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Useful dynamical processes often begin through barrier-crossing dynamical transitions; engineering system
dynamics in order to make such transitions reliable is therefore an important task for biological or artificial
microscopic machinery. Here, we first show by example that adding even a small amount of back-reaction
to a control parameter, so that it responds to the system’s evolution, can significantly increase the frac-
tion of trajectories that cross a separatrix. We then explain how a post-adiabatic theorem due to Neishtadt
can quantitatively describe this kind of enhancement without having to solve the equations of motion, allowing
systematic understanding and design of a class of self-controlling dynamical systems.
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I. INTRODUCTION

From satellite capture in astrophysics to chemomechanical
reactions, dynamical transitions induced by slow parameter
change are important phenomena in many physical settings.
Some kind of effective potential barrier gradually rises or
falls until, at some critical point, a qualitative change in sys-
tem behavior occurs, analogous to the change that a physical
pendulum makes when it crosses the phase space separatrix
between rotation and libration.

Dynamical transitions of this kind are typically described
within adiabatic theory, assuming that the Hamiltonian which
governs the system has some slow, fixed time dependence,
through an “external” parameter which slowly changes in
a predetermined way [1–17]. The adiabatic approximation
breaks down near a separatrix, and so post-adiabatic methods
are needed to describe the dynamical transition—and even to
determine whether it occurs. Separatrix-crossing dynamical
transitions often turn out to be quasi-probabilistic, in that they
occur only for a subset of initial conditions, and this sub-
set may depend sensitively on exactly how the Hamiltonian
depends on time. By applying Liouville’s theorem as well
as adiabatic analysis, the Kruskal-Neishtadt-Henrard theorem
(KNH) derives the post-adiabatic probability of a dynamical
transition into a given region of phase space in terms of the
rate at which the area of that region is changing (due to the
slow change of the Hamiltonian). Neishtadt’s generalization
of the KNH theorem to include dissipation (hereafter GKNH
[19,20]) further shows that even a small amount of dissipation
can significantly shift the probability of a separatrix-crossing
dynamical transition.

It has recently [18] been pointed out that nondissipative
KNH theory can be the basis of a class of “blind” control
strategies: by engineering a slowly time-dependent Hamilto-
nian to increase the growth rate of a target region, the set
of initial conditions which lead to transitions into the target
region can be enlarged, without having to monitor or control

fast degrees of freedom. Our first purpose in this paper is
therefore to point out the implications of the GKNH theorem
for open-system control over dynamical transitions. Adding
a small amount of dissipation to an adiabatic control process
can enlarge the range of initial conditions for which a desired
transition occurs, potentially converting a rare fluke into a
reliable consequence. This is an application of dissipation to
control which has nothing to do with the usual idea of cooling
to keep the system near its ground state.

Our second purpose in this paper is, conversely, to let the
concept of open-system control shed some light on the GKNH
theorem, by providing a physical picture of how dissipation
can provide efficient control over a sensitive process. Dissi-
pation can be represented within a Hamiltonian framework
by including parameters in the system Hamiltonian which,
instead of having a fixed time dependence, obey their own
non-trivial equations of motion that include coupling to the
system degrees of freedom. This is, after all, what dissipation
always really is, microscopically—the additional dynamical
parameters which provide viscous drag on an object moving
through air, for example, are simply the air molecules that can
collide with the object. By taking this kind of perspective on
dissipation, we will show that dissipation can improve control
because it is equivalent to a more sophisticated control strat-
egy that includes tailored feedback, so that the time-dependent
control parameter adapts, at least slightly, to the system’s time
evolution.

We begin our study in Sec. II by demonstrating both of
our points with an example. We compare two model con-
trol problems that share the same goal of initiating a certain
dynamical transition by slowly changing a control param-
eter. The actual time-dependences of the parameter remain
very close to each other in the two models, but in one case
dissipative back-reaction induces small correlations between
system and control parameter, and these small but system-
atic differences are enough to induce dynamical transitions
for a much larger set of initial conditions than in the case
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that has only predetermined time dependence in the control
parameter.

We then show in Sec. III that this advantage of open-system
control extends beyond our illustrative example, by using
Neishtadt’s GKNH theorem [19,20] to compute the enhance-
ment of transition probabilities in generally similar scenarios.
We conclude in Sec. IV with a brief discussion.

II. ENHANCING TRANSITION PROBABILITY WITH
OPEN-SYSTEM CONTROL: AN EXAMPLE

A. Dragging as a control task

Our example to show the general effect is a particle in
one dimension, with phase space coordinates q, p as usual,
subject to a potential which depends on a time-dependent
parameter λ(t ). In particular the potential is sinusoidal in q,
with a λ-dependent amplitude that slowly ramps on and off.
At the same time as the potential ramps on and off in strength,
it also moves back and forth in space, in dependence on λ. The
goal of this twofold λ dependence, as a control task, is to drag
the particle over a distance, by capturing it into a bound orbit
in one of the wells of the moving sinusoidal potential. Since
the potential initially has vanishing strength, the particle is not
bound initially; as the potential strength grows, a phase space
region of bound orbits grows, but the particle is not initially
in it. To succeed in the control task, the particle must cross an
adiabatic separatrix into this bound-orbit region.

