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We consider two populations of the globally coupled Sakaguchi-Kuramoto model with the same intra- and
interpopulations coupling strengths. The oscillators constituting the intrapopulation are identical whereas the
interpopulations are nonidentical with a frequency mismatch. The asymmetry parameters ensure the permutation
symmetry among the oscillators constituting the intrapopulation and a reflection symmetry among the oscillators
constituting the interpopulation. We show that the chimera state manifests by spontaneously breaking the
reflection symmetry and also exists in almost in the entire explored range of the asymmetry parameter without
restricting to the near π/2 values of it. The saddle-node bifurcation mediates the abrupt transition from the
symmetry breaking chimera state to the symmetry-preserving synchronized oscillatory state in the reverse trace,
whereas the homoclinic bifurcation mediates the transition from the synchronized oscillatory state to synchro-
nized steady state in the forward trace. We deduce the governing equations of motion for the macroscopic order
parameters employing the finite-dimensional reduction by Watanabe and Strogatz. The analytical saddle-node
and homoclinic bifurcation conditions agree well with the simulations results and the bifurcation curves.
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I. INTRODUCTION

Spontaneous segregation of symmetrically coupled iden-
tical oscillators into synchronized and desynchronized sub-
populations as observed by Kuramoto and Battogotokh [1]
was a surprising phenomenon in early 2000, which was
unprecedented in the nonlinear dynamics literature. The mo-
mentum in investigating the partially synchronized state has
been increased immediately after such a self-organizing phe-
nomenon has been coined as the “chimera state” by Abrams
and Strogatz [2]. Initially, the chimera state has been re-
ported in populations of nonlocally coupled oscillators, such
as the Ginzburg-Landau systems, Rössler oscillators, and lo-
gistic maps [3–6]. Later, the existence of chimera states has
also been reported extensively in nonlocally coupled identical
phase oscillators [1,2,7–9]. Even though promising results
have been published employing nonlocally coupled nonlin-
ear oscillators both experimentally [10–13] and theoretically
[1,5,14,15], the necessity of the nonlocal nature of the cou-
pling posed a serious restriction to generalize the studies on
chimera states to other prominent coupling configurations,
which, in turn, has limited its applications. Later studies have
extended the notion of the chimera state to even the glob-
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ally coupled one and two populations of nonlinear oscillators
[16–22], including complex and multilayer networks [23–28],

The phenomenon of spontaneous symmetry breaking is
ubiquitous in nature, a source for a plethora of nontrivial self-
organizing patterns and intriguing dynamical states. Complex
pattern formation in the neuronal networks is often found
to be mediated by the spontaneous symmetry breaking phe-
nomenon [29]. The transition from the amplitude death state
to the oscillation death state via the Turing bifurcation was
shown to be mediated by the spontaneous symmetry breaking
phenomenon [30,31]. In general, the emergence of hetero-
geneous (asymmetric) dynamical states from symmetrically
coupled oscillator networks are usually due to the spontaneous
symmetry breaking phenomenon [32–34]. The chimera state
is indeed such a spontaneous symmetry breaking state that
emerges by breaking the prevailing symmetry of the dynami-
cal states. The onset of the chimera state spontaneous breaks
the spatial rotational symmetry of an array of nonlocally
coupled oscillators. The permutation symmetry prevailing
among the globally coupled oscillators is broken by the man-
ifestation of the chimera state. The symmetries within and
among two or more populations of globally and nonlocally
coupled nonlinear oscillators [33,34] are broken due to the
birth of the chimera state. For instance, it has been recently
reported that the onset of the local chimera is accompanied by
the spontaneous symmetry breaking of the globally coupled
subpopulation with a smaller frequency whereas retaining the
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symmetry of the synchronized subpopulation with a larger
frequency [34].

In this paper, we consider two populations of the globally
coupled Sakaguchi-Kuramoto model with the same coupling
strength for both intrapopulation and interpopulation inter-
actions. The oscillators constituting the intrapopulations are
identical with the same frequency but with a frequency mis-
match between the interpopulation. There is a permutation
symmetry within the intrapopulations and a reflection sym-
metry between the interpopulation unlike the case of Abrams
et al. [16] where there exists the permutation symmetry in
both intrapopulations and interpopulation both due to the
nature of the employed asymmetry parameters. Note that
Abrams et al. [16] considered the intrapopulation coupling
strength greater than the interpopulation coupling strength and
identified chimera states for large values of the asymmetry
parameter. We unravel the existence of the chimera state in a
rather large range of the asymmetry parameter extending even
to near zero values of the latter and not just restricting only
to near π/2 values of the asymmetry parameter as reported in
the literature [16–20,23,24,26,27].

