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Dynamical chaos in nonlinear Schrödinger models with subquadratic power nonlinearity
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We devise an analytical method to deal with a class of nonlinear Schrödinger lattices with random potential
and subquadratic power nonlinearity. An iteration algorithm is proposed based on the multinomial theorem,
using Diophantine equations and a mapping procedure onto a Cayley graph. Based on this algorithm, we are
able to obtain several hard results pertaining to asymptotic spreading of the nonlinear field beyond a perturbation
theory approach. In particular, we show that the spreading process is subdiffusive and has complex microscopic
organization involving both long-time trapping phenomena on finite clusters and long-distance jumps along the
lattice consistent with Lévy flights. The origin of the flights is associated with the occurrence of degenerate states
in the system; the latter are found to be a characteristic of the subquadratic model. The limit of quadratic power
nonlinearity is also discussed and shown to result in a delocalization border, above which the field can spread to
long distances on a stochastic process and below which it is Anderson localized similarly to a linear field.
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I. INTRODUCTION

There has been a stream of publications initiated by She-
pelyansky [1], suggesting that a weak nonlinearity might
destroy Anderson localization of dynamical chaos in disor-
dered systems if the strength of nonlinear interaction exceeds
a certain threshold strength. The phenomenon was ana-
lyzed theoretically and demonstrated numerically on the basis
of the nonlinear Schrödinger (i.e., Gross-Pitaevskii) equa-
tion (NLSE) with random potential [2–8]. The key issue here
is the structure of the nonlinear term, which defines the in-
teractions among the components of the wave field. Most
previous theoretical studies have assumed that the nonlinear
frequency shift resulting from these interactions is directly
proportional to the intensity of the wave field and that the rela-
tionship between nonlinear frequency and intensity is local in
that the frequency at a point is defined by intensity at the same
point. A justification for this has referred to Taylor expansion
of frequency over the amplitude of the nonlinear field, leading
to a quadratic correction in the first order. Then in a mean-field
approximation one writes the NLSE as (see, e.g., Refs. [9,10])

ih̄
∂ψn

∂t
= ĤLψn + β|ψn|2ψn, (1)

where ĤL is the Hamiltonian of the linear problem; ψn =
ψ (n, t ) is the complex wave function, which may vary with
time t ; n = 1, . . . , N is the wave number; and β char-
acterizes the strength of nonlinearity. On the other hand,
the localization-delocalization phenomena discussed in, e.g.,
Refs. [11–15] have shown that in some systems the rela-
tionship between nonlinear frequency and intensity could be
nonlocal, involving a distribution of wave processes across
an extended area in wave number space. A feature common
to those systems is the existence of a long-range nonlocal
ordering competing with the order parameter proportional to

|ψn|2. Writing the nonlinear frequency shift resulting from
nonlocal ordering as

�ωNL = β ′
N∑

|n−n′ |=1

χ (n − n′)|ψn′ |2, (2)

one is led to an NLSE with distributed nonlinearity

ih̄
∂ψn

∂t
= ĤLψn + β ′

⎛
⎝ N∑

|n−n′|=1

χ (n − n′)|ψn′ |2
⎞
⎠ψn, (3)

where β ′ is a coefficient which absorbs the impact of nonlinear
interactions in the presence of nonlocal order. In the above,
χ = χ (n − n′) is a response function, which, for statistically
homogeneous, isotropic systems, depends solely on |n − n′|.
Equation (3) is a starting point to explore a rich variety of
localization-delocalization phenomena in nonlinear systems
with distributed interactions. Among the possible examples
we mention systems of strongly coupled transport barriers
in L-mode tokamak plasma, the so-called plasma staircase
[11–17]. Other examples include gravitational optics [18,19],
cosmological dark waves [20], nonlinear fracton dynamics
[21,22], arrays of coupled Josephson junctions [23,24], co-
herent excitation transport in biological macromolecules, and
charge transport in organic semiconductors [25,26], just to
name a few. Note that we directly associate nonlocality with
the nonlinear term [via the convolution in Eq. (2)]. In this
respect, the NLSE (3) is different from the analog equa-
tions considered in, e.g., Refs. [19,27–30], where nonlocality
is introduced into the linear (dispersion) term, leading, in
those cases, to a fractional modification of the NLSE. We do
not introduce those modifications here.

In this paper we are interested in a reduction of the
NLSE (3) to a nonlinear Schrödinger equation with sub-
quadratic power nonlinearity. We argue that the ensuing NLSE
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[see Eq. (8) below] could be an efficient and powerful tool
to characterize systems of coupled nonlinear oscillators with
long-range dependence, being, at the same time, a valuable
alternative to known fractional ventures (see Refs. [27–29];
see also Refs. [22,31] for reviews). Mathematically, the use
of subquadratic power might, however, be very nontrivial,
leading, in some cases, to considerable technical difficulties
[14,32]. It is therefore the goal of the present study to sort
out the existing mathematical issues and to establish a general
analytical framework to deal with this type of dynamical equa-
tion beyond a perturbation theory approach. In particular, we
propose an iteration procedure, making it possible to expand
the subquadratic nonlinearity into a multinomial power series
and to analyze this series analytically by representing it as an
infinite sequence of the Cayley graphs with properly chosen
coordination numbers. In this fashion, we are able to obtain
several hard results concerning the existence (or nonexistence)
of asymptotic transport processes pertaining to the nonlinear
field. A brief account of some of these investigations has been
reported previously [33].

