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Deep learning delay coordinate dynamics for chaotic attractors from partial observable data
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A common problem in time-series analysis is to predict dynamics with only scalar or partial observations of the
underlying dynamical system. For data on a smooth compact manifold, Takens’ theorem proves a time-delayed
embedding of the partial state is diffeomorphic to the attractor, although for chaotic and highly nonlinear systems,
learning these delay coordinate mappings is challenging. We utilize deep artificial neural networks (ANNs) to
learn discrete time maps and continuous time flows of the partial state. Given training data for the full state,
we also learn a reconstruction map. Thus, predictions of a time series can be made from the current state and
several previous observations with embedding parameters determined from time-series analysis. The state space
for time evolution is of comparable dimension to reduced order manifold models. These are advantages over
recurrent neural network models, which require a high-dimensional internal state or additional memory terms
and hyperparameters. We demonstrate the capacity of deep ANNs to predict chaotic behavior from a scalar
observation on a manifold of dimension three via the Lorenz system. We also consider multivariate observations
on the Kuramoto-Sivashinsky equation, where the observation dimension required for accurately reproducing
dynamics increases with the manifold dimension via the spatial extent of the system.
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I. INTRODUCTION

Many applications require the prediction of a time series
with short-term tracking and long-term statistical accuracy
from only observable data, such as modeling turbulent flows,
[1] weather [2], rainfall [3], protein configurations [4], and the
stock market [5]. The system is often governed by underlying
differential equations on a smooth compact manifold of di-
mension dM. For an observation of the system with dimension
do in ambient Euclidean space, u(t ) ∈ Rdo , Whitney’s theorem
proves that there is a diffeomorphic mapping to the mani-
fold coordinates h(t ) ∈ RdM when the observation dimension
satisfies do > 2dM [6,7]. In this case, time prediction of the
state can be performed from only the current observation,
as demonstrated by data-driven approaches such as sparse
regression [8] and reduced order modeling [9,10]. In other
approaches, the full state is encoded with the history of the
system to improve short-time predictions [11–13]. An advan-
tage of reduced order modeling is the ability to perform time
evolution at low computational expense, which is essential in
control applications [14]. In particular, autoencoders discover
a latent space h = χ (u; θ ) ∈ RdM , which approximates the
minimum dimension manifold with trainable parameters θ

[9,10].
For a partial observable up(t ) ∈ Rdp of dimension dp <

2dM, the information contained in the current observation
is insufficient to reconstruct the manifold. An alternative ap-
proach is to embed the state and its m − 1 time delays ud (t ) =
[up(t ), up(t − τ ), ..., up(t − (m − 1)τ )] ∈ Rm×dp . Takens the-
orem proves that for an embedding dimension m > 2dM and
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nearly any choice of delay spacing τ there exists a diffeo-
morphic delay coordinate map to the manifold [7,15]. Takens
theorem was originally formulated for scalar observations
dp = 1, but generalizations for vector observations have been
developed [16]. While Takens’ theorem proves the existence
of delay coordinate maps, it does not offer any guidance
in determining these functions. In this paper, we use neural
networks (NNs) to learn these delay coordinate dynamics. We
continue the idea of a minimal data-driven model for chaotic
dynamics [9,10], where the delay coordinate embedding ud

serves as the reduced order model in the absence of full state
data.

Before learning delay coordinate dynamics, embedding
parameters must be chosen. Progress in time series analysis
has provided techniques for generating optimal embeddings
to reconstruct the manifold [17,18]. The embedding dimen-
sion is generally estimated by false nearest neighbor (FNN)
methods [19,20] and the delay spacing by the mutual infor-
mation (MI) [21] or correlation integral [22]. Notably, these
methods have primarily been applied to scalar observations
of low-dimensional chaotic attractors, and the choice of m
and τ are made nearly independently. Modern approaches
which can account for multivariate observations and which
aim to improve reconstruction of the true attractor’s topol-
ogy have been developed [23–27] but there has been limited
testing of these methods on chaotic attractors of dimension
dM > 3. Time series analysis methods have also been built
into data-driven methods for automatic generation of a latent
space for time evolution, where the delay coordinate embed-
ding is encoded to mask redundant time delays and promote
orthogonality [28–31]. A related challenge is observability,
or whether an observed variable is capable of accurately re-
constructing the underlying attractor, if at all. For example,
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the invariance of the Lorenz system to the transformation
(x, y, z) → (−x,−y, z) precludes z as an observable, as shown
by Lu et al. [32] Generally, such symmetries are not apparent
directly from data or short-time predictions, as we show by
attempting to learn the Lorenz dynamics from the z coordi-
nate. A promising area for future work is to preprocess data to
account for these symmetries, as previous studies have shown
this improves the interpretation of data and the performance
of data-driven approaches [33–35].

With a suitable delay coordinate embedding, the mappings
for time prediction and reconstruction can be approxi-
mated. Advancements in machine learning have motivated
many data-driven approaches for time prediction of par-
tial observables including random feature maps and data
assimilation [36,37], sparse regression [38], augmented la-
tent space embeddings [30,39], closure modeling [40,41],
and neural ordinary differential equations (NODE) [31]. De-
lay coordinate embeddings have also been used to model
nonlinear dynamics by a linear system using Koopman the-
ory [42,43]. Many of these approaches explicitly construct
delay coordinate embeddings [31,36,38]. Others invoke Tak-
ens’ theorem implicitly by use of recurrent neural networks
(RNNs), which contain a memory term for embedding the
state history [41]. Most methods test the ability to predict
chaotic dynamics on the Lorenz-63 attractor, with short-time
tracking for 5–10 Lyapunov times. More recently, some meth-
ods have been applied to the Lorenz-96 attractor [37,40]
and the Kuramoto-Sivashinsky equation (KSE) [41]. These
approaches use RNNs, with internal memory parameters in
addition to the time delay embedding. Therefore, they do not
generally represent a reduced order model of the state. The
state history must be parameterized into the architecture’s
memory, requiring memory hyperparameters in the case of
LSTMs [41] and reservoirs with a high internal dimension in
the case of echo state networks [32].

