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The renormalization group is a set of tools that can be used to incorporate the effect of fluctuations in
a dynamical system as a rescaling of the system’s parameters. Here, we apply the renormalization group
to a pattern-forming stochastic cubic autocatalytic reaction-diffusion model and compare its predictions with
numerical simulations. Our results demonstrate a good agreement within the range of validity of the theory and
show that external noise can be used as a control parameter in such systems.
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I. INTRODUCTION

Complex spatiotemporal patterns observed in nature [1,2]
have been the object of intensive research and fascination for
a long time. Some attempts to model the existence of these
patterns have been tried within different contexts. One of the
most promising classes of theoretical models that preserves
the basic properties of such patterns are those containing
diffusion and cubic autocatalytic reaction terms. This class of
models has been exhaustively studied both theoretically and
numerically in the past [3–6] because of its simplicity and its
capability to exhibit numerous naturelike behaviors.

Such models are considered a paradigm for pattern for-
mation. Some of these patterns are related to the ability of
those systems to organize into stable stationary nonhomoge-
neous structures called Turing structures. First theoretically
proposed by Turing [7], and eventually found experimentally
[8], they are viewed as a possible explanation of morphogen-
esis in natural systems. Some other patterns are related to the
existence of oscillatory behaviors and wave instabilities (Hopf
instabilities) [1,2,9]. This type of nonlinear nonconservative
waves (also called autowaves) are indeed ubiquitous in nature
and are present in important systems ranging from cardiac
cells [10], cultures of mold discoidelium discoideum [11],
nerve pulse propagation, and chemical reactions such as the
Belousov-Zhabotinsky reaction [12].

Realistically, chemical and biological systems are
constantly subjected to variations in their environment.
Examples include variations in temperature and fluctuations
of active transport of molecules through cell membranes [13].
Similarly, externally tunable noise can be used to influence
(and even control) the behavior of chemical or biological
systems. For instance, it has been shown that external
mechanical noise (shaking vs stirring) can change the output
of chemical replicator reactions [14], and that fluctuating
illumination can induce coherence resonance in the Belousov-

Zhabotinsky reaction [15–17]. Noise (either internal or
external) have been shown to influence the formation of
certain patterns in reaction-diffusion systems [18–20]. The
Selkov-Gray-Scott model with diffusion, called the CARD
(cubic autocatalytic reaction-diffusion) model below, has a
particularly rich phenomenology in terms of patterns (spiral,
stripes, and spots), and has been studied extensively in the
presence of noise [21–25], although other models have been
studied as well (e.g., Brusselator [26–28], light-sensitive
Belousov-Zhabotinsky reaction [29], CDIMA reaction
[30,31], and epidemic model [32]). Numerous techniques
have been devised to study reaction-diffusion systems
analytically [33,34] subjected to various types of noise (e.g.,
colored noise [35,49] and dichotomous noise [30]). Given
the potential of reaction-diffusion systems to model realistic
chemical and biological phenomena (e.g., Ref. [36]), it is thus
relevant to study the effects of fluctuations on the behavior
of chemical systems, and in particular on the mechanisms of
pattern formation.

In this paper, we study a particular cubic autocatalytic
reaction-diffusion model subject to external fluctuations
(represented by an additive-noise term). This stochastic
CARD (SCARD) model has been studied numerically in
Refs. [21,22], where it is shown that noise can trigger tran-
sitions between different types of patterns. Here, we extend
those results by studying the phase diagram of the SCARD
model as a function of the noise amplitude.

In addition, we present a theoretical analysis of the
SCARD model’s phase diagram using the renormalization
group. The renormalization group is a very powerful tool that
can be used to systematically include the effect of fluctuations
in certain physical systems. It has been applied in many areas,
including particle physics (e.g., Ref. [37]), critical phenomena
(e.g., Ref. [38]), and stochastic differential equations (e.g.,
Refs. [39,40]). Application of the renormalization group to
the SCARD model is presented in Refs. [41–45], where it
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is shown that model parameters (such as decay rates and
reaction-rate constants) vary with the noise amplitude and
the scale of observation. This particular feature enables us to
explain (at least qualitatively and sometimes quantitatively)
some aspects of the CARD model’s phase diagram in the
presence of noise.