The chimera state in the current setup emerges by
spontaneously breaking the reflection symmetry among the
interpopulation unlike the existing literature on two or more
populations where the chimera states usually emerge by
breaking the permutation symmetry among the interpopula-
tion [29]. It is interesting to note that such a spontaneous
breaking of the mirror (reflection) symmetry is observed in
the chiral inorganic nanocrystal during the chiral amplification
below a critical temperature [35]. The two-parameter phase
diagrams reveal the coexistence of two types of symmetry
preserving synchronized state with the symmetry breaking
chimera state. The synchronized state can be an oscillatory
state or a stable steady state depending on the parameters.
Furthermore, there is an abrupt transition from the symmetry
breaking state to the symmetry-preserving state during the
backward trace, whereas the two populations remain synchro-
nized in the forward trace. We also deduce the governing
equations of motion for the macroscopic order parameters
employing the finite-dimensional reduction by Watanabe and
Strogatz [36]. The deduced analytical stability curves, from
the evolution equations of motion for the macroscopic order
parameters, corresponding to the saddle-node and homoclinic
(Hc) bifurcations are found to exactly match with the simu-
lations results and the bifurcation curves obtained using the
software package XPPAUT [37].

The paper is organized as follows. We introduce the
Sakaguchi-Kuramoto model in Sec. II. We deduce the evo-
lution equations corresponding to the macroscopic order
parameters using the Cestnik and Pikovsky ansatz in Sec. III.
In Sec. IV, we illustrate the phase diagrams and discuss the
dynamical transitions across various bifurcation scenarios de-
marcating the dynamical states in the phase diagrams. Finally,
we will provide a summary and conclusions in Sec. V.

II. MODEL

We consider two populations of globally coupled
Sakaguchi-Kuramoto model, whose evolution equations are
governed by the set of N coupled first order nonlinear ordinary

differential equations represented as

ξ̇ σ
i = ωσ +

2∑
σ ′=1

Kσσ ′

N

Nσ ′∑
j=1

sin(ξσ ′
j − ξσ

i + ασσ ′
), (1)

where σ = 1, 2 represents the first and the second popula-
tions. ξσ

i is the phase of the ith oscillator in the population σ .
ωσ is the natural frequency of the oscillators in the population
σ . Note that all oscillators in the intrapopulation are chosen to
be identical, whereas there is a frequency mismatch between
the interpopulation. The coupling strengths between the pop-
ulations are given by Kσσ ′

. We choose K11 = K22 = K12 =
K21 = K , so the intrapopulation coupling strength is equal
to the interpopulation coupling strength. The asymmetric pa-
rameters in the intrapopulation and interpopulation couplings
have a σ ′ dependency. If σ ′ = 1, then, ασσ ′=−α and σ ′ = 2,
then, ασσ ′=+α irrespective of σ resulting in the asymmetry
parameters α11 = α21 = −α and α12 = α22 = +α. It is to be
noted that the Sakaguchi-Kuramoto model is symmetric about
its mean frequency ω0 = ω1+ω2

2 . Under the rotational transfor-
mation ξσ

j = θσ
j + ω0t , Eq. (1) in the rotational coordinates

becomes

θ̇ σ
i = γ σ +

2∑
σ ′=1

Kσσ ′

N

Nσ ′∑
j=1

sin(θσ ′
j − θσ

i + ασσ ′
), (2)

where γ 1 = −γ 2 = ω and ω = ω1−ω2

2 . Due to this transfor-
mation, the symmetry ξ 1

j = ω0t + θ j and ξ 2
j = ω0t − θ j in

the original system has transformed as θ1
j = −θ2

j = θ j in the
rotational coordinate system, reflecting a reflection symmetry
in the rotating frame of reference.