Another forecasting approach originating from the field
of statistical mechanics is the Mori-Zwanzig formalism, in
which the observation is evolved by a generalized Langevin
equation with the stochastic noise term accounting for the
effect of unobserved fast degrees of freedom [44]. A number
of data-driven methods have been proposed which follow
this approach [45–49]. In the current work, we consider
only deterministic dynamical systems, although Stark et al.
extended Takens’ theorem to forecasting stochastic observa-
tions given the reconstructed dynamical noise [50]. If only
the observations are known and not the noise, Hirata pro-
posed prediction coordinates, which use nearest neighbors on
a combination of scalar observation forecasts [51]. Darmon
developed an information-theoretic criterion for selecting em-
bedding parameters for stochastic systems [52], where the
above mentioned methods for deterministic systems [19–27]
are not appropriate. When training data is available for the full
stochastic state, Ferguson et al. have applied delay coordinate
embeddings to reconstruct protein conformations from scalar
observations [4,53–55].

In addition to forecasting, data-driven methods often seek
to perform reconstruction of the true attractor as a supervised
learning process [32,37,38,41]. In particular, reservoir com-
puters and closure models have successfully reconstructed
the KS attractor [32]. However, reservoir computers are

and require a high-dimensional internal state compared to a
diffeomorphic embedding in 2dM delay coordinates. Bakarji
et al. [38] used a SINDy (sparse identification of nonlinear
dynamics) autoencoder to identify a sparse representation
of the attractor from a time delay embedding and then
learn the dynamics. Because the dynamics and reconstruction
are trained together, the model did not generate accurate short-
time predictions for the Lorenz-63 system without training
data for the full state space. Additionally, learning sparse
representations of chaotic dynamics on a high-dimensional
manifold is a challenge, and SINDy requires time derivatives
to learn the dynamics, which may not be available from data
spaced widely in time. In contrast, the method we propose
here learns time evolution and reconstruction separately, so
short-time predictions can be made from partial observations
only. Our approach does not require time derivatives because
backpropagation can be performed using automatic differ-
entiation, such that neural ODEs can be trained with high
accuracy even for widely spaced data [10].

We propose a method using deep NNs to learn delay
coordinate maps from partial observable data. We perform
supervised learning of a discrete time map, a continuous
time flow (ordinary differential equation representation), and
a reconstruction map for multivariate partial observations of
chaotic dynamics. Our approach finds a low state dimension,
dpm ≈ 2dM, with minimal history dependence compared to
recurrent approaches which require memory integral parame-
ters which are difficult to compute [45–49] or large internal
reservoir states [13,32]. Additionally, we demonstrate the
scaling of our method to higher dimensional chaotic systems
via the KSE. We consider domain sizes L = 22 and L =
44 with periodic boundary conditions, which lie on inertial
manifolds of dimension dM = 8 and dM = 18, respectively
[9,10,56,57]. The only required inputs are the embedding
dimension m and the delay spacing τ , both of which can,
in principle, be determined before training the model. In
practice, we find some empirical testing to be required for
selecting embedding parameters, although our results are in-
sensitive to these choices. Within an appropriate range of
m and τ , the autocorrelation function of the state observa-
tion and probability distribution function of state variables
are quantitatively consistent. Short-time tracking exhibits
some sensitivity to choice of embedding parameters because
these metrics correspond closely to the training loss, which is
easier to minimize for an optimal embedding.

II. METHODOLOGY

We consider a full state space observation u(t ) ∈ Rdo from
numerical simulations or, in principle, experimental data. We
project to a lower dimension dp < do to generate a par-
tial observation up = Pu ∈ Rdp . Here the projection operator
simply filters out entries from the observation vector, but
more general projections are compatible with our formulation.
We construct a multivariate delay coordinate embedding of
the partial observable and seek to learn the discrete time map
and reconstruction map proposed by Takens theorem using
deep NNs. The data is available at a sampling interval �t .
We estimate the embedding dimension m using FNNs [19]
and the delay spacing τ = n�t using the first minimum of
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TABLE I. NN architectures.

System Function Shape Activation

Lorenz G m : 200 : 200 : 1 ReLU:ReLU:linear
F m : 200 : 200 : 3 ReLU:ReLU:linear
g m : 200 : 200 : 200 : m ReLU:ReLU:ReLUlinear

KS L = 22 G mdp : 256 : 256 : 256 : 256 : dp ReLU:ReLU:ReLU:ReLU:linear
F mdp : 256 : 256 : 256 : 256 : 64 ReLU:ReLU:ReLU:ReLU:linear
g mdp : 256 : 256 : 256 : 256 : mdp ReLU:ReLU:ReLUlinear

KS L = 44 G mdp : 512 : 512 : 512 : 512 : dp ReLU:ReLU:ReLU:ReLU:linear
F mdp : 512 : 512 : 512 : 512 : 64 ReLU:ReLU:ReLU:ReLU:linear
g mdp : 512 : 512 : 512 : 512 : mdp ReLU:ReLU:ReLUlinear

the MI, where n is the number of samples between delay
coordinates [21]. The embedding is then defined as ud (t ) =
[up(t ), up(t − τ ), ..., up(t − (m − 1)τ )] ∈ Rm×dp .