The paper is organized as follows. We begin with a de-
scription of the SCARD model in Sec. II, followed by a brief
introduction to the renormalization group and derivation of
simple relations that can be used to compare with observables
from numerical simulations in Sec. III. Section IV presents
the numerical results obtained after integration of the SCARD
equations for different values of the noise parameter. We
compare the numerical results with the results coming from
the renormalization group in Sec. V. Finally, some discussion
and conclusions are presented.

II. SIMPLEST SCARD MODEL

The SCARD model considered here is defined by the fol-
lowing set of stochastic nonlinear reaction-diffusion equations
[21,22]:1

∂v

∂t
= −(F + K )v + λuv2 + ηv (x, t ) + Dv∇2v, (1)

∂u

∂t
= F (u0 − u) − λuv2 + ηu(x, t ) + Du∇2u, (2)

where u = u(x, t ) and v = v(x, t ) are the concentrations of
the two leading chemical species, Du and Dv are the diffusion
coefficients for both species, K is the decay rate of species v,
λ is the rate constant for the autocatalytic chemical reaction,
F is the feeding rate of species u in the system, and ηu(x, t ),
ηv (x, t ) denote additive spacetime-dependent noise terms en-
coding the effect of environmental fluctuations on the system.
Note that the autocatalytic term λuv2 is cubic: this is the
minimum nonlinearity needed for such systems to exhibit both
Hopf and Turing instabilities [9,22]. Note that the results in
Ref. [22] were obtained with a generalization of these model
to three equations.

The simulation results presented in Sec. IV are obtained
by numerically integrating Eqs. (1) and (2) using an explicit
two-level forward in time and centered in space integration
scheme with zero-flux boundary conditions and using an inte-
gration grid array of 501 × 501 units with spatial step �x = 1
and temporal integration step �t = 0.1. For both numerical

1As discussed in Ref. [22], a closely related model was originally
considered by Higgins [46] and then by Sel’kov [47] to phenomeno-
logically model some oscillatory properties of extant glycolysis
(without diffusion). The Brussels group (Prigogine) developed a
very similar model to account for the oscillations in the Belousov-
Zhabotinsky chemical reaction [3]. Gray and Scott also considered a
similar model in the context of chemical combustion [4,5,48]. These
models were homogeneous. Then, the two-species version was ex-
tended by Pearson [6] into a reaction-diffusion set of equations which
was shown to yield a large variety of spatiotemporal patterns. It was
later extended into a stochastic version by Lesmes and collaborators
[21].

and calculational purposes, in the following we consider a
Gaussian white zero-mean noise:

〈ηv (k)ηv (k′)〉 = σ 2
v (2π )4 δ(4)(k − k′), (3)

〈ηu(k)ηu(k′)〉 = σ 2
u (2π )4 δ(4)(k − k′), (4)

where σu;v are the standard deviations of the noise in our nu-
merical simulations. Without loss of generality, we set λ = 1
and u0 = 1.

III. RUNNING OF THE MODEL PARAMETERS

The treatment of the SCARD model using the renormal-
ization group is presented in detail in Refs. [41–43]. We recap
here the main points relevant for our discussion.

The starting point of our renormalization group treatment
is the formal solution of Eqs. (1) and (2) in Fourier space. For
example, we have for species v

v(k) = Gvo(k)

[
ηv (k) + λ

∫
d2k1

(2π )2

dω1

(2π )

∫
d2k2

(2π )2

dω2

(2π )
v(k1)

× v(k2)u(k − k1 − k2)

]
, (5)

where we used the shortcut notation v(k) = v(k, ω)
and defined the free-response function Gvo(k) =
(Dv|k|2 − iω + F + K )−1. The formal solution (5) is an
iterative expansion with an infinite number of terms. If the
amplitudes of fluctuations are small (i.e., σu;v are small), then
it is reasonable to neglect higher-order terms in the expansion
and keep only the first correction term proportional to λ.

Typically, the correction terms in Eq. (5) diverge upon
integration. These divergences can be systematically absorbed
into the parameters of the model using the tools of renormal-
ization. The result is that the value of parameters vary (or
“run") with the scale of observation in the presence of fluctua-
tions (see Ref. [37] for a good discussion of renormalization).