Because adiabaticity breaks down near a separatrix, the
particle in the time-dependent potential can in fact cross
the instantaneous separatrix and be dragged successfully. For
some initial conditions it does this, while for others it does not.
We compare the phase space areas of initial conditions that
lead to capture (and thus to successful dragging) for two dif-
ferent forms of λ(t ) time dependence. The two forms of time
dependence will differ only very slightly as functions of time,
but they will differ qualitatively in precisely how their time
dependences are determined. In one case, it is preordained,
while in the other it depends weakly on the instantaneous
momentum p of the particle. This weak dependence of the
control parameter on the target particle’s momentum has a
significant effect on the control task, but it is by no means
a daemon-like fantasy coupling that cannot be implemented
realistically. On the contrary, we will show after defining the
momentum dependence that it is nothing but a bit of dissipa-
tion.

B. Co-moving frame Hamiltonian

As a simple case we will take the potential’s instantaneous
velocity to be the parameter λ, on which the potential’s in-
stantaneous strength also depends. To simplify our description
of the problem we will work in the co-moving frame of the
moving potential, where our λ-dependent Hamiltonian reads

H (λ, q, p) = (p − λ)2

2
− β2(cos(q) + 1) (1)

with β = √
gexp(−α

4 λ2) for some constant α > 0. In these
co-moving frame coordinates, success in the control task of
dragging means keeping q nearly constant, captured in a po-
tential well, with only small oscillations of p around λ as λ

FIG. 1. Instantaneous energy contours in phase space for λ = 0,
when the separatrix is at its largest size. Shown are orbits with
energies H (0, π/2, 0) (orange), H (0, π, 0) (the separatrix, blue), and
H (0, π, 0.5) (red) for g = (π/4)2/9, α = 1.

slowly changes. Failure to capture the particle and drag it will
appear instead as q changing with λ, as the particle fails to
move with the potential, while p remains constant.

Captured and non-captured orbits in phase space under this
H for fixed λ are shown in Fig. 1. We see the separatrix (black)
and an orbit inside it (orange), as well as orbits below (red)
and above (blue) the separatrix. The eye-shaped separatrix
becomes vanishingly small for large |λ|, as the Gaussian factor
the potential strength becomes small, but in general there is a
separatrix at any λ, separating phase space into three regions.
Since the corners of the separatrix are at the unstable fixed
points p = λ, q = ±π , the separatrix is a contour with zero
energy and a parametrization is given by

p±(q, λ) = λ ± β
√

2 + 2 cos q, (2)

enclosing the area

Asep(λ) = 16β. (3)

Initially λ will be negative, and it will steadily increase,
so that the separatrix slowly grows and then shrinks, while
simultaneously moving upward in p. Since ordinary adiabatic
theory applies until the system encounters the separatrix, or-
dinary adiabatic theory can yield an accurate estimate for
the value of λ at which the system encounters the separa-
trix, for given initial conditions. This adiabatically estimated
point is known as the “‘pseudo-crossing”, because the exact
λ when the system meets the adiabatic separatrix depends on
post-adiabatic corrections. As we show in Appendix A, the
value of λpc is given, in cases where β2(λ(0)) is negligible, is
determined as a function of p(0) by

p(0) = λpc + Asep(λpc)

4π
= λpc + 4β(λpc)

π
. (4)

Alternatively, Eq. (4) can define the value of p(0) for which
the system will encounter the separatrix at a given value of
λ = λpc. The corresponding time when the system meets the
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FIG. 2. Time evolution of q (a) and p (b) for trajectories of the
responsive case transitioning to different phases of motion. The same
qualitative behavior can be seen for the unresponsive case, q (c) and p
(d). Slight differences between the orange curves in (b) and (d) can be
seen around tpc, and also at late times in the decreasing amplitude of
the orange-curve oscillations in (b), with no corresponding amplitude
decrease in (d). The constants are g = (π/4)2/9, α = 1, γ = 1, and
ε = 0.002.

separatrix is then given, for any particular λ(t ) time depen-
dence, by λpc = λ(tpc).

Because adiabaticity breaks down whenever the system
does encounter the separatrix, at that point the system may
possibly cross the separatrix even though this is forbidden
adiabatically. This potential crossing is the crux of our control
task. The system begins outside the separatrix, above it. If
the control task succeeds, the system will enter the separatrix
as the separatrix migrates upward, and orbit within it for
some significant time, moving upward with it in p. If the task
fails, the particle is never captured into the separatrix, but is
left behind in the region below the separatrix after it passes.
Figure 2 shows examples of both kinds of trajectories, one in
blue and one in orange, which differ so slightly in the initial
values of q and p that the differences between orange and
blue trajectories are nearly invisible until the decisive point is
reached. This illustrates the sensitive nature of the dynamical
transition that is the goal of this control task. Panels (a),(b) of
Fig. 2 show evolution under one particular λ(t ), while panels
(c),(d) are for a λ(t ) that differs in small but significant ways
that we will discuss below.

The second pair of panels in Fig. 2 resembles the first pair
quite closely; this shows that the control task can succeed for
both forms of λ(t ), and it can also fail for both kinds of λ(t ),
depending on the precise initial values of q and p. As we will
see further below, the significant difference between the two
forms of λ(t ) is in how common it is, among all possible initial
conditions, to succeed in the control task. To obtain evolutions
like the orange trajectories, instead of those like the blue ones,
requires more finely tuned initial conditions for the λ(t ) of
panels (c) and (d) than it does for the λ(t ) of panels (a) and (b).
The difference between the two λ(t ) is qualitatively drastic
even though it is quantitatively small.