The paper is organized as follows. The reduction of the
distributed nonlinearity in Eq. (3) to a subquadratic power
nonlinearity is taken through steps in Sec. II. The exact dy-
namical model pertaining to our work is defined in Sec. III.
The multinomial expansion of subquadratic nonlinearity is
considered in Sec. IV. In Sec. V we show how the partial
nonlinearities arising at the different orders of this expansion
could be represented graphically using a mapping procedure
onto a Cayley tree. A scaling theory of field spreading is
proposed in Sec. VI, followed by a probabilistic picture of
asymptotic transport, which is drawn in Sec. VII with the aid
of a bifractional diffusion equation. In Sec. VIII we discuss
the limiting case of quadratic power nonlinearity, which is
shown to be special in that it leads to both the strong and weak
(percolation-style) chaos regimes depending on the strength
of the nonlinear interaction. We summarize our findings in
Sec. IX.

II. FROM DISTRIBUTED TO SUBQUADRATIC
NONLINEARITY

We consider a partial form of Eq. (3) such that the response
function is given by the power law χ (n − n′) ∝ 1/|n − n′|s,
where s is a power exponent lying within 0 < s < 1. This
form of χ (n − n′) can be motivated by a system of coupled
nonlinear oscillators being close to a marginally stable (i.e.,
critical) state, where dynamical fluctuations are supposed to
be scale-free [34–36]. The occurrence of such states in L-
mode tokamak plasma has been a matter of comprehensive
investigation (see, e.g., Refs. [37–40]). Then instead of Eq. (3)
one gets

ih̄
∂ψn

∂t
= ĤLψn + βs

⎛
⎝ N∑

|n−n′|=1

|ψn′ |2
|n − n′|s

⎞
⎠ψn, (4)

where βs is a parameter characterizing the interaction problem
and the sum in parentheses is a discretization of the so-called
Riemann-Liouville fractional integral [41,42] of order 1 − s.

Equation (4) is combined with the normalization condition

N∑
n′=1

|ψn′ |2 = 1, (5)

which represents the conservation of the total probability in
the system.

If the nonlinear field is spread across a large number of
states 1 � �n � N , then the summation in Eq. (5) may be
performed in the limits from 1 to �n (because the remaining
terms corresponding to n′ running from �n to N will be zero),
leading to

�n∑
n′=1

|ψn′ |2 = 1. (6)

If, however, the nonlinear field is such that it only slightly
varies between the occupied states, then from Eq. (6) one
infers that the density of the probability is small and behaves
with �n as |ψn′ |2 ∼ |ψn|2 ∼ 1/�n. Furthermore, if 0 < s < 1
and |n − n′| � 1, then the power-law function χ (n − n′) ∝
1/|n − n′|s may be thought of as a slow function of the number
of states. Taking this function out of the summation in Eq. (4)
and summing over n′ from 1 to �n, in view of Eq. (5) one gets

ih̄
∂ψn

∂t
= ĤLψn + βs(�n)−sψn, (7)

where the nonlinear correction to frequency depends on the
width of the field distribution.

III. MODEL

Eliminating �n with the aid of |ψn|2 ∼ (�n)−1, from
Eq. (7) one is led to an NLSE of the form

ih̄
∂ψn

∂t
= ĤLψn + βs|ψn|2sψn. (8)

Equation (8) is the central equation of the present study. This
equation suggests that the self-organization into a critical state
[34,36] is a global process, though one which can be described
by a local model with subquadratic power nonlinearity. The
latter type of nonlinearity results in the nonlinear frequency
shift

�ωNL = βs|ψn|2s. (9)

For s = 1, the paradigmatic model in Eq. (1) is recovered,
with βs = β. Concerning the Hamiltonian of the linear prob-
lem ĤL, our main assumption is that ĤL possesses a full
basis of mutually orthogonal eigenfunctions, which we de-
note by φn,k . By their definition, the eigenfunctions φn,k

are supposed to obey ĤLφn,k = ωkφn,k , where ωk denote the
respective eigenfrequencies and k = 0,±1,±2, . . . is an inte-
ger counter. Orthogonality means that the following condition
holds: ∑

n

φ∗
n,mφn,k = δm,k . (10)

Here δm,k is Kronecker’s delta and the asterisk denotes com-
plex conjugate. For the sake of concreteness, we take ĤL to
be the familiar Anderson Hamiltonian in the tight-binding
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approximation [43], i.e.,

ĤLψn = εnψn + V (ψn+1 − 2ψn + ψn−1), (11)

for which the existence of a full basis of mutually orthog-
onal eigenstates is a well-established property [44,45]. In
the above, V is hopping matrix element, ψn+1 − 2ψn + ψn−1

mimics the dispersion term for nearest-neighbor jumps along
the coordinate n, and εn is the energy at site n. It is assumed
that εn is a random quantity and as such incorporates the
spatial disorder of the lattice on which the interactions take
place. Without loss of generality, we define that the shifted en-
ergy values ε′

n = εn − 2V are randomly distributed with zero
mean across a finite energy interval −W/2 � ε′

n � W/2, thus
corresponding to the settings of Refs. [2,6,8]. In the absence
of randomness, the NLSE (8) is fully integrable. For βs = 0,
all eigenstates pertaining to Eq. (8) with the Hamiltonian
(11) are exponentially localized with the localization length
λ ≈ 96(V/W )2 [45]. In what follows, βs � 0 and V = h̄ = 1
for simplicity.

