption (intercept a, dispersion s, and slope
b) can be explained by a metabolic interpretation based on the
evolution principles of mutualism, specialization, and size ef-
fect (efficiency), respectively, as described below. Deviations
in the parameters are explainable as climate-driven adaptive
divergence, as described in Sec. IV B.

B. Metabolic interpretation of scaling parameters

1. Intercept

Sectoral intercepts reflect functional mutualism. The sec-
toral metabolic rates, measured by the intercept a = log A,
are disproportionately coupled among the sectors. In the
water-abundant regions, the residential sector has a large
[Fig. 1(d), 1] but slowly decreasing metabolic rate with city

size (Ares = 0.40 ± 0.02 for WI, Ares = 0.56 ± 0.02 for PA;
Table I) and the enterprise sectors have smaller [Fig. 1(d),
2–4] but overall faster increasing metabolic rates with city
size (e.g., Aind = 0.16 ± 0.04 for WI, Aind = 0.06 ± 0.01 for
PA; Table I). This coupling reflects a residential-enterprise
mutualism in metabolism. The mutualism argument draws
its analogy from the ecosystem view that functions are a
determinant of metabolic scaling [41]. In the urban setting,
enterprises depend on residents as labor force and consumers
whereas residents depend on enterprises for employment and
resources to sustain livelihood.

Sectoral coupling provides stability to urban metabolism,
as the endogenous residential sector’s large entity number
[Fig. 1(a), 1] and dominant metabolic rate [Fig. 1(d), 1]
help buffer impacts from the faster-growing [Fig. 1(d), 6–8],
partially exogenously influenced enterprise sectors, making
changes incremental and adaptable. At the same time, sectoral
coupling allows for flexibility for adaptation. For example, the
increased pace of life with city size [42] can be interpreted
as a residential adaptation to superlinearly scaled industrial
metabolism, and the concurrent increase in residential water
consumption but decrease in industrial water consumption in

≥ ≥

FIG. 3. Rank-size distributions of cities in (a)–(d) sectoral cumulative water consumption and (e)–(g) sectoral per-entity water consumption
shown as the ranked probability (y axis) of finding consumption sizes equal to or greater than a given consumption size (x axis) for cities in WI,
PA, UT, and CA. Solid lines are lognormal distribution fits (average R2 = 0.99; two-sample Komogorov-Smirov test for lognormalcy, average
p = 0.92). Rank locations of the specialized cities and the largest city in each state (see Fig. 2 caption) are indicated. For clarity, the plots are
relatively shifted on the horizontal axis.
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dry climates can be interpreted as an adaptation to resource
constraint (Sec. IV B).

2. Dispersion

Sectoral dispersions reflect functional specialization. The
dispersions of metabolic rates, measured by the residual SD
s, show a sectoral dependence, with a small dispersion for
the residential sector (sres = 0.19 for WI, sres = 0.16 for PA;
Table I) and larger dispersions for the enterprise sectors (e.g.,
sind = 0.66 for WI, sind = 0.72 for PA; Table I). As cities seek
growth through exogenous demands, the needs for supply-
demand balance [43] and for residential-enterprise coupling
must be met. This requires the metabolic increases in one
enterprise sector to be offset by decreases in other enterprise
sectors, resulting in increased individual residuals that collec-
tively give the larger dispersions for enterprise sectors.

For example, the city of Madison, specializing in gov-
ernmental and higher education functions, has an above-
prediction public metabolic rate but a below-prediction
industrial metabolic rate; Macungie, specializing in truck
manufacturing, and Kohler, specializing in plumbing appli-
ances manufacturing, both have above-prediction industrial
metabolic rates but below-prediction public metabolic rates;
Gettysburg, specializing in historic landmarks preservation
and tourism, has a below-prediction industrial metabolic
rate but an above-prediction commercial metabolic rate. But
all four cities have approximately as-predicted residential
metabolic rates as the enterprise residuals are mutually offset-
ting (Fig. 2). While specialization rearranges industrial rank
orders (Fig. 3) and reduces the correlation between industrial
metabolic rates and the whole-city metabolic rates (R2 = 0.68
for WI, R2 = 0.59 for PA; Table I), the rank order of residen-
tial metabolic rates remains strongly correlated with that of
the whole-city metabolic rates (R2 = 0.92 for WI, R2 = 0.94
for PA; Table I) because the residential rates dominate the
whole-city rates [Fig. 1(d), 1]. The anchoring of whole-city
metabolism by the endogenous residential metabolism helps
ensure the stability of the city despite the partially exogenous
causes of enterprise metabolisms.

