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Discrete breathers in square lattices from delocalized nonlinear vibrational modes
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Standing and moving discrete breathers (or equally, intrinsic localized modes) in a square β-Fermi-Pasta-
Ulam-Tsingou lattice are obtained by applying localizing functions to the delocalized nonlinear vibrational
modes (DNVMs) found earlier by Ryabov and Chechin. The initial conditions used in our study do not
correspond to exact spatially localized solutions, but make it possible to obtain long-lived quasibreathers. The
approach employed in this work can easily be used to search for quasibreathers in three-dimensional crystal
lattices, for which DNVMs with frequencies outside the phonon spectrum are known.
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I. INTRODUCTION

Discrete nonlinear systems support spatially localized
large-amplitude oscillatory modes called discrete breathers
(DBs) or intrinsic localized modes (ILMs). First DBs were
discovered in nonlinear chains [1–3] and then in higher di-
mensional lattices [4,5], as well as in crystal lattices [6].

In higher dimensional lattices, different types of DBs can
exist, and the problem of finding and classifying them arises.
Delocalized nonlinear vibrational modes (DNVMs) [7–9],
which have frequencies outside the phonon spectrum, help
to solve this problem [10,11]. DNVMs are exact solutions
to the equations of motion of particles, which can be found
considering only the symmetry of the lattice; originally they
were called bushes of nonlinear normal modes [7–9]. In the
limit of small amplitude, DNVMs are transformed into short-
wavelength phonon modes. Since only the symmetry of the
lattice is taken into account in the derivation of DNVMs,
they are exact solutions regardless of the type of interparti-
cle interactions and for any amplitude. DNVM can have m
components; then it has m degrees of freedom and can be
described by m coupled dynamical equations.

DNVMs are derived from irreducible representations of
crystallographic symmetry groups [7–9]. An introduction to
this approach can be found in the appendices of Refs. [12,13].

To the best of our knowledge, all DBs reported so far can be
obtained by applying localizing functions to DNVMs having
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frequencies outside the phonon spectrum. This fact suggests
that the search for DBs should be preceded by an analysis
of DNVMs in the lattice under consideration. This approach
was implemented for a triangular lattice, for which all one-
component and two-component DNVMs were analyzed in
Ref. [12] and it was shown that three of them have frequencies
above the phonon spectrum. Then, in Ref. [11], various DBs
were obtained by applying localizing functions to these three
DNVMs.

Applying localization functions to DNVM usually does
not lead to an exact DB solution, but rather to a long-lived
quasibreather [14].

Recently Ryabov and Chechin have constructed 16 one-
component DNVMs for square lattice [13] using the group-
theoretical approach developed in Refs. [7–9]. Only two of
them have frequencies above the phonon spectrum [13], which
means that they can be used for obtaining spatially localized
vibrational modes by applying localizing functions, and this
work is carried out in the present study.

It is important to present the motivation for searching for
DNVMs and DBs in model lattices and in crystals.

DBs affect the macroscopic properties of crystals [6,15],
scatter phonons and thereby reduce thermal conductivity [16],
and can initiate the formation and migration of lattice de-
fects [17–19].

DNVMs and DBs are related to each other. DNVMs were
used to search for DBs in a scalar square lattice [20]. DNVMs
found for a chain and for a two-dimensional (2D) triangular
lattice were employed to construct one- and two-dimensional
DBs in fcc metals [21–23]. Recall that k-dimensional DB in
n-dimensional lattice (k < n) is delocalized in k dimensions
and localized in n − k dimensions. DNVMs were consid-
ered to obtain DBs in triangular Fermi-Pasta-Ulam-Tsingou
(FPUT) lattice [11], in triangular Morse lattice [24,25], and
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FIG. 1. Numbering of bonds and particles in the square lattice
having step h. The nearest and next-nearest bonds are shown in green
and red, respectively. The particles are numbered by the indices i
and j.

in bcc vanadium and niobium [10]. DNVMs of hexagonal
lattice obtained in [26] were studied in graphene [27–30]
and h-BN [31]. Modulational instability of DNVMs pro-
duces chaotic DBs [32–38]. The effect of chaotic DBs on
macroscopic properties of triangular lattice was analyzed [39].
DNVMs help to check the accuracy of interatomic potentials
used in molecular dynamics simulations [40].