A. Discrete time evolution

To advance the partial observable in time, we first consider
a discrete time step (DTS) map,

ûp(t + τ ) = G(ud (t ); θG), G : Rm×dp → Rdp,

ûd (t + τ ) = [ûp(t + τ ), up(t ), ..., up(t − (m − 2)τ )], (1)

where θG are NN parameters. The time step is equal to the
delay time such that the delay coordinate vector can be iter-
atively forecasted. We approximate this function by a dense
feed-forward NN. Architecture details are given in Table I.
NN weights are trained using stochastic gradient descent as
implemented in Keras [58] to minimize the loss,

LG = 〈||up(t + τ ) − ûp(t + τ )||22
〉
, (2)

where ûp is the NN output.
To generate long NN predicted trajectories, an initial

delay coordinate embedding ud (0) is first integrated for-
ward as ûp(τ ) = G(ud (0); θG). The new partial observation
is used to update the delay coordinate embedding to ûd (τ ) =
(ûp(τ ), up(0), ..., up(t − (m − 2)τ ). The next time step is then
calculated as ûp(2τ ) = G(ûd (τ ); θG) and so on iteratively
such that after m steps the delay coordinate embedding con-
tains only predicted values. An advantage of this approach is
that only the current state and its m − 1 delays are required
to make predictions, in comparison to reservoir networks,
which require a warmup period before predictions can be
made [13,32]. However, intermediate timescales between the
delay spacing are not accessible without interpolation.

B. Continuous time evolution

We also consider the continuous time evolution of the delay
coordinate embedding,

dud

dt
= g(ud ; θg) − aud , (3)

where g(ud ; θg) is a NN with parameters θg, trained as de-
scribed below, and the term −aud has a stabilizing effect,
keeping solutions from blowing up for appropriately chosen
a [10,59]. No generality is lost when including this term;
the combination g − aud is learned from the data. Unless

otherwise noted, here a = 10−3. Other than the damping term,
our approach is similar to that of Wang and Guet [31]. We
approximate the delay coordinate dynamics g by a NN, or
NODE, which we use to integrate the state in time,

ŭd (t + N�t ) = ud (t ) +
∫ t+N�t

t
(g(ud (t ); θg) − aud (t ))dt,

(4)

and the NN for g is trained with the multistep loss over N steps
of size �t :

Lg =
〈

N∑
i=1

||ud (t + i�t ) − ŭd (t + i�t )||22
〉
. (5)

The gradient of the loss is calculated by backpropagating
through the solver with automatic differentiation [60]. The
ODE solver uses the fifth-order Dormand-Prince-Shapmine
method implemented in TORCHDIFFEQ [60]. In contrast to the
discrete time case, where the model must be trained on a
fixed time step and cannot resolve intermediate timescales,
the neural ODE of the continuous time model can be trained
and deployed for prediction on any time interval. Thus, the
DTS model is trained on the timescale of interest, here the
delay spacing τ . The NODE is trained using the data sampling
interval �t because previous work has shown smaller time
steps improve training [10]. However, the same study showed
discrete and continuous time predictions were consistent for
a data spacing �t < 0.5τL, which is the case for all models
trained in this work, so it is unlikely data spacing will signifi-
cantly impact model performance. The partial observable can
then be evaluated at times between delay spacings using the
same solver used to determine g. For comparison to the DTS
models, we report a NODE loss calculated after training using
only the leading delay coordinate coordinate of the embedding
as in the DTS loss:

L′
g = 〈||up(t + τ ) − ŭp(t + τ )||22

〉
. (6)

C. Reconstruction

We also reconstruct the full observation from our numeri-
cal simulation data by delay coordinate mappings. We take a
supervised learning approach on the assumption that training
data is available. The reconstruction map from delay coordi-
nates is defined as

ũ(t ) = F (ud (t ); θF ), F : Rm×dp → Rdo. (7)
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FIG. 1. Schematic of learning delay coordinate dynamics and reconstruction. (a) Start with a complete observation of the attractor, here
considering the Lorenz system. (b) Downsample to a partial observation, here taking up = x. Black points refer to the data at the delay
coordinate spacing τ . (c) Construct a delay coordinate embedding. Here we select m = 3 delays and a delay spacing τ = 0.1. (d) Learn the
discrete and continuous time dynamics of the embedding. Black points refer to the delay coordinate embedding initial condition, the black
solid line to the data, blue crosses to the discrete time prediction, and the red dashed line to the NODE prediction. The true or predicted delay
coordinate embedding can also be reconstructed to the full state given training data.

The mapping is again approximated by dense feed-forward
NNs with weights θF as detailed in Table I. The reconstruction
loss is

LF = 〈||u(t ) − ũ(t )||22
〉
, (8)

where ũ is the NN output. The reconstruction training is
performed independently of the time integration training, sep-
arating the error associated with the two functions. A visual
example of the reconstruction process is shown in Fig. 1
for the diffeomorphism between the Lorenz attractor embed-
ding of the partial state up = x, m = 3, τ = 0.1 and the true
attractor.

While the reconstruction training is performed only on
true data, we apply the function to partial states predicted
from the discrete time map. For investigating long-time dy-
namics we will refer to reconstructions of NN predicted partial
states as ˜̂u(t ) = F (ûd (t ); θF ), where predictions ûd (t ) at long
times t are generated as described above.

III. RESULTS

We apply our method to two common chaotic attractors
to demonstrate the short term tracking and reproduction of
long-time statistics in the delay coordinate embedding space,
as well as reconstruction of the long-time statistics to the true
attractor.

A. Lorenz system

We consider the Lorenz attractor [61]

dx

dt
= σ (y − x),

dy

dt
= x(ρ − z) − y,

dz

dt
= xy − βz, (9)

where σ = 10, β = 8/3, and ρ = 28. The Lyapunov time
using these parameters is τL ≈ 1, and the fractal dimension
estimated by the correlation integral is is dA ≈ 2.06 [62]. The
training data is generated using a Runge-Kutta 4-5 integrator
in SciPy with a sampling time �t = 0.1. The first 104 data
points are discarded as transients, and the next 5 × 105 data
points are used for training with an 80/20 training/test split.
The discrete time and reconstruction maps are trained in Keras
[58] using an Adam optimizer for 1000 epochs with an initial
learning rate of 0.001, which is decreased by a factor of
0.5 every 100 epochs. The NODE models are trained using
TORCHDIFFEQ [60] with a batch size of 100 for 50 000 epochs.
The initial learning rate is 0.001, and it is decreased by a
factor of 0.5 every 10 000 epochs. The number of time steps
forecasted during training is N = 2.