Dispersion reflecting specialization conforms with the
finding of complex systems physics that coordinated hetero-
geneity is favored over homogeneity for system stability [44]
and with the principle of ecology that functional differentia-
tion and complementarity among individuals (cities) promote
stability in the population (the region) [45]. In sectoral
metabolism, slope b is highly directly associated with disper-
sion s, having the Pearson correlation coefficient ρ(b, s) =
0.86, as expected in the analysis of Eq. (3). This associa-
tion implicates a connection between enterprise superlinear
productivity, especially industrial superlinear productivity
[Fig. 1(d), 8], and exogenous demands, as productions in one
city feed to consumptions in other cities. Therefore, enterprise
metabolic dispersions account for transboundary metabolic
interactions among a system of cities in a region (or, by
extension, in a country or the globe).

3. Slope

Sectoral slopes reflect functional size effects. The growths
of sectoral metabolic rates with city size, measured by the

slope b, are unequal among urban sectors, with the residen-
tial sector having a sublinear slope (bres = 0.87 ± 0.02 for
WI, bres = 0.90 ± 0.02 for PA; Table I) and the enterprise
sectors having superlinear slopes, most so for the industrial
sector (bind = 1.38 ± 0.09 for WI, bind = 1.34 ± 0.12 for PA;
Table I). Functional size effects are explainable by the sup-
ply side of metabolism. Larger cities evolve larger enterprise
organs through the mechanisms of spatial concentration and
temporal expansion; for example, the shopping center spa-
tially brings together stores to increase sales and the factory
implements temporal work shifts to expand production hours,
respectively. These mechanisms lead to functional size effects
at the entity level.

The correspondence in the sectorally ordered trend be-
tween per-entity physical sizes [Fig. 1(c)] and per-entity
metabolic rates [Fig. 1(e)] traces size effects in entity-
level metabolic rates to entity-level physical sizes. The
correspondence in the sectorally ordered trend between
per-entity metabolic exponents [Fig. 1(e), 5–8] and cumu-
lative metabolic exponents [Fig. 1(d), 5–8] traces sectoral
cumulative scaling to sectoral per-entity scaling. The con-
trasts between residential and enterprise sectors in per-entity
metabolic scaling [Fig. 2(e)–2(g)] and in per-entity metabolic
size abundance [Fig. 3(e)–3(g)] also indicate that functions
of the enterprise organs, especially the industrial organs, are
linked to entity-level size effects. Entity-level size effects as-
sociated with functional organization contrast whole city-level
size effects associated with social interactions; they represent
a distinct origin of urban scaling.

IV. DISCUSSION

A. Urban-organs model of urban
metabolic scaling (superlinear)

We now use SUMS results to explain superlinear urban
scaling, the disproportionate increase in urban productiv-
ity with city size as measured by population. First, urban
water consumption is a proper proxy for urban production
because the two scale similarly. Whole-city economic pro-
ductivity exhibits superlinear scaling with city population,
having empirical exponents in the range around 1.07–1.15.
Examples from the literature include: urban gross domes-
tic product in metropolitan statistical areas in the US (b =
1.13 ± 0.02) [4], incomes in urban areas in the US (b = 1.15,
R2 = 0.97) [46], labor in metropolitan areas in Brazil (b =
1.11 ± 0.07) [47], labor markets in Sweden (b = 1.08 ± 0.02)
[18], and urban product in more developed cities in China
(b = 1.11, R2 = 0.72) [27]. Whole-city water consumption
(under water-abundant conditions) also exhibits superlinear
scaling with city population, having empirical exponents in
a similar range [26]. Cases presented in this study for the
humid states are: b = (1.06, 1.14) for WI, b = (1.06, 1.10)
for PA, b = (1.05, 1.09) for IL, b = (1.07, 1.13) for MO, and
b = (1.07, 1.13) for NY [Fig. 4(a)–4(e); Table II].