It should also be discussed why the nonlinear dynamics of
2D lattices is of interest [41–44]. 2D lattices are used in many
applications, for example, in the study of nonlinear excitations
in mica [45–48] and model lattices [49–54]. It was shown
that distortions of square lattice can open a gap in the phonon
spectrum [55]. Moving periodic traveling waves were found in
2D lattices with saturable nonlinearity [56]. DBs with in-plane
vibrations were identified in 2D FPUT lattices [57] and in
topological ferromagnetic honeycomb lattices [58].

In the rest of the paper, the model is described in Sec. II.
Then the phonon dispersion relation for the lattice is presented
in Sec. III, one-component DNVMs are described in Sec. IV,
and examples of analytical treatment of DNVMs are given
in Sec. IV. In Sec. V, discrete breathers are obtained using
localizing functions. The results are summarized and future
problems are outlined in Sec. VI.

II. FPUT SQUARE LATTICE

In Fig. 1, a two-dimensional square β-FPUT lattice with
the lattice step h is shown in the xy plane. Each particle
interacts with four nearest and four next-nearest neighbors.
The basis vectors of the lattice are e1 = (h, 0) and e2 = (0, h).
The lattice points have radius vectors

ξi, j = ie1 + je2, (1)

where i and j are integers.
Particles of mass m have two degrees of freedom, displace-

ment vector components (ui, j, vi, j ) from lattice positions. At
time t the particle i, j has a radius vector ri, j (t ) = ξi, j +
(ui, j (t ), vi, j (t )).

Nearest (n) and next-nearest (nn) interactions are described
by the β-FPUT potential

ϕn,nn(r) = kn,nn

2
(r − αn,nn)2 + βn,nn

4
(r − αn,nn)4, (2)

where r is the distance between the particles and αn = h and
αnn = √

2h are the equilibrium lengths of the nearest and
next-nearest bonds, respectively; kn and knn are the coeffi-
cients for the harmonic terms and the coefficients βn and
βnn define the strength of anharmonicity for the nearest and
next-nearest bonds, respectively.

Without loss of generality, we set h = 1 and kn = 1 by
choosing properly the units of distance and energy, respec-
tively. For the harmonic stiffness of the next-nearest bonds,
we also set knn = 1. The anharmonicity coefficients are set
equal to βn = βnn = 10, and then nonlinearity comes into play
at particle displacements of the order of 0.1h. The particle
mass is taken equal to m = 1, which can always be done by
choosing the unit of time.

Let us define the following vectors connecting the particle
i, j with the nearest and next-nearest neighbors (see Fig. 1):

Ri, j,1 = ri+1, j − ri, j, Ri, j,2 = ri, j+1 − ri, j,

Ri, j,3 = ri−1, j − ri, j, Ri, j,4 = ri, j−1 − ri, j,

Ri, j,5 = ri+1, j+1 − ri, j, Ri, j,6 = ri−1, j+1 − ri, j,

Ri, j,7 = ri−1, j−1 − ri, j, Ri, j,8 = ri+1, j−1 − ri, j . (3)

Computational cell includes I particles along the x axis and
J particles along the y axis. The periodic boundary conditions
are used: ri, j = ri+I, j = ri, j+J .

The Hamiltonian of the system is the sum of the kinetic
(K) and potential energies of the nearest (Pn) and next-nearest
(Pnn) bonds:

H = K + Pn + Pnn

=
I∑

i=1

J∑
j=1

m

2
|ṙi, j |2

+
I∑

i=1

J∑
j=1

(
2∑

k=1

ϕn(|Ri, j,k|) +
6∑

l=5

ϕnn(|Ri, j,l |)
)

, (4)

where ṙi, j = dri, j/dt .
The equations of motion obtained from Eq. (4) using the

Hamilton’s principle have the form

müi, j =
4∑

k=1

DnRi, j,k,x +
8∑

l=5

DnnRi, j,l,x,

mv̈i, j =
4∑

k=1

DnRi, j,k,y +
8∑

l=5

DnnRi, j,l,y, (5)

where

Dn = ϕ′
n(|Ri, j,k|)
|Ri, j,k| , Dnn = ϕ′

nn(|Ri, j,l |)
|Ri, j,l | . (6)

The equations of motion Eq. (5) are integrated numerically
using the Störmer method of order six [59] with the time step
0.002 time units.