We select τ = 0.1, which is the first minimum of the
MI [21]. The embedding dimension determined by FNN is
m = 3 [19]. Time-series analysis calculations are performed
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FIG. 2. Lorenz attractor test data loss for varying partial observable up and embedding dimension m. (a) Time integration NNs, DTS (solid
lines and filled symbols), NODE (dashed lines, open symbols). (b) Reconstruction NNs. Delay spacing τ = 0.1 for all models.

using the DelayEmbeddings module of the Julia package Dy-
namicalSystems.jl. [27,63]. The embedding parameters for
different observables up = x, y, z were similar. To confirm the
choice of m suggested by FNN, we fix the delay spacing and
train five NNs at a varying embedding dimension m = 1 − 6,
as shown in Fig. 2. NN maps for embeddings with delay
spacings τ = 0.05 − 0.2 did not qualitatively differ from the
presented results. Variance of the MSE is low for both time
and reconstruction NNs, although some time-stepping models
fall onto periodic orbits or fixed points at long times. There-
fore, in quantifying the attractor reconstruction (Figs. 3–5),
we select the model which best reproduces the attractor joint
probability density function (PDF) P( ˜̂x, ˜̂y) after time inte-
gration and reconstruction (Fig. 5). To quantify uncertainty
among models which remain on the true attractor, we report
in Fig. 6 the mean and standard errors for reconstruction of

a long NN time-evolved trajectory. In all cases, the standard
error is at least an order of magnitude smaller than the mean.

The test data mean squared error (MSE) of the
DTS map plateaus at an embedding dimension m =
3 for an observation up = x, consistent with FNN and
other data-driven approaches [30]. However, we find
m = 4 is required for up = y. The need for an addi-
tional delay is confirmed by statistical reproduction of
the attractor (Figs. 3–5). Observing the z component of
the Lorenz appears to provide excellent time prediction, which
is unexpected due to the invariance of the Lorenz attractor to
the transformation (x, y, z) → (−x,−y, z). The low one-step
error is misleading, as long-time trajectories generated by the
NN fall onto periodic orbits or fixed points. Thus, we consider
only the x and y observables in further detail. The MSE
of the reconstruction maps are similar to the DTS models,

FIG. 3. Short term tracking of the Lorenz attractor with different observables: (a), (b) up = x; (c), (d) up = y. Left column: Representative
trajectories generated from the same initial condition u0. Symbols correspond to predictions from a discrete time step model and dashed
lines to a neural ODE model. Both DTS and NODE models use m = 3, τ = 0.1 for up = x and m = 4, τ = 0.1 for up = y. Right column:
Ensemble average error of DTS models (symbols) and NODE models (lines) for increasing embedding dimension. Delay spacing τ = 0.1 for
all embeddings.
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FIG. 4. Autocorrelation function of the Lorenz attractor partial observable for (a) up = x, (b) up = y. Solid lines correspond to true data,
dashed lines to predictions of NODE models, and symbols to predictions of DTS model predictions. Delay spacing τ = 0.1. The data and
NODE predictions use a sampling interval �t = 0.01 and DTS use �t = τ .

with up = x plateauing at m = 3 and up = y at m = 4. The
embedding of up = z fails to reconstruct the true attractor,
as expected and in agreement with previous results using
reservoir computing [32].

Comparing DTS and NODE models, we again find an
observation up = y plateaus at m = 4. The quantitative value
of L′

g is higher than the DTS model because the NODE is
trained to minimize Lg. For an observation up = x, the MSE
again decreases up to m = 3, although the error increases
for m > 4. This could be due to errors in predicting delay
coordinate distance from the current time or simply due to
the introduction of irrelevant information to the embedding.
This is consistent with the results of Wang and Guet [31],
who found that applying FNN in an autoencoder reduced an
input m = 6 embedding of the Lorenz system with observa-
tion up = x to the leading m = 3 delays. Further, they found
NODE predictions using an autoencoder performed better
in short-time tracking than training on the delay coordinate
embedding with m = 6. However, we find that for the KSE
attractor with multidimensional observations, FNN does not
reliably predict the embedding dimension. Thus, performing
this step automatically in an autoencoder without knowledge
of the manifold dimension remains challenging.

While the test MSE for the time stepping and reconstruc-
tion NNs are low, they capture only the one-step pointwise

error. To further quantify the ability of NNs to reconstruct
the attractor, we consider ensemble average statistics from
long NN trajectories. As expected, both DTS and NODE time
integration models with an embedding dimension m = 1 and
m = 2 go to fixed points and periodic orbits, respectively.
Therefore, we focus on results for m � 3.

First, we show an example of the short-term forecasting
capabilities. We generate 2000 trajectories of the partial ob-
servable for ten time units from different initial conditions
using DTS and NODE models. Two representative trajectories
are shown in Figs. 3(a) (up = x, m = 3) and 3(c) (up = y, m =
4), where the NNs track for several time units where τL ≈ 1,
comparable to other methods [30,31,36]. We also show the
ensemble average tracking error for these two embeddings
in Figs. 3(b) and 3(d). Consistent with the test MSE, the
tracking error converges for an embedding dimension m � 3
and observation up = x. With an observation up = y, tracking
improves slightly with increasing embedding dimension up to
m = 6, although the MSE plateau value m = 4 already pro-
vides good predictive capability and preserves the dynamics
in long trajectories (Figs. 4–6).