IV. MULTINOMIAL EXPANSION

Expanding ψn over the basis functions, one writes

ψn =
∑

m

σm(t )φn,m, (12)

where σm(t ) are complex functions, which may depend on
time t , and m = 0,±1,±2, . . . is an integer counter. If s = 1,
then based on the NLSE (1) one obtains a set of dynamical
equations for σm(t ), valid for all t � 0. For this, one needs to
substitute Eq. (12) into (1), multiply both sides by φ∗

n,k , and
sum over n, using the orthonormality condition in Eq. (10).
The result is

iσ̇k − ωkσk = β
∑

m1,m2,m3

Vk,m1,m2,m3σm1σ
∗
m2

σm3 , (13)

where the coefficients Vk,m1,m2,m3 are given by

Vk,m1,m2,m3 =
∑

n

φ∗
n,kφn,m1φ

∗
n,m2

φn,m3 (14)

and characterize couplings among the nonlinear wave pro-
cesses pertaining to Eq. (13). In the above we have used β

instead of βs consistently with the model in Eq. (1). Equa-
tion (13) describes a chain of coupled nonlinear oscillators
with the Hamiltonian

Ĥ = Ĥ0 + Ĥint, (15)

where

Ĥ0 =
∑

k

ωkσ
∗
k σk (16)

is the Hamiltonian of noninteracting harmonic oscillators and

Ĥint = β

2

∑
k,m1,m2,m3

Vk,m1,m2,m3σ
∗
k σm1σ

∗
m2

σm3 (17)

is the interaction Hamiltonian. Note that we include self-
interactions into Ĥint. It is understood that each nonlinear
oscillator with the Hamiltonian

ĥk = ωkσ
∗
k σk + β

2
Vk,k,k,kσ

∗
k σkσ

∗
k σk (18)

and the equation of motion

iσ̇k − ωkσk − βVk,k,k,kσkσ
∗
k σk = 0 (19)

represents one nonlinear eigenstate in the system (13), identi-
fied by its wave number k, unperturbed frequency ωk , and the
nonlinear frequency shift �ωk = βVk,k,k,kσkσ

∗
k .

If s < 1, then one needs to assess

|ψn|2s = (ψnψ
∗
n )s =

⎛
⎝ ∑

m1,m2

σm1σ
∗
m2

φn,m1φ
∗
n,m2

⎞
⎠

s

, (20)

which represents a mathematical problem of general signifi-
cance. Note, in this respect, that the algebraic form in Eq. (20)
behaves as a C-number functional form and adheres to the
usual C∗ algebra1 (see, e.g., Ref. [46]).

If the exponent s were a positive integer number (a type
of nonlinearity considered in Refs. [47,48]), then the right-
hand side of Eq. (20) would be given by exact multinomial
expansion [49]

|ψn|2s =
∑

∑
qm1 ,m2 =s

C ...,qm1 ,m2
s

∏
m1,m2

[ξm1,m2 ]qm1 ,m2 , (21)

where

C ...,qm1 ,m2
s = s!∏

m1,m2
[qm1,m2 !]

(22)

are multinomial coefficients, the sign ! stands for the factorial
function, and we have denoted for simplicity

ξm1,m2 = σm1σ
∗
m2

φn,m1φ
∗
n,m2

. (23)

The summation in Eq. (21) is performed over all combinations
of natural numbers qm1,m2 such that for each combination the
sum

∑
m1,m2

qm1,m2 is s, i.e.,∑
m1,m2

qm1,m2 = s. (24)

For fractional values of s, the multinomial expansion in
Eq. (21) is not defined, yet one may devise [14,32] its analytic
continuation to 0 < s < 1 by extending the factorial func-
tion to Euler’s Gamma function using qm1,m2 ! = �(qm1,m2 + 1)
and simultaneously relaxing the condition that the exponents
qm1,m2 must be integers. This analytic continuation to the
interval 0 < s < 1 is obtained iteratively over an increasing
number of fractional exponents satisfying Eq. (24). That is,
one starts with an approximation (call it a first-order approx-
imation), when there is one and only one fractional exponent
to be assumed in Eq. (24), followed by a more complex setting
when the fractional exponents are just two and only two (i.e.,
second-order approximation), and so forth. The goal is to as-
sess the respective impacts of the nonlinearities arising at the
various orders on the localization properties of the nonlinear
field. As is shown below, this iteration procedure converges
exponentially fast, making it possible to solve the localization
problem in Eq. (8) exactly in all orders. We proceed as follows.

1According to the Gelfand-Naimark theorem, an arbitrary C∗ al-
gebra is isomorphic to a C∗ subalgebra of bounded operators in a
Hilbert space. In the present case, the corresponding Hilbert space is
that of complex-valued functions with norm and inner product.
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A. First-order approximation

So in the first order Eq. (24) is satisfied, if the fractional
exponent we are looking for [which, in this case, is the only
fractional exponent contributing to Eq. (24), since the others
are integers] is equal to s exactly (because the sum of the
remaining integer-valued exponents cannot add up to a frac-
tional value). Then from Eq. (24) one infers that the sum of
the integer-valued exponents is zero and this is an exact result.
Assume it is the exponent qi, j which takes the fractional value,
i.e., qm1,m2 = s < 1 for some m1 = i and m2 = j. With this
setting, we may establish∑

m1 	=i,m2 	= j

qm1,m2 = 0. (25)

Equation (25) is a Diophantine equation, which is a poly-
nomial equation for which only integer solutions are sought.
Noting that the exponents qm1,m2 cannot take negative values
(since otherwise the expanded field diverges for |ψn|2 → +0),
the only way to satisfy (25) is by setting all qm1,m2 to zero,
if m1 	= i and m2 	= j, while keeping qi, j = s for m1 = i and
m2 = j. One sees that the product