III. DIMENSIONAL REDUCTION

In this section, we adopt the finite-dimensional reduction
by Watanabe and Strogatz [36] to reduced the dynamics of the
system (2) from N dimensions to six dimensions by means of
the Pikovsky and Rosenblum [38] transformation and Hong
and Strogatz [39]. Following which, Eq. (2) can be rewritten
as

θ̇ σ
i = ωσ + Im(F σ e−iθσ

i ), (3a)

F σ =
2∑

σ ′=1

Kσσ ′
(rσ ′

eiφσ ′
eiασσ ′

), (3b)

where F σ is the effective force acting on the oscillators
of the population σ and r(t )eiφ(t ) = 1/N

∑N
j=1 eiθ j . Note that

all the oscillators in the given population are governed by
the same equation of motion, although, generally, they have
different initial conditions. Thus, the ansatz reduces the dy-
namics of the each population to the evolution equation in
three variables ρσ (t ), �σ (t ), and �σ (t ), via the transforma-
tion,

tan

[
θσ

i − �σ

2

]
= 1 − ρσ

1 + ρσ
tan

[
ψσ

i − �σ

2

]
, (4)
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with N constants ψσ
i , which are directly determined from the

initial state θσ
i (0). Using Eq. (3), the evolution equations for

ρ,�, and � can be written as

ρ̇σ = 1 − ρσ2

2
Re(F σ e−i�σ

), (5a)

�̇σ = 1 − ρσ2

2ρ
Im(F σ e−i�σ

), (5b)

�̇σ = ωσ + 1 + ρ2

2ρ
Im(F σ e−i�σ

). (5c)

In order to endow the new variables with physical mean-
ing, let us consider how they characterize the distribution of
the phases of the given population. Generally, oscillators are
distributed in a certain fashion during their evolution, and the
amplitude ρ characterizes the width of the distribution, which
is roughly proportional to the mean-field amplitude r(t ). ρ =
r = 0 characterizes the uniform distribution of the oscilla-
tors, which corresponds to the asynchrony of the population,
whereas ρ = r = 1 characterizes the completely synchro-
nized state of the considered population if the distribution
shrinks to the δ function. The intermediate values of ρ = r
between 0 and 1 characterize the partially synchronized states.
The phase variable � is related to the phase of the mean-field
�(= φ), whereas the other phase variable � describes the
drift of the individual oscillators with respect to the mean
field.

The set of Eqs. (5) is a straightforward generalization of the
equations [4] to the population σ . For a further analysis, and,
in particular, for the consideration in the thermodynamic limit,
it is convenient to introduce two new variables, namely, a
phase shift variable δσ =�σ − �σ , and a complex mean-field
variable zσ = ρσ ei�σ

. Now, Eqs. (5a)–(5c) can be rewritten in
terms of the complex mean-field and the phase shift variables
as

żσ = iωσ zσ + 1

2
F σ − zσ2

2
F �σ , (6a)

δ̇σ = ωσ + Im(z�σ F σ ). (6b)

Remarkably, Eq. (6a) coincides with the low-dimensional
evolution equations of the Ott-Antonsen theory [40,41] but
without the governing equation for the phase shift variable.
The above system of low-dimensional coupled nonlinear or-
dinary differential equations are the evolution equations for
the macroscopic order parameters of the model (2), which
describes the latter dynamics faithfully. Note that the govern-
ing equation for the phase shift variables are decoupled from
the evolution equation for the complex mean-field variables
zσ = rσ eiφσ = X σ + iY σ and, hence, the dynamics of (2) can
be effectively described by the evolution equations in the four
variables rσ and φσ , where σ = 1, 2 [39]. In the following, we
represent σ corresponding to the first and second populations
using the subscripts 1 and 2 for convenience without loss of
the generality.

IV. DYNAMICAL TRANSITIONS

In this section, we will proceed to unravel the dynamics and
the phase transitions of the Sakaguchi-Kuramoto model (2)
by constructing appropriate two parameter phase diagrams.

FIG. 1. The coexistence of the reflection symmetry preserving
and reflection symmetry breaking self-organizing collective dynam-
ical states. (a) and (b) The order parameters r1,2(t ) corresponding to
the two populations depicting the coexisting synchronized state and
the static chimera state, respectively. (c) and (d) The order parameters
φ1,2(t ) depicting the reflection symmetry [φ1(t ) = −φ2(t )] preserv-
ing oscillatory nature of the synchronized state and the reflection
symmetry broken [φ1(t ) �= −φ2(t )] static chimera state, respectively.
The values of the parameters are ω = 2, K = 0.7, and α = 0.3.