DTS models for both observables exhibit similar tracking
errors, but the NODE models for up = x are significantly
more accurate than for up = y. We speculate this is due to the
sharp gradients in y that occur when the solution jumps from

FIG. 5. Joint PDF of the Lorenz attractor from (a) data P(x, y) and from a discrete time integrated and reconstructed NN trajectory from a
delay coordinate initial condition, P( ˜̂x, ˜̂y); (b) up = x, m = 3; (c) up = y, m = 4.

034215-6



DEEP LEARNING DELAY COORDINATE DYNAMICS FOR … PHYSICAL REVIEW E 107, 034215 (2023)

FIG. 6. KL divergence of the true and predicted Lorenz joint
PDF P(x, y) for increasing number of delays. The horizontal line in-
dicates the divergence between two true data sets with different initial
conditions. Open symbols and closed symbols refer to NODE and
DTS time integration models respectively. Half-filled symbols refer
to reconstruction of a true partial observable trajectory, F (ud ; θF ),
which excludes error from time integration. Symbols and error bars
are the mean and standard error respectively of trajectories from five
different models.

one wing of the attractor to the other, as seen at t ≈ 4.1 in
Fig. 3(c). Additionally, NODE models observing up = x per-
form worse with m > 4, again due to irrelevant information in
the embedding.

We compare the forecasting capabilities of DTS and
NODE NN models to a model proposed by Gottwald and
Reich, random feature maps and data assimilation (RAFDA)
[36]. For consistency, we trained models using 4000 data
points, which is the same amount used in Ref. [36]. To
prevent overtraining, we used L2 regularization, such that
the DTS loss is L∗

G = LG + α||θG||22 and the NODE loss
is L∗

g = Lg + α||θg||22, with α = 10−4. Only the results pre-
sented in Table II use this smaller data-set model. Following
the definition of the relative forecast error in Ref. [36], E (t ) =
|ud (t ) − ŭd (t )|2/|ud (t )|22 � Etol, the reference time t f occurs
when the forecast error for a given trajectory exceeds a tol-
erance value Etol = 40. We compute the mean forecast time
from the trajectories used to generate Fig. 3 and compare
to the results reported for RAFDA [36] in Table II. We find
DTS and NODE models have comparable forecasting times,
and both outperform RAFDA by nearly a factor of 2. A no-
table contribution of RAFDA is the use of data assimilation
to account for measurement errors in the observation. Wang
and Guet [31] showed that a fitting NN before constructing
the delay embedding had a similar effect for time-delayed
NODEs.

TABLE II. Mean forecasting time for an observation up = x and
m = 3. RAFDA results [36] for no observational noise and delay
spacing τ = 0.2. DTS and NODE use a delay spacing τ = 0.1.

RAFDA [36] DTS NODE

〈τ f 〉 2.0 3.81 3.88

Next we quantify the dynamics of a long NN trajectory via
the autocorrelation function of the partial observable state:

Cp(t ) = 〈up(0) · up(t )〉〈
u2

p

〉 . (10)

The results shown in Fig. 4 are determined from NN trajec-
tories run for 5 × 104 time units. For an observation up = x,
the DTS model again reproduces the true data at m = 3 and
achieves similar results with additional delays. For up = y, the
NN model reproduces the data for the MSE plateau dimension
m = 4. The slight improvement up to m = 6 found short-term
tracking is not visible in this case. NODE and DTS model
predictions agree quantitatively with the data at DTS intervals
τ , but the NODE models also reproduce the true Cp(t ) at
arbitrary timescales (sampling �t = 0.01 shown here).

We conclude our study of the Lorenz system with the
reconstruction of the 3D attractor from the long partial observ-
able trajectories, ˜̂u(t), generated by a DTS or NODE model as
described in Sec. II C. We visualize the reconstruction via the
joint PDF P(x, y) in Fig. 5. The reconstruction results are con-
sistent with other metrics. An observation up = x reproduces
the joint PDF at m = 3 and up = y at m = 4. We quantify the
reconstruction for increasing embedding dimension via the
KL divergence in Fig. 6:

DKL( ˜̂P|P) =
∫ ∞

−∞

∫ ∞

−∞
P( ˜̂x, ˜̂y)ln

P( ˜̂x, ˜̂y)

P(x, y)
. (11)

We assume the contribution to the integral from empty bins
is zero as in Ref. [64]. For reference, we include the KL
divergence between two true data sets with different ini-
tial conditions (dashed horizontal line). We also show the
KL divergence DKL(P̃|P) for the case of reconstruction of
a true partial observable delay coordinate embedding ũ =
F (ud ; θF ), which represents a baseline of expected perfor-
mance for trajectories generated by NN time integration
models. All PDFs are generated with the same trajectory
length. Using the decoder only, the KL divergence plateaus at
the same value as the reconstruction MSE, and the quantitative
value is comparable to the divergence of two true data sets.
Joint PDFs from the NN integration models have a slight de-
pendence on the number of delays and perform quantitatively
worse than only the decoder, as expected. We note the NODEs
perform better than the DTS models for m = 3 − 6.

Thus, we have demonstrated that we can learn NN
approximations to delay coordinate time integration and
reconstruction maps from partial observable data for a low-
dimensional (dM = 3) chaotic attractor.