The size of the simulation cell is taken equal to I = J =
120.
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FIG. 2. Two one-component DNVMs in a square lattice having
frequencies above the phonon spectrum. The DNVM amplitude is
A = 0.2 in both cases. The particles are shown in yellow at the max-
imum deviation from the equilibrium positions, and the black lines
show the trajectories of the oscillating particles. In the work [13], the
DNVMs shown in panels (a) and (b) were numbered 1 and 16, but in
this study they are numbered I and II, respectively.

III. PHONON DISPERSION RELATION

Below the result of the work [13] is reproduced for the
convenience of the reader.

For small deviations of particles from their lattice posi-
tions, ui j � h and vi j � h, the equation of motion Eq. (5)
can be linearized. Substituting into the linearized equa-
tions the standard form of the running wave solution, ui, j =
U exp[i(qi + s j − ωt )], vi, j = V exp[i(qi + s j − ωt )], where
i is an imaginary unit, one obtains the dispersion relation

ω2
1,2(q, s) = γ + δ + η + θ ±

√
(γ − δ)2 + (η − θ )2

2m
, (7)

where

γ = 4kn sin2 q

2
, δ = 4kn sin2 s

2
,

η = 4knn sin2 q + s

2
, θ = 4knn sin2 q − s

2
, (8)

and s and q are the wave numbers.
For the points of the first Brillouin zone (q, s) = (±π, 0)

and (0,±π ) phonon frequencies are

ω1 = 2
√

(kn + knn)/m, ω2 = 2
√

knn/m, (9)

and for the points (q, s) = (±π,±π )

ω1 = ω2 = 2
√

kn/m. (10)

Frequency ω1 in Eq. (9) is the maximal phonon frequency. For
chosen model parameters kn = knn = m = 1 one has

ωmax =
√

8. (11)

IV. DNVMS WITH FREQUENCIES ABOVE
THE PHONON SPECTRUM

As it was shown in Ref. [13], among 16 one-component
DNVMs of square lattice only two have frequencies above the
phonon spectrum for any amplitude; they are shown in Fig. 2.
DNVMs I and II are single-degree-of-freedom dynamical sys-
tems. The frequency-amplitude dependence for the considered
DNVMs is derived below within the cubic approximation.

1. DNVM I

Let a(t ) be the distance of the particle from the equilibrium
position. The initial conditions for this dynamic variable are
a(0) = A and ȧ(0) = 0. Taking into account the symmetry of
particle displacements in DNVM I, see Fig. 2(a), one obtains
the following exact Hamiltonian:

H = mȧ2

2
+ 1

2
[ϕn(L1 − h) + ϕnn(L2 −

√
2h)

+ϕnn(L3 −
√

2h) + ϕn(L4 − h)

+ϕnn(L5 −
√

2h) + ϕnn(L6 −
√

2h)], (12)

where

L1 = h + 2a, L2 =
√

(h + 2a)2 + h2,

L3 =
√

(h − 2a)2 + h2, L4 = h − 2a, (13)

L5 =
√

(h − 2a)2 + h2, L6 =
√

(h + 2a)2 + h2.

Here L1 and L4 are distances between nearest neighbors, while
L2, L3, L5, and L6 are distances between next-nearest neigh-
bors.

The expansion of the potential energy in Eq. (12) in a
Taylor series, up to fourth-order terms, leads to the simplified
Hamiltonian

H = mȧ2

2
+ 2(kn + knn)a2

+
(

4βn + 2βnn − 3knn

2h2

)
a4. (14)

The corresponding cubic equation of motion reads

mä = −4(kn + knn)a −
(

16βn + 8βnn − 6knn

h2

)
a3. (15)

Looking for the solution to Eq. (15) in the form a(t ) =
A sin(ωt ) + A1 sin(3ωt ), where A1 � A, one finds the
frequency-amplitude relation in the form

ω2 ≈ 4

m
(kn + knn)

+ 3

4m

(
16βn + 8βnn − 6knn

h2

)
A2. (16)

For the parameters used in our work, from Eq. (16) one has

ω ≈
√

8 + 175.5A2. (17)

Indeed, frequency of DNVM I is above the phonon spectrum;
see Eq. (11).