C. Time dependence of λ

Whether the time-dependence of λ is fixed in advance, or
is determined dynamically, it can always be expressed with
a differential equation of some kind. For example, the equa-
tion of motion

λ̇ = −εγ (λ − S) (5)

for constant S, with the initial condition λ(0) = R, implies a
λ(t ) that begins with the initial value R and slowly relaxes,
on the time scale (εγ )−1, to the final value S. (We include
the parameter ε � 1 to emphasize the comparative smallness
of this relaxation rate, and because the time scale γ will
appear without ε in our next model, below.) Since this λ(t ) is
unaffected by the system evolution q(t ), p(t ), we will refer to
it as “the unresponsive case” and denote the solution to Eq. (5)
with λ(0) = R as λ(t ) → λU(t ), namely,

λU(t ) = (R − S)e−εγ t + S. (6)

A control degree of freedom which does respond to the
system as it evolves could instead of Eq. (5) obey an equa-
tion of the form λ̇ = ε f (λ(t ), q(t ), p(t )) for some function f .
For simplicity we will consider f which depend only linearly
on q(t ) and p(t ); this linear case should actually represent
more general dependence, as long as the control strategy ends
up working well enough that the actual q(t ), p(t ) do not depart
far from the trajectory which the control is trying to enforce.

If we focus first on the possibility of λ depending on q
without p, we could allow an equation for λ(t ) of the form

λ̇ = ε f0(t ) + εaq(t ) (7)

for constant a and some f0(t ). We could then combine Eq. (7)
with the canonical equations of motion for the H of Eq. (1)
and differentiate q̇ with respect to t to find

q̈ = −β2(t ) sin(q) − εaq − ε f0(t ). (8)

This means that the εaq(t ) term in Eq. (7) is effectively just
a change of the particle’s potential energy from −β2 cos(q)
to −β2 cos(q) + εaq2/2. Motion in slowly time-dependent
potentials of quite general form has been studied extensively,
and we do not expect to learn anything new just by adding a
parabolic perturbation to our cosine potential.

We will therefore ignore the possibility that λ̇ might de-
pend on q(t ), and focus on linear dependence on p(t ). For
“the responsive case” of λ(t ) that we will compare to our
unresponsive λU(t ) from Eq. (6), therefore, we will consider

λ̇R = ε(1 − γ (λR − p)). (9)
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FIG. 3. Time evolution of the control parameter λ for the same initial conditions as in Fig. 2. The orange curve is the responsive λR(t )
for the q, p trajectory which successfully enters the separatrix, while the blue curve shows the responsive λR(t ) for the trajectory which fails
to cross the separatrix. The red dotted curve is the unresponsive λU(t ), which is the same for both kinds of system trajectory. (b) depicts the
same evolutions zoomed in around λpc. The three curves all remain close until after the system encounters the separatrix at tpc, showing that
the success or failure of the control task depends sensitively on the precise time dependence of the control parameter.

When we now differentiate the canonical equation for q̇ we
obtain

q̈ = −β2(t ) sin(q) − ε − εγ q̇. (10)

The effect of even a small momentum dependence in λ̇R is to
add dissipation to the particle motion, which can substantially
affect adiabatic control. Whereas the product εγ still defines
the relaxation rate for λR as it did for λU, we can see from
Eq. (10) that γ alone, without the small prefactor ε, represents
the relative strength of dissipation, and of the responsiveness
of λ to the system, compared to the predefined steady increase
of λ, driven by the term in Eq. (10) without γ .

Conversely, Eq. (10) shows that adding simple damping
to our controlled particle is equivalent to making the control
parameter λR(t ) respond dynamically to the particle, through
its momentum. Representing dissipation in this way, through
a dynamical reaction of the control parameter to the controlled
particle, allows us to make direct comparison between closed-
system control, with λU(t ) and open-system control with the
responsive λR(t ) evolving under Eq. (9), which is equivalent
to including damping.

This particular comparison between λU(t ) and λR(t ) is
informative because even though the qualitative difference
between them is drastic, with λU(t ) being non-responsive
and fixed while λR(t ) is responsive and dissipative, we will
be able to keep the quantitative difference between the two
time-dependent control parameters small. This lets us isolate
the specific effect of openness in open-system control.

The particular form of λU(t ) can closely approximate
λR(t ), in spite of their qualitative differences, because until the
system approaches the separatrix, ordinary adiabatic theory
will accurately describe q(t ) and p(t ), and we can therefore
also use this adiabatic p(t ) to compute λR(t ) self-consistently,
to high accuracy for small ε. As often with adiabatic evolution,
the result is equivalent to averaging away small-amplitude,
high-frequency components of λR(t ). This analysis is pre-
sented fully in Appendix A, but can be outlined here briefly.
If the particle is not (yet) captured, then the only effect of

the sinusoidal potential on p(t ) will be “speed bump” mod-
ulations which average away, leaving the constant average
p̄(t ) = p(0). Substituting p(t ) → p(0) in Eq. (9) then leads
to the self-consistent solution in which the approximation to
λR(t ) is simply given by λU(t ) with

R = λ(0) S = p(0) + 1

γ
. (11)

It is therefore these particular values of R and S that we will
use in our λU(t ), making it close to the responsive λU(t ) in our
comparison.