We also classify the underlying self-emerging collective dy-
namical states from the bifurcation and theoretical analysis
of the evolution equations corresponding to the macroscopic
order parameters. We also solve the associated Sakaguchi-
Kuramoto model by numerically integrating Eq. (2) to verify
the dynamical transitions observed in the phase diagrams. The
number of oscillators in both populations is fixed as Nσ =
103. We use the standard fourth-order Runge-Kutta integration
scheme with an integration step size 0.01 to solve the system
(2). The initial state of the oscillators (θi) is distributed with
random phases between −π and +π .

The macroscopic order parameters r(t ) and φ(t ), obtained
by numerically solving Eq. (2), are depicted in Figs. 1 and
2 for two different coupling strengths K = 0.7 and 1.5, re-
spectively. The other parameters are fixed as ω = 2, α = 0.3.

FIG. 2. Same as Fig. 1 for the coupling strength K = 1.5. Here,
the synchronized state is a stable steady state.
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FIG. 3. Phase space dynamics of (a) the oscillatory synchronized state for K = 0.4, (b) the static synchronized state for K = 2.0, and
(c) the static chimera state for K = 2.0. The unfilled inverted triangle corresponds to the unstable origin. The dashed and solid lines are the
trajectories from two different initial conditions. Lines connected by filled triangles and squares correspond to the attractors of the first and
second populations, respectively. The value of the other parameters are the same as in Fig. 1.

Left and right columns of Figs. 1 and 2 are depicted for two
different initial conditions illustrating the two distinct coex-
isting self-organized dynamical states. The unit value of the
order parameters r1(t ) and r2(t ) corresponding to the first and
the second populations, respectively, in Fig. 1(a) corroborates
the completely synchronized populations. However, one can
also observe r1(t ) = 1 and r2(t ) = 0.7 [see Fig. 1(b)] for a
different set of initial conditions characterizing that the first
population evolve in synchrony, whereas the second popula-
tion in partially synchrony elucidating the manifestation of
the static chimera state. The reported chimera is associated
with stationary chimera in the extensive world of chimeras
as discussed in Ref. [42]. It is to be noted that the reflection
symmetry φ1(t ) = −φ2(t ) is preserved by the completely syn-
chronized state [see Fig. 1(c)]. However, the static chimera
state is manifested by breaking the reflection symmetry char-
acterized by φ1(t ) �= −φ2(t ), where φ1(t ) = 1.93 and φ2(t ) =
−1.57. Furthermore, the order parameters φ1,2(t ) in Fig. 1(c)
reveal the oscillatory nature of the dynamical (synchronized)
state.

The unit value of the order parameters r1,2(t ) in Fig. 2(a)
elucidates the synchronized state for K = 1.5. Note that the
synchronized state is a reflection symmetry preserving static
synchronized state as corroborated by the order parameters
φ1,2(t ) depicted in Fig. 2(c). The order parameters corre-
sponding to the coexisting partially synchronized state [see
Fig. 2(b)] breaks the reflection symmetry [see Fig. 2(d)].
The corresponding attractors are depicted in the phase space
[X1,2 = r1,2 cos(φ1,2),Y1,2 = r1,2 sin(φ1,2)] in Fig. 3. The un-
filled inverted triangle corresponds to the unstable origin. The
dashed and solid lines are the trajectories from two distinct
initial conditions. The phase space of the oscillatory synchro-
nized state is depicted in Fig. 3(a) for K = 0.4. The lines
connected by filled triangles and filled squares correspond
to the attractors of the first (always represented by triangles)
and second (always represented by squares) populations, re-
spectively, elucidating their oscillatory nature. The attractors,
indicated by a filled triangle and a filled square, corresponding
to the static synchronized state are depicted Fig. 3(b) for
K = 2.0, whereas the attractors, indicated by a filled triangle
(synchronized population) and a filled square (partially syn-
chronized population), are depicted Fig. 3(c) for K = 2.0. The
value of the other parameters are the same as in Fig. 1.