In two dimensions and for white Gaussian noise, only
F and K run with scale. The complete derivation of the running
of F can be found in Ref. [41] (K is done in a similar way):

F (L) = F (L∗) + σ 2
v

(2π )2Dv

log

(
L

L∗

)
≡ F (L∗) + �F, (6)

K (L) = K (L∗) − σ 2
v

(2π )2Dv

log

(
L

L∗

)

− σ 2
v

(2π )Dv (K (L∗) + F (L∗))
log

(
L

L∗

)

≡ K (L∗) + �K, (7)

where L is the (spatial) scale of observation and L∗ is a refer-
ence scale at which parameters F (L∗) and K (L∗) have known
measured values. Note that we chose Gaussian white noise
for simplicity here, but the present renormalization framework
can also be applied to colored (power-law) noise with spatial
correlations [41], temporal correlations [53], or both spatial
and temporal correlations [42].

The effect of noise on the model parameters induces a
renormalization of the parameters, namely the expected be-
havior of the chemical system under the influence of noise for
a given set of parameters is equivalent to the behavior of the
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FIG. 1. Effect of noise on both chemical species u and v for a specific pattern. Red (blue) corresponds to a large (small) value of the μ

concentration, and a corresponding small (large) value of the v concentration. (a) Pattern that spontaneously appears in the absence of noise for
the u variable (K = 0.0655, F = 0.040, Du = 1.0, Dv = 0.5, �t = 0.1, and �x = 1.0); (b) σu = 0.2 and σv = 0.0; (c) σu = 0.4 and σv = 0.0;
(d) σu = 0.6 and σv = 0.0; (e) σu = 0.0 and σv = 0.1; (f) σu = 0.0 and σv = 0.2; and (g) σu = 0.0 and σv = 0.4. (Size of the integrated domain
501 × 501 px.)

same system without noise with a different set of parameters,
with the two sets of parameters connected through Eqs. (6)
and (7). Said differently, the change in value of the parameters
due to the addition of noise [denoted �F and �K in Eqs. (6)
and (7)] can be exactly “mimicked” by changing the parame-
ters F and K “by hand” by an amount equal to �F and �K .
Expressions (6) and (7) thus provide a road map to follow the
evolution of the parameters as the noise amplitude is changed.

Several comments are in order here. First, it is important
to emphasize that the formal solution (5) is a perturbative
solution only for certain values of the parameters. For the
SCARD model, the perturbative expansion is valid when the
following criteria are satisfied [41]:

σ 2
v

2DvF
< 1, (8)

σ 2
v

2Dv (K + F )2 < 1. (9)

The above implies that the predictions of perturbation the-
ory and the renormalization group should be interpreted with
caution when the noise amplitude σv is too large. When those
criteria are not satisfied, terms that are higher order in λ in the
formal solution (5) must be taken into account. Thus, criteria
(8) and (9) determine the regime of validity of perturbation
theory.

Second, note that the noise amplitude for the u species,
σu, does not appear in the running parameter solutions (6)
and (7). It can be shown [41] that effects of the ηu noise
only appear as second-order corrections in perturbation theory
[i.e., corrections proportional to (σ 2

u )2 ]. Since fluctuations are
typically small, corrections due to ηu are very small compared

to corrections due to ηv . This is consistent with the numerical
simulations presented in Fig. 1 and in the Appendix. There,
in order to achieve changes in the phase diagram due to ηu

comparable to changes due to ηv , values of noise amplitudes
at least one order of magnitude larger must be used. For this
reason, we do not consider additive noise for species u in the
rest of this paper.

IV. NUMERICAL RESULTS

Figure 1 presents the effect of noise for a particular set of
parameters. Here, some arbitrarily chosen pattern is consid-
ered [Fig. 1(a) without noise] and different noise amplitudes
are applied to both u and v variables. The upper row shows the
effect of increasing the noise amplitude on the u concentra-
tion. Note that the number of domains in the system decreases
[Figs. 1(b) and 1(c)] with increasing noise amplitude until
they completely disappear, giving rise to a stationary state
[red state, Fig. 1(d)]. The lower row presents the effect of
noise on the v variable. Again, the configuration of spots is
modified [Fig. 1(e)] as the noise amplitude is increased and
the system is made to transit into a stripe regime [Fig. 1(f)]
and finally a steady state [blue state in this case, Fig. 1(g)]. In
this figure, it is possible to observe that the noise amplitude
in the system can be used as a parameter to control the fi-
nal state. Note that much smaller values of the noise in the
v variable (lower row in Fig. 1) are needed to achieve the
same results as when noise in the u variable is considered
(upper row in Fig. 1) in agreement with perturbation theory.
From now on, only noise in the v variable will be considered,
although equivalent results can be numerically obtained (see
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the Appendix) considering noise in the u variable (just higher
values of the noise amplitude should be considered). In the
following, we numerically consider the effects of fluctuations
on the type of structures and their location in the phase dia-
grams. For simplicity, we consider here that the only source
of fluctuations in our model is in the additive term for the
v variable (ηv). As argued below Eq. (9), the effects of additive
noise in the u variable (ηu) are much smaller than those in the
v variable, and can thus be safely neglected. For completeness,
we present a sample of simulations with noise in the u variable
in the Appendix.