Second, superlinear scaling of whole-city water con-
sumption with population can be explained by functional
organization as revealed by SUMS. This organization is under-
pinned by the counterbalance between “large get larger” in
entity size and “large get fewer” in entity number; it entails
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FIG. 4. Data (colored circles, each representing a city) and fits (solid black lines) for the scaling of whole-city water consumption with
city population for cities in WI, PA, IL, MO, NY (all humid), UT (extensively dry), and CA (partially dry). Histograms show log-transformed
distributions of city populations with log-space normal distribution fits (red curves). Dashed lines are references of linear scaling (b = 1). The
largest city in each state is labeled: Milwaukee (MIL), Philadelphia (PHI), Chicago (CHI), Kansas City (KAN), New York City (NYC), Salt
Lake City (SLC), and Los Angeles (LA). Insets show scaling of residential sectoral consumption with population (Fig. S21 [40]).

that, for the small size but large number of the residen-
tial entities, the residential metabolic rate will scale slightly
sublinearly with the whole-city metabolic rate in fractional
scaling [Fig. 1(d), 5, indicated by the arrow] or, conversely,
the whole-city metabolic rate will scale slightly superlinearly
with the residential metabolic rate. Additionally, residential
water consumption is expected to scale linearly with residen-
tial population under water-abundant conditions, as verified
by data for the humid states: b = 1.03 ± 0.02 for WI and
b = 1.00 ± 0.02 for PA (Fig. 4(a), 4(b) insets; see Fig. S21 for
details [40]). Substituting population for residential consump-
tion, SUMS predicts that the whole-city metabolic rate will
scale slightly superlinearly with city population; for the humid
states: b = (1.12, 1.18) for WI and b = (1.08, 1.14) for PA,
in approximate agreement with observations and correctly ex-
plaining superlinear urban scaling. The range of the exponent
values itself has significance in the metabolic perspective,
as too large a superlinearity would decouple residential-
enterprise mutualism and destabilize the city whereas too
small or an absence of a superlinearity would fail to account
for exogenous interactions among cities. For the central role
of urban enterprise entities in effecting the superlinear scaling,
this model may be called the “urban-organs model”.

B. Adaptive divergence in urban scaling

The scaling deviations for UT and CA can be explained
as evolved adaptive divergence in response to climate-driven

TABLE II. Scaling of whole-city water consumption (as
metabolic rate) with city population.

State Cities Climate Slope Intercept
n b a

(log10 106gal/d)

Wisconsin 530 humid 1.10(0.04) −4.71(0.13)
Pennsylvania 685 humid 1.08(0.02) −4.49(0.08)
Illinois 641 humid 1.07(0.02) −4.21(0.07)
Missouri 566 humid 1.10(0.03) −4.31(0.11)
New York 337 humid 1.10(0.03) −4.35(0.11)
California 400 dry, partial 0.95(0.03) −3.60(0.16)
Utah 216 dry, extensive 0.87(0.04) −3.34(0.15)