Just how quantitatively close λU(t ) and λR(t ) are can be
seen in Fig. 3. There the dotted red curve is the unresponsive
λ → λU(t ) with optimal parameters Eq. (11); since λU(t ) is
unresponsive, this curve is the same regardless of what the
system actually does. The orange and blue curves are the
responsive λ → λR(t ) for successful and unsuccessful p(t )
trajectories, respectively. In panel (b), we see that even when
zoomed in the three control parameter time dependences re-
main virtually indistinguishable (on this scale) up until after
the time tpc when the system has reached the separatrix and
either crossed it successfully or failed to do so.

Because the three λ(t ) evolutions agree well up to this
point, we can use λU(tpc) = λpc to compute the pseudo-
crossing time tpc in all cases. As Fig. 2 shows, this
pseudo-crossing tpc actually is very close, for both responsive
and unresponsive cases of λ, to the time at which the system
either enters the separatrix, with p(t ) thereafter oscillating
around λ as in the orange trajectory, or else bypassed by
the moving separatrix, in the blue trajectory, with a one-time
downward shift in p followed by “speed bump” oscillations
around constant p.

So from Fig. 3 we have seen that λR(t ) and λU(t ) remain
very close to each other up to and around tpc. And we have
seen that both responsive [Figs. 2(a) and 2(b)] and unrespon-
sive control parameters [Figs. 2(c) and 2(d)] do allow the
dynamical transition into the separatrix, with success in the
dragging control task, while also allowing failure in the con-
trol task, depending on precise initial conditions q(0), p(0).
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FIG. 4. Probabilities of success in the dragging control task, as
predicted post-adiabatically by the KNH (blue dashed) and GKNH
(orange) formulas, with the parameters from Fig. 2 for different
λpc. To calculate each probabilities we evolved N = 104 trajectories
numerically for different random initial conditions and determined
the probability by counting the trajectories entering the separatrix,
Nsep, and then taking the fraction Nsep/N . Blue dots without borders
mark the probabilities for the unresponsive system, while orange dots
with black borders represent the responsive system. What appear to
be blue dots with black borders, towards the sides of the plot, are in
fact borderless blue dots overlying bordered orange dots, because the
probabilities in the two cases are indistinguishable.

How big a difference, then, do the small differences between
λR(t ) and λU(t ) possibly make, in this control task? They
can make quite a large difference: the relative proportions of
captured trajectories for responsive and unresponsive cases
are drastically different, as can be seen in Fig. 4.

D. Systematic effect of responsiveness

Figure 4 represents evolution of an ensemble of 104 initial
conditions q(0) randomly distributed in [−π, π ], for each of

a range values of p(0) corresponding to 27 different values
of λpc. Trajectories with separatrix crossing are identified for
evolution with the unresponsive parameter λ → λU(t ), and
the probability Pr(·) of control task success is then plotted,
as blue dots, versus λpc. The whole procedure is then repeated
with the responsive parameter λ → λR(t ), and the probabili-
ties shown as orange dots. The results clearly show that the
probability of control task success, i.e. the fraction of initial
conditions leading to orbits with capture into the separatrix,
is substantially higher in the responsive case. The probability
can even be significant in the responsive case for λpc > 0,
where it is zero for the unresponsive case.

The reason for the great difference in control effectiveness
between the responsive and unresponsive cases can then be
seen in Fig. 5. Because the slight differences between λR(t )
and λU(t ) are mainly on the short time scale that is normally
ignored in adiabatic approximations, in panel (b) of Fig. 5 the
differences are enhanced by plotting the time derivatives λ̇R

and λ̇U. We notice that the small difference between λR(t ) and
λU(t ) happens to be that the responsive λR(t ) has small high-
frequency oscillations which closely follow the oscillations of
p(t )—while the unresponsive λU(t ) does not track these small
oscillations of p(t ). The difference between responsive λR(t )
and unresponsive λU(t ) is thus small, but it is by no means
simply a random small difference. Instead there is a small
correlation between λR(t ) and p(t ), which is missing from
λU(t ). This small cooperative interaction between p(t ) and
the responsive λR(t ) can have decisive effects on the unstable
evolution around the separatrix. Nonetheless, as we have seen
above, this almost intelligent-seeming cooperative interaction
is equivalent to nothing but a little bit of dissipation added to
our adiabatically controlled dynamical system.

Since the separatrix includes an unstable fixed point, it
should not really be surprising that small differences can af-
fect separatrix crossing dramatically. What is less obvious, in
this representation of dissipation through a responsive control
parameter, is that the effect of parameter responsiveness on the
control task is indeed systematically cooperative: the system-
atic dissipative drift of the system into the lower-energy phase

FIG. 5. Evolution for p and λ̇ in both the responsive (orange) and unresponsive (red) case for the same initial conditions with the same
parameters as before. Note how the p(t ) oscillations are very similar for the two cases up until tpc, but the oscillations in the responsive orange
λ̇R(t ) closely follow the oscillations in p(t ) for t < tpc, while the unresponsive red curve for λ̇(t ) → λ̇U(t ) does not. This difference in the
responsive λ̇R(t ) behavior is small, but systematically cooperative in triggering capture.
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space region inside the separatrix pushes the system towards
success. For any single trajectory the success or failure of
the separatrix-crossing control task still depends sensitively
on precise values of q(0) and p(0), as well as on α, ε, and
λ(0). Over a broad enough ensemble of initial conditions,
however, the dynamical responsiveness of λR(t ) to the system,
in comparison to the unresponsiveness of the predetermined
λU(t ), contributes a substantial bias in favor of successful
capture into the separatrix, as clearly shown in Fig. 4.