B. Kuramoto-Sivashinky equation

Next we test our method on higher dimensional chaotic
attractors with multivariate observations. In particular, we
consider the KSE

∂t u = −u∂xu − ∂xx − ∂xxxxu (12)

with periodic boundary conditions in the domain x ∈ [0, L].
We consider L = 22, 44 because the manifold dimension for
L = 22 is known to be dM = 8 [57] and the dynamics be-
come increasingly chaotic with L. The manifold dimension
for L = 44 can be approximated by autoencoders [9,10] and
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FIG. 7. KSE test loss of (a) time integration NNs, DTS (filled symbols), and NODE (open symbols). (b) Reconstruction NNs for increasing
observation dimension dp and delay coordinate dimension m. Delay spacing τ = 1.5 for all results. NODE models are only trained for
embedding parameters dpm = 16 ≈ 2dM.

the number of physical modes [56], which find dM = 18.
Trajectories were generated using the code from Cvitanović
et al. [65], implementing a Fourier spectral method in space
and a fourth-order time integration scheme [66] on a do = 64
point grid. We generate a trajectory with 4 × 105 time steps
with �t = 0.25 with an 80/20 training test/split. DTS and
reconstruction NNs are trained by the same procedure as
the Lorenz models. NODE models are trained by the same
procedure as the Lorenz models, but the number of epochs
is increased to 200 000, the learning rate drops every 25 000
epochs, and the number of time steps forecasted during train-
ing is N = 20. The network depth and width is also increased
(Table I) We trained five time integration and reconstruction
models for each choice of embedding parameters. With a suf-
ficient number of delays to reach the embedding dimension,
the variance in KL divergence with the true data between
models was smaller than the point size in Fig. 12.

First focusing on L = 22, we choose evenly spaced grid
points as observations in the same manner as Lu et al. [32]
with an observation dimension dp = 1, 2, 4, 8. A diffeomor-
phism to the state without time delays is expected at dp = 16
due to Whitney’s theorem [6,7], so we do not consider dp > 8.
Additionally, we will find NNs can forecast and reconstruct
the attractor at dp = 8 even without time delays. We need to
generate a delay coordinate embedding for each dp. However,
generating good embeddings for highly chaotic attractors
and multivariate observations is challenging. Several methods
have been proposed for multivariate observations, [23,24,27]
but in our tests using the code available in DynamicalSys-
tems.jl [27,63], they failed to generate an embedding for the
KSE with dp = 1.

Therefore, we estimate a delay spacing via the MI and
embedding dimension via FNN for one grid point dp = 1,
which yields τ = 1.5 and m = 4. We use these values as initial
guesses and vary both parametrically in training NNs. Cur-
rently, we consider only uniform embeddings. We find τ =
1.0 − 4.0 to provide the best performance in reconstruction
and time stepping. For each dp, we increase the embedding
dimension from m = 1 to dpm = 2dM = 16, at which dimen-
sion we expect to have a diffeomorphism to the state [16].

Figure 7 shows the test data set loss for the DTS, NODE,
and reconstruction models for an increasing number of grid
points in the observation and number of delays. Here we

use the same τ = 1.5 for quantitatively comparing the loss
at different dp because the delay spacing implicitly affects
the time step loss through the step size. For later results, we
will use τ = 4.0 for dp = 4, 8 because we find the longer em-
bedding window improves reproduction of attractor statistics.
The discrete time NN improves with increasing observation
dimension, as expected. Increasing the number of delays m
at a fixed dp, we observe a dramatic improvement up to
dpm = dM = 8 for all observations dp. Providing additional
delays, the loss decreases slightly up to dpm = 2dM = 16 and
then plateaus or slightly increases.

Trends for the reconstruction map are largely similar,
although the decrease in the loss with dp is more pro-
nounced because the error is now calculated on the full
do = 64-dimensional reconstructed state, rather than the
dpm-dimensional partial state. Our results are qualitatively
consistent with Lu et al., [32] who observed a significant im-
provement in reconstruction from dp = 1 − 4, and a smaller
improvement from dp = 8. Quantitatively, the time-delayed
NNs used in this work perform better than reservoir computers
(Fig. 8(b) of Ref. [32]), which implicitly embed the state
history.

Based on the plateau of the DTS and reconstruction model
loss at dpm = 16, we train NODE models only for dpm = 16.

FIG. 8. Inference RMSE of the unobserved KSE state variables
for increasing observation dimension dp. Reservoir computing re-
sults reported by Lu et al. [32].
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FIG. 9. Short-term ensemble average tracking of the KSE par-
tial observable for NODE models (lines) and DTS models (points)
with increasing observation dimension dp. Delay spacing τ = 1.5
for dp = 1, 2 and τ = 4.0 for dp = 4, 8. The product of the num-
ber of time delays m = 16, 8, 4, 2 and dp = 1, 2, 4, 8 is constant:
dpm = 16 ≈ 2dM.

As noted in Sec. II B, we calculate the DTS loss term using
the NODEs L′

g for comparison of the two models. The NODE
error also decreases as the dimension of the observation dp

increases. The quantitative value of L′
g is larger than LG, again

because NODEs are trained to minimize a different loss. In
comparing tracking and attractor reconstruction, below we
find the NODEs perform well.

We compare the reconstruction error of our models with
dimension dpm = 16 to those of Lu et al. [32] for varying ob-
servation dimension dp, who reported the RMSE for inference
unobserved states si from the delay coordinate embedding
using reservoir computing:

RMSEs =
∑

i,t [si(t ) − s̃i(t )]2∑
i,t [si(t )]2

. (13)

We train models with the same amount of data as Lu et al.,
who used 60 000 data points with a separation of �t = 0.25.
The embedding parameters for increasing dp are the same as
other results presented in Figs. 9–12. Only the results shown
in Fig. 8 use the smaller training data set. L2 regularization
was used to prevent overtraining with a reconstruction loss

FIG. 11. Visualization of KSE reconstruction after time inte-
gration using DTS models. Color contour trajectories u(x, t ) with
solid lines at u = 1 and dashed lines at u = −1. (a) Data. (b) dp =
1, m = 16, τ = 1.5. (c) dp = 2, m = 8, τ = 1.5. (d) dp = 4, m =
4, τ = 4.0. (e) dp = 8, m = 2, τ = 4.0.