∏
m1,m2

in Eq. (21) is com-
posed of one factor only, enabling∏

m1,m2

[ξm1,m2 ]qm1 ,m2 → [ξm1=i,m2= j]
s. (26)

It is understood that the polynomial in Eq. (21) is homo-
geneous in that the sum of the exponents at each term is
always s, as Eq. (24) shows. On the other hand, the property
of homogeneity implies that any term pertaining to Eq. (21)
is in some sense representative of the whole. That means
that there is no particular reason to prefer the very specific
setting m1 = i and m2 = j over other equivalent settings when
choosing the fractional-valued qm1,m2 . The net result is that the
condition qi, j = s can be satisfied in a countable number of
ways within the range of variation of the parameters m1 and
m2. Clearly, all such combinations would equally contribute
to the series expansion in Eq. (21). Then to account for these
contributions one has to sum over the indices m1 and m2. To
this end, Eq. (21) becomes

|ψn|2s
(1) =

∑
m1,m2

[ξm1,m2 ]s, (27)

where the subscript (1) reminds us that the nonlinearity in
Eq. (27) applies at the first order of the multinomial expansion
of |ψn|2s. Also, in writing Eq. (27) we have used

C ...,qi, j
s = �(s + 1)

�(qi, j + 1)
= �(s + 1)

�(s + 1)
= 1. (28)

Eliminating ξm1,m2 with the aid of Eq. (23), from the series
expansion in Eq. (27) one arrives at

|ψn|2s
(1) =

∑
m1,m2

σ s
m1

σ ∗s
m2

φs
n,m1

φ∗s
n,m2

. (29)

Applying the nonlinearity in Eq. (29), it is straightforward
to obtain dynamical equations for σk (t ) in the first order. For
this, one needs to substitute (29) into the NLSE (8), multiply
the both sides of the ensuing wave equation by φ∗

n,k , and sum
over n, using the orthonormality condition in Eq. (10). The

result is

iσ̇k − ωkσk = βs

∑
m1,m2,m3

Vk,m1,m2,m3σ
s
m1

σ ∗s
m2

σm3 , (30)

where, similarly to Eq. (14),

Vk,m1,m2,m3 =
∑

n

φ∗
n,kφ

s
n,m1

φ∗s
n,m2

φn,m3 . (31)

The interaction Hamiltonian corresponding to (30) is given by

Ĥint = βs

1 + s

∑
k,m1,m2,m3

Vk,m1,m2,m3σ
∗
k σ s

m1
σ ∗s

m2
σm3 (32)

and generalizes the Hamiltonian in Eq. (17).

B. Second and higher orders

Turning to the second-order approximation, one assumes
that the number of fractional exponents pertaining to Eq. (24)
is just two (and only two), whereas any other exponents (if
there are such exponents) are given by integer values. All
these exponents (fractional or not) must, moreover, be non-
negative to ensure good behavior in the infrared limit, where
the wave field vanishes. Because s < 1, one sees that the only
possibility is that the sum of the fractional-valued exponents
is exactly s, while the sum of the integer-valued exponents is
zero. Denoting the fractional exponents by qi1, j1 and qi2, j2 , one
finds that Eq. (24) is split into two separate equations, that is,
qi1, j1 + qi2, j2 = s and the Diophantine equation

∑
m1 	=i1,i2

∑
m2 	= j1, j2

qm1,m2 = 0, (33)

from which it is deduced that all integer-valued exponents
must be equal to zero, i.e., qm1,m2 = 0 for m1 	= i1, i2 and
m2 	= j1, j2. That means that the only two exponents that
would meaningfully contribute to

∏
m1,m2

in Eq. (21) are the
fractional ones. By assumption, these exponents are, precisely,
qi1, j1 and qi2, j2 . One sees that the product

∏
m1,m2

reduces to a
product of two terms only, identified by the powers qi1, j1 and
qi2, j2 . One gets

∏
m1,m2

[ξm1,m2 ]qm1 ,m2 → [ξi1, j1 ]qi1 , j1 [ξi2, j2 ]qi2 , j2 . (34)

This corresponds to a nonlinearity of the form

|ψn|2s
(2) =

∑
i1, j1

∑
i2, j2

�n,i1, j1,i2, j2σ
qi1 , j1
i1

σ
∗qi1 , j1
j1

σ
qi2 , j2
i2

σ
∗qi2 , j2
j2

, (35)

where, for simplicity,

�n,i1, j1,i2, j2 = θi1, j1,i2, j2φ
qi1 , j1
n,i1

φ
∗qi1 , j1
n, j1

φ
qi2 , j2
n,i2

φ
∗qi2 , j2
n, j2

, (36)

the subscript (2) signifies that the double summation in
Eq. (35) pertains to the second order of the multinomial ex-
pansion, the coefficients θi1, j1,i2, j2 are given by

θi1, j1,i2, j2 = �(s + 1)

�(qi1, j1 + 1)�(qi2, j2 + 1)
(37)

and correspond to the multinomial coefficients in Eq. (22), and
qi2, j2 = s − qi1, j1 consistently with Eq. (24). The nonlinearity
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in Eq. (35) amends the first-order nonlinearity in Eq. (29) to
yield, in the second order,

|ψn|2s � |ψn|2s
(1) + |ψn|2s

(2). (38)

To obtain dynamical equations for σk (t ) in the second or-
der, one needs to substitute (38) into the NLSE (8) and expand
|ψn|2s