E. Generality

This effect is not just a lucky special feature of this par-
ticular model system; neither is it an irreducibly complex
manifestation of unstable dynamics which can only be repre-
sented accurately by solving equations of motion exactly for
all initial conditions. The powerful and general GKNH theory
provides the solid orange and dashed blue curves in Fig. 4, to
which the ensemble numerical dots conform closely (except
at the edges of the curves, where the adiabatic assumptions
of the theory break down for our illustrative parameters).
In the next section we review this theory and show how it
implies a generic advantage, from even weak dissipation, for
open-system control of dynamical transitions.

III. THE GENERALIZED KNH THEOREM

Here, we review the Kruskal-Neishtadt-Henrard formula,
showing how it applies to our unresponsive case from Sec. II.
We then briefly explain the generalized GKNH version of
the result, and show how it predicts the advantages that we
have found for the dissipative responsive case of open-system
control.

A. The KNH theorem

Our unresponsive case is simply a Hamiltonian with a fixed
(and slow) time dependence; the probabilities that result from
breakdown of adiabaticity around an unstable fixed point are
given by the Kruskal-Neishtadt-Henrard theorem [18]. The
KNH theorem is not trivial to prove rigorously [20], but in
essence it follows from Liouville’s theorem. If phase space
regions are changing their area, the Liouvillian incompress-
ibility of phase space flow along system orbits implies that
trajectories must move between regions. For the three areas
A↓, Asep, A↑ in our pendulum-like system, this leads directly
to the simple formula for the probability Pr(·) of control task
success (fraction of initial orbits which cross the separatrix)

Pr(tpc) = Ȧsep(tpc)

Ȧsep(tpc) + Ȧ↓(tpc)
, (12)

where the areas A↓,↑ are made finite with a constant cutoff far
away from the separatrix. In cases where Pr(tpc) as given by
Eq. (12) is greater than one or negative, the theorem specifies
that Pr is to be taken instead to be one or zero, respectively.

We can use Eq. (12) to determine the capture probabil-
ity for our unresponsive system. With the separatrix area
Asep = 16β as given by Eq. (3), our time-dependent potential
amplitude β = √

ge− α
4 λ2(t ) implies

Ȧsep = −8αλ̇λβ. (13)

The area below the separatrix is A↓ = 2π (λ − C↓) − Asep/2,
where C↓ is a constant cutoff far below the separatrix. This
yields

Ȧ↓ = 2πλ̇ − 4αλ̇λβ. (14)

The probability of entering the separatrix in the unrespon-
sive case is then given by the formula

Pr(tpc) = −4αλβ

π − 2αλβ

∣∣∣∣
λ=λpc

. (15)

It is noteworthy that this expression is independent of λ̇, being
obtained in the adiabatic limit; we could have chosen λU(t )
arbitrarily (as long as it is sufficiently slow) and obtained
the same capture probability. This formula corresponds to the
dashed blue line in Fig. 4, which agrees well with the blue dots
from the numerical calculation. It also explains why there is
no capture for λpc > 0, where the separatrix area is constantly
shrinking and no states can enter the separatrix due to Liou-
ville’s theorem. The only way to exceed this KNH capture
efficiency is to evade Liouville’s theorem, by having an open
system with some non-Hamiltonian term in its evolution.

B. The generalized KNH theorem

The KNH theorem has been generalized to include some
forms of non-Hamiltonian evolution. In this section we will
adapt the formulas from [19,20] for the probability of entering
a double-well-like system with Hamiltonian H (λ, q, p), tailor-
ing them to our example, and then give a heuristic derivation
of the formula. In [20] it is explicitly anticipated that such
adaption to different phase space geometries is possible, even
to those on a cylinder as in our case.

First we note that our example fits the general form of
equation of motion

λ̇ =ε fλ(λ, q, p, ), (16)

q̇ =∂H

∂ p
+ ε fq(λ, q, p), (17)

ṗ = − ∂H

∂q
+ ε fp(λ, q, p), (18)

for which the theorem holds. We further have a phase space
structure like that of a physical pendulum: an eye-like inner
region bounded by a separatrix consisting of upper and lower
arcs. The separatrix is a contour of constant instantaneous
energy; for convenience (and without loss of generality) we
set it to have zero energy at all times, so that the energy
in its interior is negative. Any trajectory which crosses the
separatrix will first approach it and orbit past it closely for
some time; we will compute and compare the loss of energy
h during orbits just above and just below the separatrix, us-
ing the upper-arc “frown” and lower-arc “smile” symbols as
subscripts to denote orbits above and below the separatrix,
respectively.