resource (water) constraints of varying degrees. For UT, the
second driest state in the US situated mostly within semi-
arid and arid climate zones, the deviations are clearer. First,
the residential consumption shows a higher per-entity value
in fractional scaling [Fig. 1(e), 1] and a higher per-capita
value and sublinear slope in scaling with population (Fig. 4(f)
inset; Fig. S21 [40]), contrasting the lower per-entity and
per-capita values and linear slope for the humid states. The
higher consumption values concur with the region’s high
evapotranspiration rates [48], and the sublinear slope suggests
that the scarcity of a resource has activated economies of
scale in its consumption. Second, the industrial consump-
tion has a lower intercept and a poorly correlated, sublinear
slope [Fig. 1(d), 8], contrasting the superlinear slopes for
the humid states. These related parametric deviations can be
explained by considering Eq. (3), bi = R(σi/σ ); here, the
industrial sectoral metabolic distribution remains mostly in-
tact [σind/σ = 1.36 ± 0.05; Fig. 3(c)], but its correlation with
the whole-city metabolic distribution is diminished (R2 =
0.28), suggesting the semiarid region’s known large geo-
graphic heterogeneity in water resources [48] has disrupted
the city size-based industrial metabolic rank order, losing
the superlinearity in the fractional scaling of industrial entity
number [Fig. 1(a), 8] and metabolic rate [bind = 0.85 ± 0.26;
Fig. 1(d), 8].

Although CA’s highly varied climates also include semi-
arid and arid zones, the proportions are small compared to
UT and the state’s water deficiency is actively mitigated with
some of the world’s most prominent systems of transbasin
diversion and conveyance (e.g., the Colorado River Aqueduct)
[49]. Likely as a result, the scaling behaviors for CA fall
between that for UT and the humid states. Like UT, CA’s
residential consumption also shows a higher per-entity value
in fractional scaling [Fig. 1(e), 1] and a higher per-capita
value and sublinear slope in scaling with population (Fig. 4(g)
inset; Fig. S21 [40]); but like WI and PA, CA’s industrial con-
sumption shows a superlinear slope [Fig. 1(d), 8], with a low
intercept [Fig. 1(d), 4] perhaps partly attributable to the state’s
less water-demanding, technology-focused industries. For the
dry regions, b = (0.83, 0.91) for UT and b = (0.92, 0.96) for
CA for whole-city water consumption with population; the
varying extents of exponent deviation from the values under
water-abundant conditions reflect the varying degrees of water
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deficiency of the two regions, conforming with the interpreta-
tion of adaptive divergence.

In plants, water stress induces the tradeoff of seed pro-
duction for tolerance, resulting in scaling deviations [50]; in
cities, water stress induces the tradeoff of industrial produc-
tion for residential living, also resulting in scaling deviations.
Different levels of resource abundance activate different sets
of metabolic functions [45]; in turn, “mixing different ‘cock-
tails’ of the components” [51] results in different exponents
in whole-organism (whole-city) scaling. Since resource limi-
tation impacts the scaling exponent [41,50], there is no single
b [52]. Thus, the metabolic interpretation avails the rationale
of adaptation to resource constraints to explain exponent de-
viations in urban scaling, which have often been observed but
inadequately explained by existing scaling models [53].

C. Reconciling urban-organs model and social-network model

The urban-organs model of functional organization and
the social-network model of human interactions represent
physically distinct urban manifests but have numerically over-
lapping scaling exponents. The two models are conceived
upon different origins of urban nonlinearity. In the social-
network model, scaling arises from the spatial geometric
order among urban network segments, from side streets to
expressways, laid out in hierarchy as one city-level network;
in the urban-organs model, scaling arises from the functional
metabolic order among urban production and consumption
entities, from households to factories, fostered by mutualism
among a large number of individual entities. In the social-
network view, a larger city produces more because its network
is comprised of a disproportionate fraction of wider segments;
in the urban organs view, a larger city produces more because
its metabolism is driven by a disproportionate fraction of
organs.

Urban productions strongly associated with enterprise op-
erations (e.g., factory manufacturing) are better explained by
the urban-organs model; urban productions strongly associ-
ated with social interactions (e.g., patent creation) are better
explained by social-network models. The contrasting views
of the city explored here as a complex system find histor-
ical precedence in urban cultural debates. Support for the
social-network models has often been cited from the philo-
sophical argument of the early 20th-century urban scholar
Jane Jacobs, who recognized the city as a complex organism
in which social interactions are a key to urban vitality [54].
Equally convincing support can be cited for the urban-organs
model from the contrasting philosophical argument of another
early 20th-century urban scholar, Daniel Burnham, who also
viewed the city as a complex organism, but in light of civic
organization, an urban ideal widely regarded by historians as
the blueprint of modern American cities [55].