One parameter bifurcation diagrams obtained from the bi-
furcation analysis of the evolution equation for the complex
mean-field variable z using the XPPAUT are depicted in the
first row of Fig. 4 for three different values of the asymmetry
parameter. The dotted lines correspond to the unstable steady
states. The lines connected by filled circles correspond to the
symmetry preserving synchronized OS state, which loses its
stability via the homoclinic bifurcation at KHc = 1.82 [see
Fig. 4(a) for α = 0.1] resulting in the symmetry preserving
static synchronized state, indicated by dashed (blue) and solid
(red) lines in the forward trace. Note that both populations
remain synchronized in the explored range of K in the for-
ward trace. However, in the reverse trace, the first population
self-organizes to a static synchronized state, lines connected
by filled triangles, in the range of K ∈ [2, KSN] whereas the
second population undergoes a transition from the reflection
symmetry breaking (static steady) state, lines connected by
filled squares, to the reflection symmetry preserving (synchro-
nized oscillatory) state via the saddle-node (SN) bifurcation
at KSN = 1.64. Only the symmetry preserving synchronized
oscillatory state is observed in both populations in the range
of K ∈ [KSN, 1]. In the region between KSN and KHc, indicated
by M1 both populations exhibit the synchronized oscillatory
state in the forward trace. Nevertheless, the second popu-
lation exhibits the symmetry breaking static steady state in
the reverse trace whereas the first population is entrained to
the synchronized steady state thereby elucidating the emer-
gence of the static chimera state in both M1 and M2 regions.
Hence, there is a bistability between the OS state and the
static chimera state in the M1 region. For K > KHc, the syn-
chronized steady states of both populations coexist with the
static chimera state in the M2 region. It is to be noted that
the chimera state is observed even for a very low value of
the asymmetry parameter α unlike the existing reports in the
literature, where chimera states are observed only near π/2
values of the asymmetry parameter. Furthermore, the symme-
try breaking chimera state is observed in the employed two
populations of globally coupled Sakaguchi-Kuramoto model
[4] only with the identical intrapopulation and interpopulation
coupling strengths. The nonidentical intrapopulation and in-
terpopulation coupling strengths as in Ref. [16] results only in
the symmetry preserving synchronized states as shown in the
Appendix.
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FIG. 4. One parameter bifurcation diagrams, obtained from the evolution equation for the mean-field variable z = X + iY using XPPAUT,
for the asymmetry parameter (a) α = 0.1, (b) α = 0.3, and (c) α = 1.0 for ω = 2.0. The corresponding time averaged order parameter R
corroborating the dynamical transition is depicted in (d)–(f), respectively. Top row: The lines connected by filled circles correspond to the
synchronized (OS) state, whereas the dashed (blue) and solid (red) lines for K > KHc correspond to the synchronized steady state in the
forward trace. Dotted lines correspond to the unstable steady states. The lines connected by the filled triangles correspond to the synchronized
steady state of the first population, whereas the lines connected by the filled squares correspond the symmetry breaking steady state of
the second population in the reverse trace. Note that there is a transition from reflection symmetry breaking steady state to the symmetry
preserving synchronized oscillatory state of the second population at K = KSN . Bottom row: Forward trace is represented by lines connected
by unfilled symbols, whereas the reverse trace is represented by lines connected by filled symbols. The lines connected by triangles illustrate
the dynamical transitions of the first population, whereas the lines connected by squares elucidate the dynamical transitions of the second
population. Note that there is an abrupt transition from the symmetry breaking state to the symmetry preserving state in the entire explored
range of the asymmetry parameter. Solid and dashed vertical lines are the analytical critical curves corresponding to the homoclinic and
saddle-node bifurcations, respectively. M1 and M2 are the bistable regions.

The vertical solid line at KHc is the homoclinic bifurca-
tion curve across which the synchronized oscillatory state
is manifested as the synchronized steady state. As the latter
is characterized by r1 = r2 = r = 1 and φ1 = −φ2 = φ, the
condition for the homoclinic curve can be deduced as follows.
Equation (6a) can be expressed in evolution equation in r and
φ as

ṙ = K

2
(1 − r2)r[cos(2φ + α) + cos(α)], (7a)

φ̇ = ω − K

2
(r2 + 1)[sin(2φ + α) − sin(α)]. (7b)

Equating the left hand side of the above equations to zero,
as it corresponds to the evolution equation for the synchro-
nized steady state, and using r = 1, φ can be determined as
φ = 1

2 arcsin( ω+K sin(α)
K − α). By linearizing Eq. (7) about r

and φ, the corresponding Jacobian matrix can be obtained
as

J =
[

K[cot
(

ω+K sin(α)
K

) − cos(α)] 0

−ω −2K cot
(

ω+K sin(α)
K

)
]
.