In particular we consider a set of orbits which are initially
above the separatrix with energies in the range (0, δh
]; see
Fig. 6. This set (except an exponentially small subset near
the fixed point [2]) will evolve closely to the separatrix and
will pass along it much faster than the separatrix will deform.
The upper bound δh
 is the energy loss of the trajectories,
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FIG. 6. Change of the energy interval [0, δh
] (upper bound
blue, lower bound orange) over time, during the evolution along
upper and lower arc of the separatrix. Along the upper arc the energy
δh
 gets lost, yielding interval [−δh
, 0]. Along the lower arc, the
energy −δh� is gained; orbits which thereby rise above zero energy
again are not returning to their initial phase space region above the
separatrix, however, but are rather proceeding below the lower arc
of the separatrix, where energy is also positive. These blue-shaded
orbits will therefore not cycle around the separatrix again and be
captured; instead they have successfully crossed the whole negative
energy region, climbing back up to positive energy, and will never be
captured. The captured fraction is what remains below the separatrix
energy, colored in orange.

calculated as integral over the upper arc of the instantaneous
separatrix contour. This energy loss over the upper separatrix
arc will bring the upper energy of our orbits’ range down to
the separatrix energy of zero. This means that we are dealing
with the largest set of orbits which begins above the upper
branch of the separatrix and is brought entirely under it, by
the parameter change and non-Hamiltonian energy loss, as
it follows close to the arc. The energy range δh
 can be
computed in the adiabatic limit by integrating along the upper
arc:

δh
 = −
∫

 dτ

dH

dτ
= −ε

∫

 dτ

(
∂H

∂λ
fλ + ∂H

∂q
fq + ∂H

∂ p
fp

)
,

(19)

where τ refers to time evolution under the instantaneous
Hamiltonian at tpc with “frozen” λ = λpc.

This means that all states above the separatrix with ener-
gies in the interval (0, δh
] will transition to (−δh
, 0], as
sketched in the first half of Fig. 6. To determine to which
region of phase space the state will transition, we follow its
path close to the lower arc of the separatrix. There the energy
changes by

δh� = −
∫
� dτ

dH

dτ
= −ε

∫
� dτ

(
∂H

∂λ
fλ + ∂H

∂q
fq + ∂H

∂ p
fp

)
.

(20)

This leads to a spread in energy of (−δh
 − δh�,−δh�], as
sketched in the second half of Fig. 6. It is essential to realize
that the blue-shaded region in Fig. 6 has risen in energy above
zero, so that it has escaped from inside the separatrix, but it

has not returned to its starting region above the separatrix.
Instead it has fallen below the lower arc of the separatrix,
where the energy again rises. This blue region therefore rep-
resents a portion of the ensemble which has crossed through
the negative-energy region without being trapped in it: it is
the portion of the initial energy range just above the separatrix
which does not get captured.

If for some values of λpc there is no blue region, because
none of the initial energy range ever comes back to positive
energies, then capture is certain; if there is no orange region,
capture is impossible. Otherwise, the fraction of orbits near
the separatrix which are captured inside it is given by the ratio
of the final energy width of the orange-shaded region in Fig. 6
to the initial energy width δh
,

Pr(λpc) = δh
 + δh�

δh


∣∣∣∣
λ=λpc

. (21)

To see how these generalizations of the KNH probability
formula apply to our responsive case, we rewrite the integrals
(19) and (20) and decompose fλ. We change the integration
variable from τ to q and use fq = fp = 0, obtaining

δh
 = −ε

∫ π

−π

dq
∂H

∂λ

(
∂H

∂ p

)−1

fλ(λ, q, p+(q)) (22)

with p+ from Eq. (2). The two partial derivatives in the inte-
gral evaluate to

∂H

∂λ

(
∂H

∂ p

)−1

= −1 ∓ 2β ′ cos(q/2) (23)

for the two different paths, where β ′ = ∂λβ. We can then use
a decomposition to separate the effects

fλ(λ, q, p±(q)) = f̄ (λ) + 
±(λ, q). (24)

The function f̄ is simply a time dependence of the Hamilto-
nian, so in the adiabatic limit it has a constant value at λ = λpc,
and we can pull it in front of the integrals for both δh
 and
δh�. In the numerator of the probability formula this then
leaves us with

ε f̄
∫ π

−π

dq
[
1 + 2β ′ cos

(q

2

)
− 1 + 2β ′ cos

(q

2

)]

= 16ε f̄ β ′ = ε f̄
∂

∂λ
Asep. (25)

If 
 = 0 we have ε f̄ ∂λ = λ̇∂λ = ∂t and the rates of change of
the areas from the KNH theorem are recovered.

To evaluate the term arising from 
± in the numerator,
we choose the decomposition 
±(λ, q) = γ (p±(q) − λ). The
term arising from the back-reaction is then just

ε

∫ π

−π

dq(
+ − 
−) = 16εγ β = εγ Asep, (26)

where 
− is subtracted because the path of integration re-
verses and the second summand in from Eq. (23) vanishes
because of symmetry. From Eq. (26) we immediately see the
mechanism of our back-reaction by which the probability is
increased: terms proportional to the separatrix area are added
to the numerator, allowing it to be greater than zero even for a
shrinking separatrix.
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A more detailed calculation of the values of δh
, δh� can
be found in Appendix B. The final formula for the probability
is

Pr(λpc) = γ Asep + A′
sep

A′
↓ + A′

sep + γ Asep/2 − 4πγ AsepA′
sep/162

∣∣∣∣
λ=λpc

,

(27)

where A′
sep = ∂λAsep. Explicitly in terms of the system param-

eters for our model this yields

Pr(λpc) = 16γ β − 8αλβ

2π + 8γ β − 4αλβ − 2πγαλβ2

∣∣∣∣
λ=λpc

, (28)

which provides the theoretical curve for the responsive case
(orange) in Fig. 4.