White Gaussian noise with zero mean is considered in all
simulations. The only parameters characterizing our fluctua-
tions are the standard deviation σv (playing the role of noise
amplitude) and the spatial scale L defined as follows in our
numerical simulations. Since ηv is space- and time dependent,
the minimum resolution for the noise is given by the spatial
step �x (�x = 1 in our simulations). We define L as the min-
imum distance between two different values of noise on the
integration grid (which by construction is always a multiple of
�x). The scale L is thus giving information about the coarse
graining or “granularity” of the noise considered.

For each value of the noise amplitude σv and the scale L,
a full F-K phase diagram is calculated. Each phase diagram
shows the behavior of the system of Eqs. (1) and (2) for
each value of the other model parameters (F and K). Each
point in a phase diagram corresponds to at least one simu-
lation of Eqs. (1) and (2). The type of pattern is identified
by inspection after letting the simulation reach a steady state.
Figure 2 presents a summary of all the simulations performed
with noise on the v variable for different values of σv and
L (keeping Du = 2 and Dv = 0.7 fixed). Regions in green
correspond to Turing structures (stationary steady structures
with a characteristic wavelength determined by the model pa-
rameters). Blue regions are related to Hopf solutions (waves,
oscillations, etc.). Yellow regions represent solutions of mixed
Turing-Hopf modes (corresponding with a co-dimension 2
point in the parameter space). Red regions correspond to val-
ues of F and K that produce cell-like behavior [22]. Cell-like
behavior (as first named in Ref. [22]) is a specific Turing-
Hopf mixed-mode structure with interesting implications for
biology [6,22]. Recently [22], they demonstrated that these
structures exhibit the same basic properties as simple living
organisms in nature. Red and blue dotted regions indicate
solutions where the system evolves to a homogeneous red or
blue state (large or low value of the u variable).

The lower-left panel in Fig. 2 corresponds to the phase
diagram in the absence of noise. A first inspection of the phase
diagrams shows that the different regions are completely dis-
placed as the parameters controlling the noise are increased
although no new different behavior is observed. In general, all
regions are displaced towards the right and top of the phase
diagram (larger values of F and K). Focusing on the cell-like
region (red region in Fig. 2), one can observe that the domain
moves towards the right and top of the phase diagram and
increases in size. It implies that this type of behavior becomes
more accessible for larger values of noise amplitude. On the
other hand, Turing structures (green region) become less ac-

cessible and they even disappear in some phase diagrams. This
can be understood in the following way: Noise in the system
introduces local perturbations on the patterns that become
less compatible with the existence of stationary patterns (as
it is the case with Turing structures). On the other hand,
Hopf or Turing-Hopf regions become larger for the same
reason.

V. COMPARISON BETWEEN NUMERICAL AND
RENORMALIZATION GROUP RESULTS

In this section, we analyze the information contained in
the phase diagrams (cf. Fig. 2) using results coming from
the renormalization group [cf. Eqs. (6) and (7)]. In order to
do this, it is necessary to find observable properties that can
be extracted from simulations and compared with theoretical
predictions. We analyze two such properties below: the size
of the cell-like region and the characteristic wavelength of
structures in the chemical system.