(8)

The eigenvalues of the above Jacobian matrix are expressed
as

λ1 = −2K

√
1 − [ω + K sin(α)]2

K2
, (9a)

λ2 = K

(√
1 − [ω + K sin(α)]2

K2
− cos(α)

)
. (9b)

The stability conditions for the homoclinic bifurcation
curve are determined from the eigenvalues λ1,2 as

KHc = ω

1 + sin(α)
. (10)

The analytic homoclinic bifurcation curve is depicted in Fig. 4
as the vertical solid line at K = KHc, which matches exactly
with the one parameter bifurcation diagram obtained from
the XPPAUT. The static symmetry breaking steady state of the
second population undergoes an abrupt bifurcation transition
to the symmetry-preserving synchronized oscillatory state in
the reverse trace at K = KSN. In the chimera state, the order
parameter for the first population remains to be r1 = 1, so
the four coupled ordinary differential equations (ODEs) can
be reduced to three coupled ODEs in r2 = r, φ1, and φ2.
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Furthermore, it can also be reduced to two ODEs using
ν=φ1 − φ2, whose evolution equations can be represented as

ṙ = K

2
(1 − r2)[cos(ν + α) + r cos(α)], (11a)

ν̇ = 2ω + K

[
(r2 + 1)

2r
[sin(ν + α) + r sin(α)]

+ sin(α) + r sin(ν + α)

]
. (11b)

Since the chimera state comprises of steady states of both
populations, equating the left hand side of Eqs. (11) to zero,
one can obtain

r = sec(α) cos(ν + α), (12a)

ν = sin−1

(
4rω

K (1 + 3r2)
+ r(3 + r2) sin(α)

1 + 3r2

)
− α.

(12b)

Linearizing Eqs. (11) about r and ν will result in the sta-
bility condition for the saddle-node bifurcation. Equating the
determinant of the corresponding Jacobian to zero, one can
obtain

K

4

(
2r2(1 + 3r2) cos2(ν + α) + (r2 − 1)(2r3 sin(α)

+(3r2 − 1) sin(ν + α)) sin(ν + α)

−r(9r4 − 1) cos(α) cos(ν + α)
) = 0. (13)

Substituting r and ν in the above equation results in the
saddle-node bifurcation condition represented as

A2 cos(α) + (2(A2 + 8ω2) + 24Aω sin(α) + 9A2 sin(α)2)Q1 + 6A2 cos(α)Q2
1 + 6(16ω(ω + 24A sin(α))

+ 3A2(3 sin(α)2 − 1))Q3
1 + 2(8(A2 − 3ω2) + 19A2 cos(2α) − 68Aω sin(α))Q5

1 + 54A2 cos(α)Q6
1 + A2(49 + 5 cos(2α))Q7

1

− 81(A2) cos(α)Q8
1 + 3A2 sin(α)2Q9

1 = 0, (14)

where A = K/4, and

Q1 = csc(α) + 322/3[A3 cos(α)2] csc(α)

+ 1

22/3
{3A csc(α)[3A + 3A cos(2α) − 8ω sin(α)]}.

The parameters satisfying Eq. (14) leads to the stability con-
dition for the saddle-node bifurcation, depicted as the vertical
dashed line in Fig. 4 at K = KSN.

The time averaged order parameter R defined as

R = lim
t→∞

1

τ

∫ t+τ

t
r(t )dt, (15)

is depicted as a function of the coupling strength K in the
second row of Fig. 4 corresponding to the one parameter bifur-
cation diagrams in the first row of Fig. 4. The desynchronized
state is characterized by R = 0, whereas the synchronized
state is characterized by R = 1. The intermediate values of
R between 0 and 1 correspond to the partially synchronized
states. The lines connected by open symbols correspond to
the forward trace, whereas the lines connected by filled sym-
bols correspond to the backward trace. Lines connected by
triangles characterize the dynamical transitions of the first
population, whereas the lines connected by squares corrobo-
rate the dynamical transitions of the second population. The
vertical dashed line (saddle-node bifurcation curve) at KSN

separates the monostable synchronized oscillatory state and
the bistable region M1. Note that it essentially demarcates
the reflection symmetry preserving state and the reflection
symmetry breaking state. Similarly, the vertical solid line
(homoclinic bifurcation curve) at KHc demarcates the bistable
M1 region from the region of bistability between the sym-
metry preserving static synchronized state and the symmetry
breaking chimera state, denoted as M2.