In Fig. 4 we also see some deviations of the analytical
probabilities at the fringes of the distribution. These arise
when the change of the separatrix area is slow compared to
the speed of its instantaneous fixed point, so that the adiabatic
limit no longer holds well.

C. Optimal capture

We have seen in the last section that what matters for
capture is the behavior of the vector field f = ( fλ, fq, fp)	
along the separatrix. Now we will assume that we have at least
some control over f , and ask whether and how a careful choice
of f can make control success certain, i.e., raise Pr to one.
Alternatively, it could be that capture inside the separatrix is a
hazard that we would like to avoid; in such a case we would
try to bring Pr to zero.

Let us consider that the separatrix at the pseudo-crossing
parameter value λpc has been given. If we can choose f at
every point along the separatrix, how should we chose it to
enhance capture, or suppress it? A glance at Eq. (21) reveals
that we want to minimize δh� and maximize δh
—or else the
opposite, if we desire to avoid having the system get captured.

In either case we can rewrite Eq. (19) as

δh
 = −ε

∫

 dτn · f, (29)

where n(q(τ ), p(τ )) = (∂λH, ∂qH, ∂pH )	 is the outward-
pointing normal vector of the surface that the separatrix
sweeps out as λ is varied, and the dot is the usual scalar
product. An analogous formula holds for δh�. Hence the goal
of increasing Pr means increasing n · f over the upper branch
of the separatrix, and decreasing it over the lower branch. If
instead the goal were to decrease Pr, because capture inside
the separatrix was a danger rather than a desired outcome,
then we would want to decrease n · f over the upper branch
of the separatrix and decrease it over the lower.

Our ability to control n · f at any point in phase space may
in practice be limited. In the example from the previous sub-
section, only fλ was non-zero; even if our control over f were
limited by this constraint, we could in principle still make fλ
positive on the upper arc and negative on the lower arc, so
that δh� > 0 while δh
 < 0, which then immediately makes
the right-hand side of Eq. (21) greater than one, meaning
Pr = 1. Or else we could make fλ sufficiently negative on the
lower arc, and sufficiently positive on the upper arc, to make

δh� < 0 while δh
 + δh� > 0, so that the right-hand side of
Eq. (21) becomes negative, meaning Pr = 0.

A responsive parameter that is equivalent to dissipation can
thus in principle achieve perfect control, either to guarantee
that the system will be captured inside the separatrix, or to
guarantee that it will not be. Whether those ideals can be
achieved in practice depends on how well f can in fact be
engineered.

IV. DISCUSSION

As our example in Sec. II illustrates, and our derivation in
Sec. III from the GKNH shows in general, the efficiency of an
adiabatic sweep type of control procedure can be altered by
giving the control parameter some dynamical responsiveness,
so that it suffers back-reaction from the target system instead
of exactly following a pre-programmed sweep protocol. In
our example in Sec. II we showed dramatic increase, in the
responsive case, in the probability of capturing the system
into a target region of phase space. Our derivation in Sec. III
indicates, however, that capture probabilities can in general be
either raised or lowered, depending on exactly how the control
parameter responds to the system.

In some cases where control parameter back-reaction is
lowering the capture probability, this may be an unwanted
effect which needs to be eliminated; our message in such cases
is that even small back-reaction from the system onto the con-
trol parameter could be the cause of otherwise mysteriously
low capture efficiency. In other cases, however, capture might
not be a goal but an obstacle; the control task might be to
avoid capture of the system into an undesired state. Here,
our message is that an appropriate form of parameter back-
reaction can indeed reduce the chances of undesired capture.
Conversely, desired capture can have its probability enhanced,
potential up to unity, by appropriately engineered responsive
sweeping.

In either case we emphasize that the effect of parame-
ter responsiveness on capture probabilities can be substantial
even when the parameter back-reaction itself is a small effect,
because capture by separatrix crossing is a sensitive process.
The subtlety of this effect has indeed sometimes been over-
looked, for example in celestial mechanics analysis of satellite
capture [2,21]. Problems of this nature have been studied
in celestial mechanics for decades, and yet the generalized
Kruskal-Neishtadt-Henrard theorem has only quite recently
been given a rigorous proof [20]. The main purpose of our pa-
per has been to emphasize the implications of these results for
more general systems than celestial ones, including laboratory
set-ups in atomic and optical physics, where various forms
of open-system dynamics can indeed be engineered. In such
contexts, the problem is not that of accurately approximating
the particular kind of parametric time dependence that appears
in one natural system, but of choosing the kind of parametric
time dependence which offers efficient control over a dynam-
ical transition.

Even microscopic systems may require efficient con-
trol mechanisms, whether artificially designed or naturally
evolved. Adiabatic control procedures can be robust and ef-
ficient; a major advantage is that they can achieve blind
control, in the sense that adequate success probabilities are
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achieved without precise monitoring or control of fast degrees
of freedom [18]. Adding a bit of responsiveness to a control
parameter can substantially improve this kind of blind control,
inasmuch as the parameter itself may be less blind to the
system’s fine-grained behavior than the experimenter is.