We first analyze the increase in size of the cell-like region
due to fluctuations. Renormalization tells us that each point on
the phase diagram is displaced when fluctuations are present
[cf. Eqs. (6) and (7)]. Imagine a square of size l = 0.005 in the
deterministic phase diagram (bottom left diagram in Fig. 2). In
the presence of noise, this square is distorted into a trapezoid.
The area of the trapezoid Atrapezoid is given by

Atrapezoid = l2 + l�F

(
1

K + F
− 1

K + F + 2l

)

= Asquare + �A(σv ), (10)

where Asquare is the area of a square and �A(σv ) is the change
in area due to fluctuations. For convenience, we define the
following ratio:

R = �A(σv )

�A(σv = 0.075)
. (11)

The above ratio characterizes the change in area of an l × l
square due to noise with respect to some arbitrarily chosen
reference value, taken to be the change in area when the
noise amplitude is σv = 0.075 (i.e., noise amplitude at which
perturbation theory is not valid anymore; cf. Eqs. (8) and (9)].
This ratio has the advantage of emphasizing the scaling of the
change in area with noise amplitude, and removing any depen-
dence on other variables or artifacts coming from numerical
simulations. The ratio R can be computed theoretically using
Eqs. (6) and (7), and numerically by measuring the size of
cell-like regions on each phase diagram.

Figure 3(a) shows the variation of the ratio R versus the
noise amplitude σv . The area of the cell-like regions in each
phase diagram is measured and the magnitude R calculated for
all the values of L considered in our simulations. As predicted,
all points lie approximately on the same curve, independently
of the value of the noise granularity (for L > 1), at least for
those values of σv compatible with the range of validity of the
theory [cf. Eqs. (8) and (9)]. The black vertical dashed line
marks the upper limit of the theoretical prediction.

Inspection of Eqs. (6), (7), and (10) shows that the effects
of L and σv are related. A change in one of the parameters can
be compensated by a variation of the other parameter. In other
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FIG. 2. Effect of fluctuations on the phase diagram of the SCARD model (Du = 2.0 and Dv = 0.7). Control parameters here are the noise
amplitude (σv) and the noise coarse-graining scale (L). Each phase diagram shows the behavior observed for each value of the other model
parameters, F and K. Each point in each phase diagram corresponds to at least one simulation of Eqs. (1) and (2). Green regions correspond to
Turing structures, blue regions to Hopf solutions (waves, oscillations, etc), yellow regions to Turing-Hopf modes, and red regions to cell-like
behavior. Red and blue dotted regions correspond to solutions where the system evolves to a homogeneous red and blue state, respectively.
Actual simulations are marked in the diagram with the different points: x = homogeneous steady state, o = Turing spots, • = mix of Turing
spots and stripes, � = Turing stripes, 
 = inverted Turing spots, ♦ = Hopf structures, + = mixed Turing-Hopf modes, and ∗ = cell−like
behavior. (501 × 501 integration domain, �t = 0.1, �x = 1.)
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FIG. 3. Comparing renormalization group results with direct numerical simulations of the SCARD model. (a) Variation of R vs σv . Solid
lines are the renormalization group predictions while points with the different colors and shapes correspond to simulations of the SCARD
model for different values of L. (b) Size of the cell-like region in phase diagrams for each value of σv and L. Solid lines are renormalization
group predictions for regions with similar sizes [cf. Eq. (12)]. (c) Variation of the Turing wave number with σv . Blue line is the renormalization
group prediction. Red points are calculated directly from the 2D FFT of each simulation. (d) Variation of the number of cell-like domains for a
given set of parameters vs σv . Blue line is the theoretical prediction and red line corresponds to numerical simulations. Note that perturbation
theory is valid only for σv < 0.04.

words, the same phase diagram can be obtained from different
sets of (L, σv). Focusing on the cell-like region and its size in
each of the phase diagrams, we plot (color coded) in Fig. 3(b)
the value of the cell-like region size for different values of (L,
σv): light blue corresponds to the smallest cell-like region size
while red corresponds to the largest. Solid blue lines represent
the isolines,

σ 2
v

(2π )2Dv

ln

(
L

L∗

)
= const (12)

that are predicted by the renormalization group (the same
isolines are also shown in the background of Fig. 2). The
trends observed in Fig. 3(b) are consistent with the theoretical
predictions.