2. DNVM II

For DNVM II, taking into consideration the symmetry of
particle displacements, see Fig. 2(b), one obtains the exact
Hamiltonian

H = mȧ2

2
+ 1

2
[ϕn(L1 − h) + ϕnn(L2 −

√
2h)

+ϕn(L3 − h) + ϕnn(L4 −
√

2h)

+ϕn(L5 − h) + ϕnn(L6 −
√

2h)

+ϕn(L7 − h) + ϕnn(L8 −
√

2h)], (18)
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where

L1 = h + 2a√
2
, L2 =

√
2h2 + 4a2,

L3 = h − 2a√
2
, L4 =

√
2h − 2a,

L5 = h − 2a√
2
, L6 =

√
2h − 2a,

L7 = h − 2a√
2
, L8 =

√
2h2 + 4a2. (19)

Here L1, L3, L5, and L7 are distances between nearest neigh-
bors, and L2, L4, L6, and L8 are distances between next-nearest
neighbors.

Expanding the potential energy in Eq. (18) in Taylor series
and retaining up to fourth-order terms one obtains the simpli-
fied Hamiltonian

H = mȧ2

2
+ 4kna2 +

(
6βn + knn

h2

)
a4. (20)

The corresponding cubic equation of motion is

mä = −8kna − 4
(

6βn + knn

h2

)
a3. (21)

Looking for the solution to Eq. (21) in the form a(t ) =
A sin(ωt ) + A1 sin(3ωt ), where A1 � A, one finds the
frequency-amplitude relation:

ω2 ≈ 8kn

m
+ 3

m

(
6βn + knn

h2

)
A2. (22)

For the parameters used in our work, one finds from
Eq. (22)

ω ≈
√

8 + 183A2. (23)

DNVM II also has frequencies above the phonon spectrum;
see Eq. (11).

In Fig. 3, the frequency response of DNVMs I and II is
shown in red and blue, respectively. The numerically found
frequencies are shown by circles and the theoretical estimates
by lines. The analytical results obtained in the framework of
the cubic approximation describe the numerical values quite
well. The error increases with A, but for A = 0.3 it remains
small: 1.26% for DNVM I and 0.96% for DNVM II.

V. DISCRETE BREATHERS OBTAINED BY USING
LOCALIZING FUNCTIONS

It is shown below that standing and moving DBs can be
obtained by imposing a localizing function on DNVM I or
DNVM II. Similarly, in the work [11] standing DBs for a
triangular lattice were obtained.

We emphasize that the initial conditions used to excite DBs
do not give exact spatially localized solutions, but make it
possible to obtain long-lived quasibreathers [14]. Part of the
energy initially transferred to the localized vibrational mode
is radiated, and after the transition period, with the correct
choice of the parameters of the localizing function, a quasi-
breather appears. The parameters of the localizing function
are chosen in such a way that the energy emitted during
stabilization of the quasibreather is minimal.

FIG. 3. Frequency response of DNVM I (red) and DNVM II
(blue). The numerically found frequencies are shown by circles,
and the lines show the analytical estimates Eqs. (17) and (23), re-
spectively. The horizontal dashed line shows the upper edge of the
phonon spectrum, Eq. (11). Black squares and green circles show
the frequency-amplitude dependencies for the one-dimensional DB
shown in Fig. 4(a) and zero-dimensional DB presented in Fig. 8(a),
respectively.

In what follows, quasibreathers will be referred to as
DBs.

A. Stationary one-dimensional DBs

One-dimensional DB is localized along a line

p1x + p2y + p3 = 0, (24)

which means that the amplitudes of particle oscillations de-
cay exponentially with distance from this line. This can be
achieved by applying the localizing function

ai j = A

cosh(βdi j )
, (25)

where ai j is the magnitude of the initial displacement of par-
ticle having lattice position ξi, j , A is the DNVM amplitude, β

is the localization parameter, and di j is the distance from the
lattice point i, j to the line Eq. (24), which can be calculated
as follows:

di j = |p1xi j + p2yi j + p3|√
p2

1 + p2
2

. (26)

It is assumed that p1 and p2 are not equal to zero simultane-
ously.