Taken to the extreme this idea becomes obvious. A
Maxwell’s demon is a hypothetical controller which affects
the system in drastically different ways depending on the state
of the system; at least if one is careless enough in formulating
the demon, it can seem even to break the Second Law of
Thermodynamics. Intelligent manipulation of a system, to the
point where one carries it by hand to its target state, can
obviously succeed at control tasks quite well.

One implication of the examples that we have seen here,
however, is that even very simple and limited control respon-
siveness, far short of intelligence, can guide system evolution
efficiently. Leakage of system information into the environ-
ment is often seen as an enemy which must be fought by
isolating the system more perfectly; we argue here to the
contrary, that open system control, in which the system is
allowed to affect its environment, can offer dramatic bene-
fits. Dissipation is usually considered an unwanted energy
loss, but cooling an engine is crucial to its performance—
and this principle can extend even to microscopic active
particles [22].

The particular form of parameter responsiveness which we
analyzed in Sec. II, even though it implements a feedback-
driven correlation between system and control parameter, is
still simply a representation of viscous damping. The ad-
vantage that we have shown for a dynamically responsive
control parameter is thus a generic advantage of open-
system control, using dissipation to enhance the efficiency
of an adiabatic control procedure. This represents an appli-
cation of dissipation to control beyond the common one of
strong cooling to keep a system in a desired ground state.
Open-system control allows even quite weak dissipation to
significantly enhance the efficiency of control over dynamical
transitions.
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APPENDIX A: CALCULATING tpc FROM THE
AVERAGING PRINCIPLE

The fact that λU and λR have the same tpc is not a coin-
cidence: the two versions of λ(t ) are very similar up to tpc,
because λU is equivalent to approximating λR via the so-called
averaging principle [20,23].

To show this, we note the time derivative of the averaged
momentum in the responsive case, using a bar to denote a
variable which is time-averaged over one period of the fast
evolution:

˙̄p = −1

T

∫ d

0
dtgexp

(
−α

2
λ2

R

)
sin(q) ≈ 0, (A1)

where T is the instantaneous period (of an open 2π -periodic
orbit, since the initial ensemble is above the separatrix). Since
p̄ is thus time-independent while the system is far enough
outside the separatrix, we conclude that p̄(t ) = p(0) up until
tpc.

(For orbits outside the separatrix in which q(t ) runs
periodically through 2π at a nearly constant speed, p̄ is re-
lated simply to the usual adiabatically conserved action—the
phase space area enclosed by an orbit under the instanta-
neous Hamiltonian. It is important to recognize that p is the
canonical momentum, and not the usual linear momentum
proportional to the velocity, which is rather q̇ = p − λ. Even
when p̄ is adiabatically invariant, well outside the separatrix,
q̇ is still slowly damped, due to the slow time dependence of
λ.)

The simplified averaging principle with q̇
.= constant that

yields Eq. (A1) breaks down when the trajectory is close to
the instantaneous fixed point; averaging properly over q for
non-constant q̇ yields a long expression with elliptic integrals
for ˙̄p. This exactly averaged quantity does vanish far away
from the separatrix, however, confirming that Eq. (A1) is a
good approximation up until tpc. This then enables us to find a
simple form for the averaged λ̄R.

To average λR, we focus on open orbits before capture. We
integrate Eq. (9) over one period T , which yields

˙̄λR = ε

T

∫ d

0
dt 1 + γ (p − λR) = ε(1 + γ ( p̄ − λ̄R)). (A2)

Since p̄ = p(0) = const we can integrate this, and find
straightforwardly that it coincides with the solution in the
unresponsive case (6)

λ̄R = λU =
(

λ(0) − 1 + γ p(0)

γ

)
e−εγ t + 1 + γ p(0)

γ
.

(A3)

We can now safely use λU(t ) to compute tpc for both
cases of λ. Since tpc is simply the time at which the system’s
adiabatic orbit meets the rising separatrix, tpc is determined
by the condition that the adiabatically conserved area under
the system orbit 2π p̄ = 2π p(0) is equal to the area under the
upper arc of the separatrix

2π p(0) = A
(λ) = 2πλ + Asep(λ)/2. (A4)

This fixes the pseudo-crossing time tpc by fixing the pseudo-
crossing parameter λpc = λU(tpc). Alternatively, we can
choose the initial condition

p(0) = λpc + 4β(λpc)/π (A5)

to obtain a trajectory with a given pseudo-crossing parameter
value λpc.

APPENDIX B: CALCULATING THE RATE FROM A↓ FOR
THE RESPONSIVE SYSTEM

Here, we calculate expressions for δh
 and δh� from
Eqs. (19) and (20). In our case with vanishing fq, fp,

δh
 = −ε

∫

 dt

∂H

∂λ
fλ = −ε

∫ π

−π

dq
∂H

∂λ
fλ/q̇. (B1)
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The integrand can be assembled explicitly using

q̇ = p − λ, p(q) = λ + β
√

2(1 + cos q), (B2)

H

λ
= λ − p − 2ββ ′(1 + cos q)

= λ − p + αλβ2(1 + cos q),

fλ = 1 + γ (p − λ). (B3)

Straightforward integration then reveals

δh
/ε = 2π + 8γ β − 4αλβ − 2πγαλβ2. (B4)

By changing the sign in front of β in Eq. (B2) and then
otherwise performing the same integral over q in the negative
direction, we similarly obtain

δh�/ε = −2π + 8γ β − 4αλβ + 2πγαλβ2. (B5)
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