The nature of the dynamical transition as indicated by the
time averaged order parameter R in the range of the coupling

strength K ∈ [1, 2] for the asymmetry parameter α = 0.1 is
depicted in Fig. 4(d). Note that both subpopulations remain
in the synchronized state as corroborated by R = 1, lines
connected by unfilled symbols, in the forward trace. In con-
trast, there is an abrupt transition in the dynamics of the
second population, line connected by filled squares, from the
reflection symmetry broken static steady state to the reflection
symmetry preserving synchronized oscillatory state in the
reverse trace. The first population, line connected by filled
triangles, remains in the synchronized state in the reverse trace
as characterized by R = 1. The time averaged order parameter
R in Fig. 4(d) corroborates the bifurcation transitions observed
in the corresponding one parameter bifurcation diagram in
Fig. 4(a). Similar dynamical transitions are also observed in
the one parameter bifurcation diagrams in Figs. 4(b) and 4(c)
and the corresponding time averaged order parameter R in
Figs. 4(e) and 4(f) for the asymmetry parameter α = 0.3 and
1, respectively. However, note that the bistable regions M1
and M2 are enlarged for α = 0.3 by a decrease in the OS
region, whereas the bistable region M2 prevails almost in the
entire range of K ∈ (1, 2) for α = 1.0 [see Figs. 4(c) and 4(f)].
The abrupt transition from the symmetry breaking state to the
symmetry preserving state in the reverse trace is observed in
the entire explored range of the asymmetry parameter.

Two parameter phase diagrams are depicted on the (K, ω)
plane in Figs. 5(a) and 5(b) for α = 0.3 and 1, respectively.
The synchronized oscillatory state, represented by diagonal
lines, manifests as the synchronized steady state, represented
by the checked region, across the analytic homoclinic bifurca-
tion curve KHc, indicated by the solid line, during the forward
trace as a function of K . Recall that both populations are
completely synchronized during the forward trace. The first
population transits from synchronized steady state, indicated
by gray shaded region, to synchronized oscillatory state via
the saddle-node bifurcation curve, indicated by the dashed
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FIG. 5. Two phase diagram on the (K, ω) plane for the asymme-
try parameter (a) α=0.3 and (b) α = 1. The diagonal lines represent
the symmetry preserving synchronized oscillatory state, the gray
shaded region represents the symmetry breaking chimera state and
the checked region represent the symmetry preserving synchronized
steady state. The dashed and solid lines are the analytical critical
curves corresponding to the saddle-node and homoclinic bifurca-
tions, respectively.

line in the reverse trace. Furthermore, the second population
exhibits a transition from the symmetry breaking steady state
to the symmetry-preserving synchronized oscillatory state via
the saddle-node bifurcation curve in the reverse trace. M1 and
M2 are the bistable regions as discussed in the one parameter
bifurcation diagrams. Increasing the asymmetry parameter
increases the M2 region to an appreciable extent decreasing
the M1 region and the region of the OS state [see Fig. 5(b)
for α = 1] in concurrence with the results observed in the one
parameter bifurcation diagrams.

The phase diagram in the (α, K) space for ω = 2 is de-
picted in Fig. 6. The intriguing collective dynamical states
and the transition between them are similar to those observed
in Fig. 5. It is clearly evident that the reflection symmetry
breaking chimera state not just limited to near π/2 values
of the asymmetry parameter as observed in existing litera-
ture [16–20,23,24,26,27], but, indeed, it extends to even near
zero values of the asymmetry parameter for large coupling
strengths thereby resulting in the manifestation of the chimera
state in almost entire explored range of α. The shaded regions
in Figs. 5 and 6 are obtained from the simulation of the orig-

FIG. 6. Two phase diagram on the (K, α) plane for ω=2. The
collective dynamical states and the bifurcation transitions are similar
to those observed in Fig. 5.

inal set of Eqs. (2), the boundaries of which are in excellent
agreement with the analytical critical (bifurcation) curves.