Turing patterns are also observed in the SCARD model.
They are stationary structures characterized by a characteristic

wavelength observed by the average distance between each
structure. This wave number only depends on the model pa-
rameters. Linear stability analysis of Eqs. (1) and (2) can be
used to calculate the most probable wave number (or inverse
wavelength) of such a pattern [2],

k2
Turing = Dv fu + Dugv

2DuDv

, (13)

where kTuring is the Turing wave number and fu, fv , gu, and gv

are the partial derivatives of the nonlinear functions f and g
with respect to u and v variables evaluated at the fixed point
(uo, vo),

fu = ∂ f (u, v)

∂t

∣∣∣∣
0

= −v2
0 − F, (14)

gv = ∂g(u, v)

∂t

∣∣∣∣
0

= 2u0v0 − (F + K ). (15)
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This wave number depends directly on the model parame-
ters F and K. Thus, according to Eqs. (6) and (7), the Turing
wave number (and correspondingly the wavelength) should
vary in the presence of fluctuations. We plot in Fig. 3(c)
the change in the Turing wave number as a function of the
noise amplitude, and compare it to the characteristic wave
number directly measured from numerical simulations using
fast Fourier transform (FFT). The 2D FFT of each simula-
tion is converted into a 1D plot by averaging over the radial
coordinate; the wave number for the maximum of this plot
gives the Turing wave number and the broadness of the peak
gives an estimate of the error. Note that renormalization group
predictions are in good agreement with the numerical results
in the parameter region where perturbation theory is valid
(region marked in light blue in the figure).

The value of the Turing wavelength can be used to infer
the approximate number of Turing spots that actually fit in
an integration domain given that size. Since kTuring runs in the
presence of fluctuations, it implies that the number of Turing
spots should also be affected by noise. Figure 3(d) presents
a comparison between the number of domains measured in
simulations and the number of domains estimated from kTuring

for different values of the noise amplitude σv . Note that
renormalization group predictions qualitatively reproduce the
results from numerical simulations within the limits of valid-
ity of perturbation theory (region marked in light blue in the
figure).

VI. DISCUSSION AND CONCLUSIONS

The extensive numerical analysis of the SCARD model
(1) and (2) done in this paper demonstrates that the effect
of fluctuations plays an important role in determining the
final state the system may adopt. It extends the results of
Refs. [21,22] by systematically analyzing and categorizing
all possible final states of the stochastic CARD model. Some
of the patterns exhibited might be interesting for biologically
inspired research.

From a theoretical point of view, it is known that fluctu-
ations affect the behavior of many systems, and their effects
can be analyzed using renormalization techniques. Based on
the results of Refs. [41–43], we show how fluctuations can
be incorporated into a rescaling of the model parameters.
This running of the parameters leads to changes in the phase
diagram that are equivalent to a constant change in the model
parameters as described by Eqs. (6) and (7). For two observ-
ables (size of cell-like regions and Turing wavelength), it is
possible to calculate the changes in the phase diagram. Those
changes are in qualitative (and to some extent quantitative)
agreement with predictions from the renormalization group
within the range of validity of perturbation theory, as shown
in Fig. 3.

The above shows that noise can be used as a control pa-
rameter for a chemical system, triggering noise-induced phase
transitions [49,50]. Noise can be used to influence pattern
formation (or other behaviors) in a controlled way, and the
extent of this influence may be calculated using renormal-
ization techniques in some cases. Our results, thus, open the
possibilities of using noise for control of chemical reactions
in experimental situations, such as implementing chemical
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FIG. 4. Effect of fluctuations on the phase diagram for the
SCARD model (Du = 2.0 and Dv = 0.7). Control parameters here
are the noise amplitude on the u variable (σu and σv = 0) and the
noise coarse graining (L). Each phase diagram shows the behavior
observed for each value of the other model parameters, F and K. Each
point in each phase diagram corresponds to at least one simulation of
Eqs. (1) and (2). Same color coding as in Fig. 2.

logic gates by dynamically modulating its boundary condi-
tions [51,52] and selecting chemical pathways using additive
noise [53].
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APPENDIX: RESULTS ON NOISE FOR SPECIES U

We present in this appendix numerical simulations of
Eqs. (1) and (2) considering noise only on the u variable (i.e.,
we take σu �= 0 and σv = 0). Results are shown in Fig. 4.
Different phase diagrams are presented for different values
of the noise parameters. The left column keeps the value of
L = 1 constant and changes the value of σu. The panel on the
right presents the influence of L on the phase diagrams for
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a constant value of σu = 0.2. Panel in the lower-left corner
is the reference without noise. Comparing Fig. 4 with the
phase diagrams plotted in Fig. 2, it is possible to note that
σu must reach much higher values in order to achieve similar

effects as those obtained with σv . This is in agreement with
perturbation theory, which states that effects due to noise in
the u concentration appear at higher order compared to noise
in the v concentration.
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