L∗
F = LF + α||θF ||22 and α = 10−4. We find that our method

outperforms the reservoir computers at all dp. Notably, our
method has a low state dimension and NN width (256 neu-
rons) compared to reservoir computers used by Lu et al. ,
which have an internal reservoir dimension of 3000.

We quantify the ensemble average tracking error of the
partial state for increasing observation dimension dp in Fig. 9.
Here we show only one embedding model for each dp cor-
responding to dpm = 16. As noted above, we find that larger

FIG. 10. Autocorrelation function of the KSE partial observable for increasing observation dimension dp. Results from (a) DTS models
and (b) NODE models. Embedding parameters are the same as Fig. 9.
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FIG. 12. Joint PDFs of the KSE for L = 22 generated from (a) data and discrete time integrated and reconstructed NN trajectories, ˜̂u =
F (G(u)), with observation dimensions(b) dp = 1, (c) dp = 2, (d) dp = 4, (e) dp = 8. Embedding parameters are the same as previous figures.
(f) KL divergence of the true attractor PDF and NN reconstructed PDFs. Filled symbols refer to DTS forecasted data, open symbols refer to
NODE forecasted data, and half-filled symbols to reconstruction of a true partial observable trajectory without time integration. The horizontal
dotted line indicates the KL divergence of two PDFs from numerical simulations with different initial conditions.

delay spacings perform better for larger observation dimen-
sions due to the increased delay window, so in these results we
use τ = 4.0 for dp = 4, 8. We see that for a sparse observation
of the state space, both DTS and NODE models diverge from
the true solution relatively quickly compared to the Lyapunov
time τL ≈ 21 [57]. Tracking improves dramatically from dp =
2 to dp = 4 and slightly more for dp = 8. For dp = 4, 8,
there is a modest dependence on τ , but for dp = 1, 2 predic-
tions separate from the true solution quickly regardless of the
choice of τ . We generally find NODE models to perform bet-
ter than or equivalent to DTS models in short-term tracking.
This could be related to the NODEs being trained with a data
spacing �t = 0.25 as compared to τ = 1.5 − 4.0 for the DTS
models, although discrete time steppers trained on ROMs of
the KSE full state have shown prediction degradation does not
occur until a data spacing 0.4τL ≈ 8.4 [10].

Next we investigate the long-time dynamics of the NN
discrete time maps by the autocorrelation in Fig. 10, again
showing only one embedding for each dp. The data is gen-
erated from a trajectories run for t ≈ 1 × 105 time units or
t/τL ≈ 5000. Both DTS and NODE model predictions for
dp = 4, 8 reproduce the data up to 2–3 Lyapunov times. These
observables also match the true autocorrelation up to at least
τL for lower embedding dimensions dpm = dM = 8. Shorter
or longer delay windows from τ = 1.0 − 6.0 also agree up

to τL. However, model predictions using dp = 1, 2 do not
reproduce the data for any combination of hyperparameters
and embedding parameters we tested. This suggests there
is a number of observables at which learning the time map
becomes significantly easier, which is consistent with the im-
provement from dp = 2 to dp = 4 seen in Ref. [32]. This could
be related to the number of determining nodes as predicted by
inertial manifold theory [67] and infinite dimensional versions
of Takens theorem [68,69], although these works predict a
significantly lower dimensional observation of dp = 4, m = 1
or dp = 1, m = 4 to fully describe the KS attractor.

The success of NNs with dp = 4, 8 could simply be be-
cause the diffeomorphism is easier to learn, as compared to
dp = 1, 2, which are theoretically diffeomorphic to the at-
tractor at m = 16, 8, but are found to perform significantly
worse in practice. Both deviate from the true correlation func-
tion after 0.25τL, although the dynamics remain chaotic. The
poor long-time performance is despite the fact that the one-
step loss for dp = 2, m = 8 is quantitatively comparable to
dp = 4, m = 4. This suggests the predicted trajectory initially
stays on the true attractor for some short duration, which we
visualize below after attractor reconstruction [Fig. 11(b)].

We comment that partial observation embeddings dp =
1, 2, 4 with few delays perform significantly worse than the
results shown here both in short-term tracking and long-time
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FIG. 13. Joint PDFs of the KSE for L = 44 as determined from (a) data, (b) dp = 4, m = 8, τ = 1.25, (c) dp = 8, m = 4, τ = 2.5, (d) dp =
16, m = 2, τ = 2.5. Time integration is performed using a DTS model (b)–(d).

dynamics. Generally, for dpm < dM, the predicted trajectory
quickly goes to a fixed point or periodic orbit. While dp = 1, 2
do not quantitatively reproduce the attractor, there is a clear
improvement from the delay coordinate embedding.

Finally, we investigate the quality of the reconstruction
of the true KS attractor simulated on a grid from our delay
coordinate embeddings. As with the Lorenz attractor, we first
consider an individual trajectory to visualize the effect of
increasing observation dimension. In Fig. 11, the same initial
condition is used in each panel. The true data [Fig. 11(a)] is
generated from numerical integration of the KSE. The panels
below are generated by first filtering the initial condition to
the appropriate number of equally spaced grid points dp and
embedding these observations with time delays of the partial
state. The trajectories are evolved forward for t ≈ 70 time
units as detailed in Sec. II A and reconstructed to the full state
as in Sec. II C. A DTS model is used here, but the NODE
model predictions are visually similar.

For the trajectory shown, the NN time integrated and
reconstructed trajectory for dp = 8, m = 2 shows excellent
agreement with the true solution up to 70 time units. The
trajectory generated from dp = 4, m = 4 also performs well,
although visible differences emerge by 2τL ≈ 40. Even a
sparse observation dp = 2, m = 8 generates reasonable track-
ing and reconstruction up to τL, although at intermediate times
it becomes clear the predicted solution leaves the true attrac-
tor. The single grid point dp = 1 time prediction separates
from the true solution by 0.5τL, and error in the reconstruction
are visually apparent.