(1) and |ψn|2s
(2) using Eqs. (29) and (35), respectively. Next

one has to multiply both sides of Eq. (8) by φ∗
n,k and sum over

n, remembering that the basis functions φn,m are orthogonal.
The result of this calculation is summarized by

iσ̇k − ωkσk = βsSk,(1) + βsSk,(2), (39)

where

Sk,(1) =
∑

m1,m2,m3

Vk,m1,m2,m3σ
s
m1

σ ∗s
m2

σm3 (40)

and reproduces the triple sum
∑

m1,m2,m3
on the right-hand side

of Eq. (30); Sk,(2) stands for the quintic polynomial∑
i1, j1,i2, j2,m3

Vk,i1, j1,i2, j2,m3σ
qi1 , j1
i1

σ
∗qi1 , j1
j1

σ
qi2 , j2
i2

σ
∗qi2 , j2
j2

σm3 (41)

and absorbs corrections to Sk,(1) in the second order. In the
above, Vk,i1, j1,i2, j2,m3 are coefficients of the polynomial and are
defined through

Vk,i1, j1,i2, j2,m3 =
∑

n

φ∗
n,k�n,i1, j1,i2, j2φn,m3 . (42)

The iteration procedure devised above in the first and
second orders may be extended to arbitrary order � � 1 of
the multinomial expansion of |ψn|2s. At each order � one
assumes that the number of fractional-valued exponents is
equal to � exactly; then it is found by solving a Diophantine
equation that any eventual integer exponents must be equal
to zero, ensuring good behavior in the infrared limit. For
each � = 1, 2, . . . one builds an interaction process character-
ized by the nonlinearity |ψn|2s

(�), which incorporates couplings
among 2l � 2 different waves (two waves in the first order,
four waves in the second order, etc.) If we adopt, for the reason
of formal ordering, that the coupling probability between two
waves is characterized by a small parameter ε � 1, then the
interaction process corresponding to |ψn|2s

(1) has the order ε1,
the interaction process corresponding to |ψn|2s

(2) has the order
ε2, and so forth. One sees that the iteration algorithm deriving
from the approximation

|ψn|2s �
�∑

r=1

|ψn|2s
(r) (43)

converges exponentially fast with increasing r = 1, 2 . . . ,
making it possible to assess the asymptotic dynamics pertain-
ing to the NLSE (8) by allowing � → +∞ in Eq. (43).

V. MAPPING ON A CAYLEY TREE

To demonstrate the existence (or nonexistence) of asymp-
totic transport at each finite order �, we employ a procedure
already devised in Refs. [8,50] for � = 1, according to which
one needs to investigate the fine structure of the interaction
term in the corresponding dynamical equations for σk (t ). This

(a) (b)

FIG. 1. Mapping dynamical Eqs. (a) (13) and (b) (30) onto a
Cayley tree with coordination number z = 3.

is achieved by mapping the interaction term onto a Cayley tree
[51] with a suitably chosen coordination number z.

For s = 1, the procedure is as follows [8]. Each nonlinear
oscillator with the Hamiltonian (18) and equation of motion
(19) is represented by a node on a Cayley graph; each such
node is then connected to other nodes by a system of conduct-
ing (able to transmit a wave) bonds. We distinguish between
ingoing (corresponding to the amplitudes σ ∗

mi
) and outgoing

(corresponding to σmi ) bonds. An examination of the dynami-
cal Eq. (13) shows that there will be exactly three such bonds
at each node, i.e., one ingoing corresponding to the wave
amplitude σ ∗

m2
and two outgoing bonds corresponding to the

amplitudes σm1 and σm3 . This generates an element of a Cayley
tree with the coordination number z = 3 [see Fig. 1(a)].

A. Disconnected bonds for s < 1

If s < 1, then a similar mapping procedure could be ap-
plied to the dynamical Eq. (30), though with that new feature
[50] that the amplitudes σ s

m1
and σ ∗s

m2
are represented by every-

where disconnected bonds (Cantor sets), with the Hausdorff
[52] fractal dimension d f = s. That means that in the first
order of multinomial expansion one again obtains a Cayley
tree with the coordination number z(1) = 3; however, there is
a particularity stemming from s < 1, namely, that two (and
only two, out of three possible) bonds at each node are dis-
connected [see Fig. 1(b)].

In a classical approach, a bond being disconnected would
imply it cannot transmit a wave, the result being that the
spreading process is disrupted at the Cantor sets. One sees
that a Cayley tree with z(1) = 3 and only one connected bond
at each node cannot transmit a classical wave for more than
two nodes. This observation was at the base of our conclusion
in Ref. [50] that a nonlinear wave obeying the NLSE (8) will
be Anderson localized (similarly to a linear field) if s < 1.

This conclusion, however, appears hasty somewhat in that
it ignores the situations at the second and higher orders of
multinomial expansion: Indeed, in the second order, one deals
with a system of coupled nonlinear oscillators in Eq. (39),
with the order-specific nonlinearity contained in the term
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(a) (b)

FIG. 2. Mapping dynamical equations for σk (t ) onto a Cayley
tree in the (a) first and (b) second orders assuming s < 1. The dotted
oval on the right-hand side encircles a degenerate state.

βsSk,(2). This nonlinearity amends the nonlinearity at the first
order (i.e., the term βsSk,(1)) and corresponds to a quintic
polynomial in Eq. (41). As such, it is represented by a Cayley
tree with the coordination number z(2) = 5 [see Fig. 2(b)]. In
the corresponding mapping space one draws one integer bond
for σm3 and a Cantor set for each σ

qi1 , j1
i1

, σ
∗qi1 , j1
j1

, σ
qi2 , j2
i2

, and

σ
∗qi2 , j2
j2

, suggesting, at first glance, that there is no asymptotic
transport of the nonlinear field for precisely the same reasons
as in the first order.