D. Reconciling urban-organs model
and transport-network model

Given the optimal transport network present in both or-
ganisms and cities, why do organisms take advantage of it to
reduce metabolic rates (b < 1 in whole-organism scaling) but
cities take advantage of it to metabolize even more (b > 1 in

whole-city scaling)? This may be explained by a difference in
system boundary. Organisms are more self-contained systems
and do not ordinarily export metabolic products directly into
another organism, but cities are more connected and do export
products to other cities.

Given the context, both organisms and cities may manifest
organs effects. In birds, temperate birds evolved larger organs
and higher metabolic rates than tropical birds in order to meet
the external challenge of colder climates [56,57]; in cities,
large cities evolved larger-sized enterprise entities [Fig. 1(c),
2–4] and higher metabolic rates [Fig. 1(e), 2–4] in order to
meet the exogenous demands from smaller communities. For
cities, metabolic optimization is done more for the whole
region rather than for the individual city, as supported by the
observed sectoral lognormal abundance distributions (Fig. 3).
Regional optimization limits the number of enterprise entities
to reduce construction and operational costs and preferentially
places these entities in larger cities for economies of scale,
including transport allometry [3]. These arguments are con-
sistent with the observed increasing growths in organ sizes
[Fig. 1(c), 6–8] and metabolic rates [Fig. 1(e), 6–8] but de-
creasing growths in organ numbers [Fig. 1(a), 6–8] with city
size in fractional scaling that ultimately result in whole-city
superlinear metabolic scaling with population.

V. CONCLUSION

Previous works relying on whole-city metabolic scal-
ing without sectoral discretions have concluded that human
interactions in spatial networks explain superlinear urban
productivity. Now, based on sectoral metabolic scaling in-
voking neither spatial networks nor human interactions, we
have shown that the functional organization among urban
metabolic entities also explains superlinear urban productiv-
ity. Besides numerical agreement in the scaling exponent,
the urban-organs model finds interpretive agreements with
three key observable characteristics of the city: stability of
the city (interpretable by residential-enterprise metabolic mu-
tualism), functional specialization of the city (interpretable
by enterprise metabolic dispersions), and adaptation of the
city to resource constraints (interpretable by the divergence in
scaling exponents). This metabolism-based, functional orga-
nizational interpretation of the city stands to complement the
existing social-interaction interpretation of the city, helping
bring about a more expansive and integrative view of urban
scaling.

In particular, the sensitivity of the scaling parameters to
climate-driven resource constraints suggests potential applica-
bilities of SUMS and its derivative urban organs model. Climate
change is already driving the shifts of continental climate
zones, causing expansions and degradations of dry climate
zones [58]. The sublinearly scaled industrial metabolic rates
observed for the semiarid state of UT, contrasting the super-
linearly scaled ones observed for the humid states, suggest
climate change could cause water stress-induced nonlinear
negative responses in urban productivity, potentially com-
pounding temperature increase-induced nonlinear negative
responses in urban productivity already predicted [59]. Poten-
tial climate migration of urban industries, suggestive by the
recently evolving, increasingly sublinearly scaled industrial
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entity number for UT [Fig. 1(a), 8], could threaten to both
decouple the residential-enterprise mutualism within the city
and disrupt the regional industrial rank order among cities. As
an analytical approach on urban metabolism, SUMS possesses
function specificity, scale generality, and climate sensitivity.
It may be used as a systems probe for predicting sector-
specific responses in urban production and consumption to
climate change in a regional system of cities and communities.
As such, SUMS and the urban-organs model may contribute

to the timely scientific thrust of bringing complex systems
approaches to applications in climate change and urban sus-
tainability.
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