Next we visualize the accuracy of reconstruction of NN
time-integrated trajectories used to generate the autocorrela-
tion function in Fig. 10. We consider the joint PDF of the
first and second spatial derivatives, P(ux, uxx ) (Fig. 12), which
provides a detailed view of the attractor [9,10]. Joint PDFs
generated by a DTS model are shown and NODE results
are similar. Attractor reconstruction again improves with the
observation dimension, with dp = 8 showing excellent agree-
ment. With dp = 4, there are small and rare excursions off
the true attractor, but the finer details are retained. At lower
dimensions dp = 1, 2, the predicted values do not capture the
high density regions of the attractor accurately, in agreement
with the other metrics. We quantify the difference between
the predicted and true attractors with the KL divergence
DKL( ˜̂P|P), defined similarly to the Lorenz case [Eq. (11)].

The predictions improve by over an order of magntiude from
dp = 2 to dp = 4, and then by a factor of 2 for dp = 8. The
KL divergence of the true data and model predictions are
comparable for both DTS and NODE time integration. We in-
clude a comparison to the KL divergence DKL(P̃|P) of a joint
PDF generated by reconstruction of a true partial trajectory
without time integration, F (ud ; θF ). As expected, it is closer
to the true data due to the lack of time integration error. The
dashed horizontal line indicates the KL divergence between
two true solutions with different initial conditions, which is
quantitatively comparable to the dp = 8 prediction.

To further demonstrate the scaling of our approach to
higher dimensional attractors, we consider data from the KSE
with L = 44, which lies on a manifold of dimension dM =
18. The numerical simulation details, amount of training data,
and NN training procedure are the same as for L = 22. The
network width is increased to provide additional capacity for
modeling the higher dimensional attractor. Here we show only
the joint PDFs P(ux, uxx ) in Fig. 13 and the associated KL
divergence for DTS, NODE, and reconstruction models in
Fig. 14.

We again find that as the observation dimension dp =
16 approaches the attractor dimension, the NNs are suc-
cessful even without delays, m = 1, although an additional
delay m = 2 provides quantitative improvement. At dp = 8 ≈
1/2dM, the NN predictions stay on the attractor at an em-
bedding dimension m = 4, although the predictions are quan-
titatively worse than the comparable case at L = 22, dp =
4 ≈ 1/2dM. At lower dimensions dp = 4 ≈ 1/4dM, the NNs
again fail to provide accurate predictions for any delay em-
bedding dimension. Thus, there may be practical limitations
in learning global delay coordinate maps for sparse measure-
ments on high-dimensional attractors. This could be alleviated
by a multiple charts and atlases approach, in which the at-
tractor is clustered into regions which may be locally lower
dimensional and thus easier to approximate [70]. DTS models
are qualitatively comparable to NODE models but more quan-
titatively accurate in reproducing attractor statistics (Fig. 14).

IV. CONCLUSIONS

We have presented a method for forecasting and re-
constructing chaotic attractors from partial observable data.
We use deep NNs to learn functions that approximate the
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FIG. 14. KL divergence of the true and predicted KS L = 44
joint PDF P(ux, uxx ) for increasing observation dimension dp. All
embedding dimensions are dpm = 32. The horizontal line indicates
the divergence between two true data sets with different initial con-
ditions. Open symbols and closed symbols refer to NODE and DTS
time integration models, respectively. Half-filled symbols refer re-
construction of a true partial observable trajectory, F (ud ; θF ), which
excludes error from time integration.

diffeomorphic mapping from a delay coordinate embedding to
the true attractor. We have verified the approach on two com-
mon model systems: the 63 Lorenz system and the KSE. The
low-dimensional Lorenz model can be accurately predicted in
time and reconstructed to the true state from a scalar obser-
vation. The KSE, however, requires multivariate observations
to fully reproduce the attractor. We have tested our method on
short-time tracking and long-time dynamics.

The method has similarities to other data-driven ap-
proaches which reconstruct latent attractors and learn discrete
time maps or continuous time flows. However, we have
demonstrated the capacity of DNNs to reproduce high-
dimensional attractors via the KSE at L = 22, 44. Currently,

it has only been applied to embeddings with uniform time
delays but it can also be applied to nonuniform embeddings.
In this case, neural ODEs would be advantageous because the
discrete time map would require interpolation or a restrictive
choice of time step to update the time delays. A limitation of
uniform embeddings is that it is difficult to learn the delay
coordinate maps for sparse observations with many delays,
as evidenced by the relatively poor performance for KSE
with dp < 1/2dM. Information at times intermediate to the
uniform delays could improve the quality delay coordinate
phase space, although our attempts on the KSE using several
existing methods [23,24,27] did not converge.

Our method is relevant to applications requiring fore-
casting of partial observations from experimental data. The
reconstruction map could be trained on simulation data and
applied to experimental measurements, as proposed for pro-
tein configurations [4,53–55], although it is not a focus of
the current paper. We are particularly interested in applying
our approach to data-driven control [71,72]. A deterministic
reduced-order model would be useful for controller design by
many methods, in particular, for recent deep reinforcement
learning approaches [14,35,73]. With minimal modifications,
a time-delayed evolution model with actuated data would
replace an actuated reduced order model learned from full
state data. Other data-driven time evolution models have been
used for control, such as dynamic mode decomposition [74],
sparse regression, [75], and Koopman theory [76–78]. These
methods may be preferable for interpretability and discovery
of an optimal control policy, particularly in the low-data limit
[79]. However, we propose that reduced order NN models
are ideal for controlling nonlinear high dimensional systems
because of their accuracy and computational efficiency.
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