B. Homogeneity paradox (and its solution)

It is at this point, however, where a subtlety occurs, and
it refers to an observation that the original nonlinearity in
Eq. (20) corresponds to a homogeneous wave process in all
orders. This, together with the fact that the coordination num-
ber of a Cayley tree is a topological invariant of the tree [51],
would imply that the corresponding multinomial expansion of
the nonlinear term |ψn|2s must refer to a Cayley tree with the
same coordination number in all orders.

There is an apparent paradox in this reasoning and this is
solved by demanding that some of the disrupted wave pro-
cesses pertaining to the nonlinearity in Eq. (41) must couple
together to form joint (degenerate) states, so the topological
invariant z = 3 is preserved in the second order of multinomial
expansion. Then such states must be represented by a shared
bond and not by the proper bonds. We associate this coupling
process with constructive interference among the disrupted
waves.

A closer inspection of the dynamical Eq. (39) shows that at
each node k there must exist degenerate states with the mul-
tiplicity (degree of degeneracy) 3, corresponding to coupling
among three (out of the four possible) disrupted waves with
the amplitudes σ

qi1 , j1
i1

, σ
∗qi1 , j1
j1

, and σ
qi2 , j2
i2

and other combina-
tions alike. It is understood that the constituent wave processes
comprising degenerate states must be identical, so they will
be characterized by the same power exponents qi1, j1 or qi2, j2 .
Because, on the other hand, qi1, j1 + qi2, j2 = s in accordance

(a) (b)

FIG. 3. Replacing (a) disconnected bonds within a degenerate
state by (b) a connected (wave transmitting) bond. The fractal dimen-
sion of the shared bond is df = qi1, j1 + 2qi2, j2 = 3s/2. The bond is
conducting in the second order, if df � 1, demanding s � 2

3 .

with Eq. (24), one has qi1, j1 = qi2, j2 = s/2, from which the
fractal dimension of degenerate states is found to be d f =
3s/2. To this end, if s � 2

3 , then d f � 1, suggesting that the
bonds representing degenerate states will be connected, if the
exponent s is large enough (i.e., s � 2

3 ), and as such will be
able to transmit a wave.

One sees that there might occur asymptotic transport of
the wave field already in the second order of multinomial
expansion, if the exponent s is greater than 2

3 . In the mapping
space one draws one connected bond in place of the oval
structure representing the degenerate state and ignores the
remaining disrupted bond (see Fig. 3). Then the transport
to long distances goes along alternating shared (degenerate)
and proper (integer) bonds corresponding to the wave process
σm3 (t ).

C. Self-intersecting Cayley trees

From a topological perspective, the occurrence of degen-
erate states stems from the fact that in order to fold a Cayley
tree without self-crossings in an Euclidean space, one needs
a certain (exponentially large) number of embedding dimen-
sions. This number depends on the coordination number of the
tree [51]. In that regard, when we assess the corrections from
higher-order terms over the first-order term, we likewise are
trying to embed a Cayley tree with the coordination number
z(2) = 5 or higher into too narrow a space, which might be
good to host a tree with the coordination number z(1) = 3 [see
Fig. 2(a)], though not more than this number. To this end,
the embedding without self-crossings appears inappropriate,
yet one might allow for self-intersections of the tree. These
self-intersections must, however, be such that the resulting
Cayley trees at any higher order greater than one remain con-
sistent with the topology of interactions in the primary order.
Then the conservation of the topological invariant z demands
z = 3 and is readily satisfied if some of the disrupted states
degenerate (i.e., couple together to form a joint state).
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FIG. 4. Mapping dynamical equations for σk (t ) onto a Cayley
tree in the third order. The wave processes giving rise to a degenerate
state are inside the dotted oval structure. The reduction of these pro-
cesses into a single (shared) bond is illustrated in the top right corner.
The fractal dimension of this bond is given by the sum of respec-
tive fractional indices, i.e., df = qi1, j1 + 2qi2, j2 + 2qi3, j3 = 5s/3. The
bond is conducting in the third order, if df � 1, demanding s � 3

5 .

D. Mapping procedure in the third order

Turning to the third order of multinomial expansion, one
assumes that the condition in Eq. (24) is satisfied for three
non-negative (to ensure good behavior in the infrared limit),
fractional-valued exponents, which we denote by qi1, j1 , qi2, j2 ,
and qi3, j3 . One has, accordingly, qi1, j1 + qi2, j2 + qi3, j3 = s.
Then, similarly to the above, one obtains a system of dynam-
ical equations for σk (t ), with septic polynomial terms (we do
not write these terms here).

In the mapping space, such terms will correspond to a Cay-
ley tree with the coordination number z(3) = 7 [see Fig. 4(a)].
At each node k, this tree will contain one proper (integer) bond
standing for the wave process σm3 and as many as six discon-
nected bonds corresponding to the disrupted processes σ

qi1 , j1
i1

,

σ
∗qi1 , j1
j1

, σ
qi2 , j2
i2

, σ
∗qi2 , j2
j2

, σ
qi3 , j3
i3

, and σ
∗qi3 , j3
j3

. Each disrupted pro-
cess will be represented by a Cantor set with the fractal
dimension d f being equal to the respective power exponent
qi1, j1 , qi2, j2 , or qi3, j3 . Then the homogeneity of the functional
form in Eq. (20) would imply that there must occur degenerate
states with multiplicity 5, so the topological invariant z = 3 is
preserved in the third order.