V. CONCLUSIONS

We have considered two populations of globally coupled
Sakaguchi-Kuramoto model with the same intra- and inter-
population coupling strengths. The oscillators constituting
the intrapopulation are chosen to be identical with the same
frequency, whereas that constituting the interpopulations are
chosen to have a parameter mismatch. The asymmetry pa-
rameters in the intra- and interpopulations are chosen such
that there lies a permutation symmetry among the oscillators
constituting intrapopulation and a reflection symmetry among
the oscillators constituting the interpopulation. We have ob-
served that the onset of the chimera state was accompanied
by the manifestation of spontaneous breaking of the reflection
symmetry among the inter-population unlike the existing lit-
eratures on two or more populations where the chimera states
usually emerge by breaking the permutation symmetry among
the interpopulation. Furthermore, we have also observed that
the chimera state has manifested almost in the entire explored
range of the asymmetry parameter, extending even to the
near zero value of it, and the coupling strength in contrast to
the existing literature where the onset of chimera states are
restricted to near π/2 values of the asymmetry parameter and
in a small range of the coupling strength. There is an abrupt
transition of the second population from symmetry breaking
steady state to the symmetry-preserving oscillatory synchro-
nized state in the reverse trace via the saddle-node bifurcation.
In the forward trace, both populations exhibit transition from
the symmetry-preserving oscillatory synchronized state to
symmetry preserving static synchronized state via the ho-
moclinic bifurcation. We have also deduced the governing
equations of motion for the macroscopic order parameters
employing the finite-dimensional reduction by Watanabe and
Strogatz [36]. The deduced analytical stability curves from
the evolution equations of motion for the macroscopic order
parameters corresponding to the saddle-node and homoclinic
bifurcations are found to exactly match with the simulations
results obtained from the original evolution equations of the
globally coupled Sakaguchi-Kuramoto model and the bifur-
cation curves obtained using the software package XPPAUT.
As the paradigmatic Kuramoto model can be reduced from
the Stuart-Landau limit-cycle oscillator, which is the normal
form of the supercritical Hopf bifurcation and, hence, the
dynamics of any nonlinear oscillator exhibiting supercritical
Hopf bifurcation can be described by the Stuart-Landau limit-
cycle oscillator. This fact elucidates that the reported abrupt
symmetry-preserving transition in the paradigmatic Kuramoto
model is expected to be generic for a class of nonlinear oscil-
lator exhibiting supercritical Hopf bifurcation.
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APPENDIX: SYMMETRY-PRESERVING STATES FOR
NONIDENTICAL INTRAPOPULATION AND

INTERPOPULATION COUPLING STRENGTHS

We have analyzed the two populations of globally coupled
Sakaguchi-Kuramoto model [4] with intrapopulation coupling
strength stronger than the interpopulation coupling strength
as studied by Abrams et al. [16]. Accordingly, the coupling
strengths in Eq. (2) will become K11 = K22 = (1 + A) and
K12 = K21 = (1 − A), where 2A is the degree of mismatch in
the intra- and interpopulation coupling strengths.

Two phase diagram in the (ω − A) parameter space is
depicted in Figs. 7(a) and 7(b) for α = 0.8 and 1.5, respec-
tively. It is to be noted that only the symmetry-preserving
synchronized oscillatory, indicated by diagonal lines, and the
steady state (indicated by the checked region) is observed in

the entire parameter space in contrast to phase diagrams in
the main paper and that in Abrams et al. [16]. Furthermore,
increasing the asymmetry parameter α results in a large re-
gion of the oscillatory synchronized state [see Fig. 7(b)]. As
the symmetry-preserving synchronized state is characterized
by r1 = r2 = r = 1 and φ1 = −φ2 = φ, the condition for the
homoclinic curve can be deduced as follows. Equation (6a)
can be expressed in evolution equation in r and φ as

ṙ = (1 − r2)r

(
1 + A

2
cos(α) − 1 − A

2
cos(2φ − α)

)
,

(A1a)

φ̇ = ω − (r2 + 1)

(
1 + A

2
sin(α) + 1 − A

2
sin(2φ − α)

)
.

(A1b)

By linearizing Eq. (A1) about r and φ, the eigenvalues of
the corresponding Jacobian is obtained as

λ1 = ω − 2 sin(α) − 2A sin(α), (A2)

λ2 = −(1 + A) cos(α)

+ (A − 1)

√
1 − ω

(1 − A)
− ((1 + A) sin(α))

(1 − A)2
. (A3)

The stability condition for the homoclinic bifurcation curve is
determined from the above eigenvalues λ1,2 as

A = 1 + ω − sin(α)

1 − sin(α)
. (A4)

The solid diagonal line in Fig. 7 corresponds to the homo-
clinic bifurcation curve KHc across which the synchronized
oscillatory state is manifested as the synchronized steady state
as ω is increased. Hence, it is evident that only identical
intrapopulation and interpopulation coupling strengths in the
employed two populations of globally coupled Sakaguchi-
Kuramoto model [4] will results in the symmetry breaking
chimera states as demonstrated in the main part of the paper.
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