Initial velocities of all particles are equal to zero.
Figures 4 and 5 show examples of one-dimensional DBs

based on DNVM I. The difference is that in Fig. 4 the DB
localization line (shown in red) is parallel to the direction
of particle oscillations, while in Fig. 5 it is perpendicular to
this direction. In Fig. 5(a), the DB localization line passes
through the row of particles, and in Fig. 5(b), it is in the middle
between the nearest rows of particles. The parameters of the
ansatz Eq. (25) are listed in the figure captions. Figure 5(c)
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FIG. 4. Stationary one-dimensional DBs obtained by imposing
localizing function Eq. (25) on DNVM I. The displacements are
multiplied by a factor of 2. Parameters of the ansatz are (a) p1 = 0,
p2 = 1, p3 = 0, A = 0.14, β = 1.48; (b) p1 = 0, p2 = 1, p3 = h/2,
A = 0.14, β = 1.45. Lines of DB localization are shown in red. In
panel (c), time evolution of the x component of displacement of the
particle colored red in panel (a) is presented.

shows the time evolution of the x coordinates of particles
colored red in Fig. 5(a). It can be seen that the particles
perform periodic motion with constant amplitudes.

FIG. 5. Stationary one-dimensional DBs obtained by imposing
localizing function Eq. (25) on DNVM I. The displacements are
multiplied by a factor of 2. Parameters of the ansatz are (a) p1 = 1,
p2 = p3 = 0, A = 0.14, β = 0.76; (b) p1 = 1, p2 = 0, p3 = h/2,
A = 0.14, β = 0.76. Lines of DB localization are shown in red. In
panel (c), time evolution of the x component of displacement of the
particle colored red in (a) is presented.

FIG. 6. The total energy of the system as a function of time,
normalized to the initial energy obtained for the one-dimensional
DB shown in Fig. 4(a), using different values of the localization
parameter β. The other parameters of the ansatz Eqs. (25) and (26)
are p1 = 0, p2 = 1, p3 = 0, and A = 0.14. The total energy of the
system decreases with time, since the energy emitted by the quasi-
breather is absorbed at the boundaries of the computational cell. The
smallest energy losses are observed at β = 1.48 and they increase
when deviating from this value up or down.

As mentioned above, the localization parameter β is cho-
sen from the condition of minimizing the energy emitted
during quasi-breather stabilization. This is illustrated in Fig. 6
for DB shown in Fig. 4(a) by plotting the time evolution of
the total energy in the system normalized to the energy at
t = 0. The total energy of the system decreases with time,
since the energy emitted by the quasibreather is absorbed at
the boundaries of the computational cell. After the emission
of a portion of energy, the DB stabilizes and oscillates with
a constant amplitude, practically radiating no energy. The
smallest energy losses are observed at β = 1.48 and increase
when deviating from this value up or down. Note that the total
energy loss is only about 0.1% of the initial energy.

Figure 7 shows DBs based on DNVM II. In this case,
one-dimensional DBs parallel to the close-packed lattice
direction are impossible, but discrete breathers along the
diagonal direction can be obtained. In Fig. 7(a), the DB
localization line passes through particles oscillating along this
line, and in Fig. 7(b), along particles oscillating in the normal
direction. The parameters of the ansatz Eq. (25) are listed in
the caption to the figure. In Fig. 7(c), the x coordinates of
particles colored in red and blue in in Fig. 7(b) are shown
as functions of time by red and blue lines, respectively. The
oscillation amplitudes are not constant, and a quasiperiodic
energy exchange is observed between particles oscillating
along and perpendicular to the DB line. However, DB remains
localized for a long time.

B. Stationary and moving zero-dimensional DBs

Zero-dimensional DB is localized at the point of intersec-
tion of two orthogonal lines,

p1x + p2y + p3 = 0, (27)
p2x − p1y + p4 = 0, (28)
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FIG. 7. Stationary one-dimensional DBs obtained by imposing
localizing function Eq. (25) on DNVM II. The displacements are
multiplied by a factor of 2. Parameters of the ansatz are (a) p1 = −1,
p2 = 1, p3 = 0, A = 0.14, β = 1.1; (b) p1 = −1, p2 = 1, p3 = h,
A = 0.14, β = 1.1. Lines of DB localization are shown in red. In
panel (c), time evolution of the x component of displacement of the
particles colored red and blue in panel (b) are shown by the red and
blue lines, respectively.