Demanding, once again, that degenerate states are formed
by identical wave processes, one gets qi1, j1 = qi2, j2 = qi3, j3 =
s/3. It is understood that degenerate states in the third order
arise from constructive interference among five (out of six
possible) disrupted waves and are represented by a shared
node in the mapping space [see Fig. 4(b)], with the Hausdorff
dimension d f = 5s/3. To this end, if one requires d f � 1, one
infers that there might occur a nonvanishing transport to long
distances in the third order, if s � 3

5 .

E. Arbitrary order

Generalizing, in an arbitrary order � of multinomial ex-
pansion, one constructs a Cayley tree with the coordination

number z(�) = 2� + 1 such that at each node of the tree there
will be one proper (integer) bond and as many as 2� discon-
nected bonds corresponding to Cantor sets with the Hausdorff
fractal dimension s/� each. Then the conservation of the topo-
logical invariant z = 3 in the order � would imply that any
2� − 1 (out of the 2� present) disrupted waves must form,
at each node k, a joint (degenerate) state with the degree of
degeneracy 2� − 1. The shared bond, representing this type of
state in the mapping space, will have the Hausdorff dimension
d f = (2� − 1)s/� and will be able to transmit a wave process
if s � �/(2� − 1). Letting � → +∞, one concludes that the
NLSE (8) allows for unlimited transport to long distances (i.e.,
the Anderson state destroyed by nonlinear interactions), if

s � lim
�→+∞

�

2� − 1
= 1

2
. (44)

The result in Eq. (44) is remarkable and shows that the
asymptotic transport of classical waves in the NLSE (8) might
occur for any s � 1

2 , but one needs to incorporate all or-
ders of multinomial expansion of |ψn|2s including arbitrarily
high orders. The situation is much different from the analog
quantum case [32], where the asymptotic transport to long
distances is shown to occur for s � 1

2 already in the first order
of multinomial expansion as a result of quantum tunneling of
the disrupted waves.

VI. SCALING THEORY OF FIELD SPREADING

If the field is spread across a large number of states �n �
1, then the conservation of the total probability

∑
n |ψn|2 = 1

demands that the density of the probability is small, i.e.,
|ψn|2 ∼ 1/�n. It is understood that the excitation of each new
eigenstate is a spreading of the wave field in wave number
space. The key point here is that the spreading process is
mediated by resonances among the different oscillators par-
ticipating in the interaction Hamiltonian (32). In fact, from
Eq. (32), the resonance condition is

ωk = sωm1 − sωm2 + ωm3 (45)

and involves a parametric dependence on the subquadratic
power s (due to the presence of disrupted wave processes).
For s = 0 (linear model), the resonance condition in Eq. (45)
reduces to ωk = ωm3 and is trivial, while for s = 1 (quadratic
nonlinearity) it leads directly to Eq. (10) of Ref. [8], yielding

ωk = ωm1 − ωm2 + ωm3 . (46)

A. Chirikov overlap parameter

When the resonances happen to overlap, the phase tra-
jectories start to switch from one resonance to another on
essentially a random basis [53,54], giving rise to a stochastic
spreading of the nonlinear field along the coordinate n. The
onset of stochastic motions in the system corresponds to a
situation according to which the nonlinear frequency shift re-
sulting from the interactions present becomes greater than the
distance between resonances in wave number space. Focusing
on the NLSE (8), one sees that the nonlinear frequency shift
behaves with the probability density as �ωNL = βs(|ψn|2)s

and for �n � 1 will scale with the number of states in ac-
cordance with �ωNL � βs/(�n)s. On the other hand, with an
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increasing �n, the distance between resonances, δω, goes to
zero proportionally to 1/�n, consistently with the conditions
in Eqs. (45) and (46). The Chirikov overlap parameter K �
�ωNL/δω [53] shows by how much the nonlinear frequency
shift exceeds the distance δω and in this sense measures the
degree of chaoticity in the system [55,56] (in this paradigm,
large-K values correspond to strong chaos, i.e., K � 1, while
values like K ∼ 1 are borderline). Using �ωNL � βs/(�n)s

and δω � 1/�n, one gets, in the strong chaos regime,

K � βs(�n)1−s � 1. (47)

Note that the K value depends, in general, on the number of
states (except for the quadratic power case, for which s = 1).
For s < 1, the onset of field spreading may be sensitive to
both βs and initial spread. If, however, the initial spread is
such that the condition K � 1 is satisfied at time t = 0, then
for s < 1 it will be satisfied for any t > 0, giving rise to
ever pursuing stochastic motions in the system. Moreover, the
chaos will be self-reinforcing in that the K value increases
with an increasing �n. On the other hand, it is clear that the
Chirikov criterion in Eq. (47) is a necessary, though not yet
sufficient, condition for the stochastic spreading to come into
play (because the chaotic motions may be Anderson localized
by the inhomogeneities present [1,2,4]). If, however, s � 1

2 ,
then the localization is destroyed by nonlinear interaction in
accordance with Eq. (44) above, enabling unlimited spreading
of the wave field to large distances along the domains of
chaotic dynamics.