where p1 and p2 are not equal to zero simultaneously. The
intersection point has coordinates

x0 = −p1 p3 − p2 p4

p2
1 + p2

2

, y0 = −p2 p3 + p1 p4

p2
1 + p2

2

. (29)

To construct zero-dimensional DBs, the localizing function
is taken in the form

ai j = A

cosh(β1di j ) cosh(β2 fi j )
, (30)

where ai j is the magnitude of the initial displacement of par-
ticle with the lattice position ξi, j , A is the DNVM amplitude,
β1 and β2 are the localization parameters, di j is the distance
from the lattice point i, j to the line Eq. (27), which is defined
by Eq. (26), and fi j is the distance from the lattice point i, j to
the line Eq. (28), which is defined as

fi j = |p2xi j − p1yi j + p4|√
p2

1 + p2
2

. (31)

Examples of zero-dimensional DBs excited by imposing
the localizing function Eq. (30) on DNVM I and DNVM II
are shown in Figs. 8 and 9, respectively. DBs are localized at
the intersection of two red lines. DBs with different position
of the localization center are presented. In Fig. 8, the DB is
localized (a) on a lattice cite, (b) shifted by the vector (h/2, 0)
from a lattice cite, and (c) shifted by the vector (0, h/2)
from a lattice cite. If the localization center is at the point

FIG. 8. Stationary zero-dimensional DBs obtained by imposing
localizing function Eq. (30) on DNVM I. The displacements are
multiplied by a factor of 2. Parameters of the ansatz are (a) p1 = 1,
p2 = 0, p3 = 0, p4 = 0, A = 0.2, β1 = 1.05, β2 = 1.5; (b) p1 = 1,
p2 = 0, p3 = h/2, p4 = 0, A = 0.2, β1 = 1.05, β2 = 1.5; (c) p1 = 1,
p2 = 0, p3 = 0, p4 = h/2, A = 0.25, β1 = 1.05, β2 = 1.5. DBs are
localized at the intersection of the red lines. In panel (d), time evolu-
tion of the x component of displacement of the particle colored red
in panel (a) is shown.

(h/2, h/2), DNVM I produces the DB shown in Fig. 9(a) as
if DNVM II was used. In Fig. 9, the DB is localized (c) on
a lattice cite, (a,d) shifted by the vector (h/2, h/2) from the
lattice cite, and (b) shifted by the vector (3h/2, h/2) from the
lattice cite. Figures 8(d) and 9(e) show time evolution of the
x component of displacement of the particle colored red in
Figs. 8(a) and 9(a). It can be seen that stationary DBs with
a constant oscillation amplitude are formed after a transition
period of about 20 time units or 10 oscillation periods.

Stationary DBs are obtained when the center of localiza-
tion is in a highly symmetrical lattice position. If the center of
localization is displaced from the highly symmetrical position
of the lattice, a moving DB can form. We tried different
displacements of the center of localization for all obtained
one-dimensional and zero-dimensional DBs, and only in one
case did we obtain a moving DB. This is the case of the DB
shown in Fig. 9(c), when the localization center is displaced
from the lattice position along the line y = x. The DB moves
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FIG. 9. Stationary zero-dimensional DBs obtained by imposing
localizing function Eq. (30) on DNVM II. The displacements are
multiplied by a factor of 2. Parameters of the ansatz are (a) p1 =
−1, p2 = 1, p3 = 0, p4 = h, A = 0.2, β1 = β2 = 1.11; (b) p1 = −1,
p2 = 1, p3 = h, p4 = 0, A = 0.25, β1 = β2 = 1.12. DBs are local-
ized at the intersection of the red lines: (c) p1 = −1, p2 = 1, p3 = 0,
p4 = 0, A = 0.2, β1 = 1.3, β2 = 1.12; (d) p1 = −1, p2 = 1, p3 = 0,
p4 = h, A = 0.2, β1 = 1.8, β2 = 0.6. In panel (e), time evolution of
the x component of displacement of the particle colored red in panel
(a) is shown.

along this line, as shown in Fig. 10, which presents the x
component of displacement of the particles (a) i, j, (b) i +
1, j + 1, (c) i + 2, j + 2, (d) i + 3, j + 3, and (e) i + 4, j + 4.
It can be seen that the DB passes through these particles in
turn. The DBs shown in Figs. 9(c) and 9(d) are the on-site and
intersite versions of the moving DB, respectively.

It is interesting to see how the frequency of the constructed
DBs is related to the frequency of the corresponding DNVM.
In Fig. 3, the frequency-amplitude dependencies for one-
dimensional and zero-dimensional DBs based on DNVM I
are shown by black squares and green circles, respectively.
The corresponding DBs are shown in Figs. 4(a) and 8(a),
respectively. It can be seen that the DBs have frequencies
lower than those of the DNVM. This is explained by the fact
that in the DNVM all particles have an oscillation amplitude
equal to A, while in the DB only particles of the core oscillate
with an amplitude of A, while the remaining particles have

FIG. 10. Moving zero-dimensional DB obtained by imposing
localizing function Eq. (30) on DNVM II. Shown is time evolu-
tion of the x component of displacement of the particles (a) i, j,
(b) i + 1, j + 1, (c) i + 2, j + 2, (d) i + 3, j + 3, and (e) i + 4, j +
4. Parameters of the ansatz are p1 = −1, p2 = 1, p3 = 0, p4 = h/2,
A = 0.2, β1 = 1.3, β2 = 1.12.

a smaller oscillation amplitude. A decrease in the oscillation
amplitude in a system with hard anharmonicity leads to a
decrease in the oscillation frequency. This also explains why
the softening of the zero-dimensional DB is stronger than that
of the one-dimensional one.

VI. CONCLUSIONS

In this study, zero- and one-dimensional discrete breathers
in a β-FPUT square lattice are constructed by applying local-
izing functions on DNVMs I and II; see Fig. 2. These two
DNVMs are among the 16 one-component DNVMs obtained
by Ryabov and Chechin in Ref. [13], and their distinguishing
feature is that they have frequencies above the phonon spec-
trum; see Sec. IV and Fig. 3.

One-dimensional DBs are localized along the line Eq. (24),
while the amplitudes of particle oscillations decrease expo-
nentially with distance from this line according to the ansatz
Eq. (25). Zero-dimensional DBs are exponentially localized
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at the intersection of two orthogonal lines Eqs. (27) and (28)
according to the ansatz Eq. (30).

Stationary DBs are obtained by choosing localization lines
along highly symmetric directions of the square lattice and lo-
calization points at highly symmetric points of the lattice. The
parameters that determine the degree of spatial localization
are chosen in such a way as to minimize the energy emitted
by the DB during the transition period; see Fig. 6.

Four one-dimensional DBs based on DNVM I were ob-
tained, two of them are parallel to the line x = const (see
Fig. 4), and the other two are parallel to the line y = const
(see Fig. 5). Two one-dimensional DBs based on DNVM II
were obtained, parallel to the line y = x; see Fig. 7.

Three zero-dimensional DBs based on DNVM I were ob-
tained, localized at the intersection of lines x = const and
y = const; see Fig. 8. Four zero-dimensional DBs based on
DNVM II were obtained, localized at the intersection of lines
y = x and y = −x; see Fig. 9.

If the DB localization center is displaced from the highly
symmetrical position of the lattice, a moving DB can form. We
managed to set in motion only the DB shown in Fig. 9(c) by
shifting the localization point from the lattice position along
the line y = x; see Fig. 10.

Overall, the following findings were reported in this
study. A method for constructing discrete breathers was ap-
plied to a square lattice by imposing localizing functions to

DNVMs with frequencies above the phonon band. As a result,
one-dimensional discrete breathers in a square lattice were
described. Several zero-dimensional DBs were also built, in-
cluding a moving DB.

Our work demonstrates that long-lived quasibreathers
can be easily obtained by applying localizing functions to
DNVMs that have frequencies outside the phonon spectrum.
This method can be applied to lattices of higher dimensions.
In future work, the frequency response of DNVMs in fcc, bcc,
hcp, and other lattices will be analyzed for various interatomic
potentials to find DNVMs that can be used to obtain quasi-
breathers.

The most important application of DNVMs, in our opin-
ion, is the ability to use these high-amplitude exact dynamic
solutions to test the accuracy of interatomic potentials used in
molecular dynamics models by comparing with the results of
first-principles simulations [40].

The data that support the findings of this study are available
on request from the corresponding author, S.V.D.
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