B. Dynamical model

In the parameter range of strong chaos, the rate of field
spreading R = d�n/dt is obtained using the NLSE (8) to
give, with the aid of |ψn|2 ∼ 1/�n,

R ∼ |ψ̇n|2 ∼ β2
s ||ψn|2sψn|2 ∼ A/(�n)2s+1, (48)

leading to

d�n/dt = A/(�n)2s+1, (49)

where ψ̇n denotes the time derivative of ψn and A ∝ β2
s is a

numerical coefficient. In writing Eq. (48) we have assumed
that the phases of comprising wave processes are essen-
tially random (that is, the eventual correlation length is much
smaller than �n). Integrating over time in Eq. (49), one gets
(�n)2s+2 = (2s + 2)At , from which a subdiffusive spreading
law

(�n)2 = [(2s + 2)A]1/(s+1)t1/(s+1) (50)

can be deduced for t → +∞. For s → 1, one finds (�n)2 ∝
t1/2 consistently with the numerical result of Ref. [57] in
the strong chaos regime. Note that the quadratic nonlinearity,
characterized by s = 1 exactly, is special in that it allows for
both the strong and weak chaos regimes [8,50]. In the latter
case, the scaling law (�n)2 ∝ t1/3 is found (discussed below).

Differentiating both sides of Eq. (49) with respect to time
and eliminating the remaining d�n/dt with the aid of the
same Eq. (49), one gets

d2�n

dt2
= − (2s + 1)A2

(�n)4s+3
. (51)

Using a gradient form on the right-hand side of Eq. (51), one
obtains

d2

dt2
�n = − d

d�n

(
− A2/2

(�n)4s+2

)
. (52)

Equation (52) is none other than a Newtonian equation of
motion along the coordinate �n in the potential field

W (�n) = − A2/2

(�n)4s+2
. (53)

For s → 1, the potential function in Eq. (53) becomes
W (�n) = −(A2/2)/(�n)6 and is easily seen to be the at-
tractive part of the celebrated Lennard-Jones potential [58],
known from molecular physics. Given the attracting character
of W (�n), one might arguably propose that the newly excited
modes would tend to form clusters (molecules) in wave num-
ber space, where they will be effectively trapped [7] due to
their nonlinear coupling.

Multiplying both sides of Eq. (52) by the velocity d�n/dt
and integrating the ensuing differential equation with respect
to time, after a simple algebra one obtains

1

2

(
d

dt
�n

)2

− A2/2

(�n)4s+2
= �E , (54)

where the first term on the left-hand side has the sense of the
kinetic energy of a particle of unit mass moving along the
coordinate �n and the second term is its potential energy. It
is shown using Eq. (49) that the kinetic energy in Eq. (54)
compensates for the potential energy exactly, that is, the full
energy in Eq. (54) is zero, i.e., �E = 0. More so, both the
negative potential energy W (�n) ∼ −A2/2(�n)4s+2 and the
positive kinetic energy 1

2 (d�n/dt )2 ∼ A2/2(�n)2(2s+1) van-
ish while spreading. Both will decay as the (4s + 2)th power
of the number of states and the ratio between them will not
depend on the width of field distribution.

The full energy being equal to zero implies that the particle
in Eq. (54) is sitting on the separatrix �E = 0. Based on the
analysis of Ref. [59], one might demonstrate that the sepa-
ratrix �E = 0 contains a connected escape path to infinity,
hence allowing for an unlimited spreading of the wave field
regardless of how large βs is [for s < 1; the case s = 1 appears
special and should be taken with more care (see Sec. VIII)].

Furthermore, as the particle propagates outward, its motion
becomes intrinsically unstable (sensitive to fluctuations). This
is due to the peculiar character of separatrix transport [55,56],
implying that tiny perturbations due to, for instance, random
noise or imprecision in the initial conditions may drastically
change the type of phase space trajectory. The observation is
especially relevant for separatrix dynamics in large systems
[60]. At this point, the fact that a given mode does or does
not belong to a given cluster of modes becomes essentially a
matter of the probability.

C. Waiting-time distribution

To assess the probabilistic aspects of field spreading, let us
assume that the fluctuation background in Eq. (54) is charac-
terized by a thermodynamic temperature T . That is, the value
of T weighs any occasional perturbations to dynamics that
might be influential near the separatrix. Then the probability
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for a given mode to quit the cluster after it has traveled �n
sites on it could be written as the Boltzmann factor

p(�n) = exp[W (�n)/T ]. (55)

Substituting W (�n) from the potential function in Eq. (53),
one finds

p(�n) = exp[−A2/2T (�n)4s+2]. (56)

Taylor expanding the exponential function for �n � 1, one
gets

p(�n) � 1 − A2/2T (�n)4s+2. (57)

The probability to remain (survive) on the cluster after �n
space steps is p′(�n) = 1 − p(�n), yielding

p′(�n) � A2/2T (�n)4s+2. (58)

Eliminating �n with the aid of Eq. (50), one obtains the
probability to survive on the cluster after �t time steps

p′(�t ) ∝ (�t )−(2s+1)/(s+1), (59)

leading to a waiting-time distribution [61,62]

χα (�t ) ∝ (�t )−(1+α) (60)

with α = s/(s + 1) < 1. We associate the distribution in
Eq. (60) with the binding effect of finite clusters [7]. Note that
the integral∫ τ

∼1
�tχα (�t )d�t ∼

∫ τ

∼1
(�t )−αd�t ∼ τ 1−α → +∞ (61)

diverges for τ → +∞, implying that the mean waiting time
is infinite.

VII. KINETIC THEORY

Let us now obtain a kinetic equation for asymptotic
spreading. For this, we adopt the theoretical scheme of
continuous-time random walks [63–65], according to which
the transport occurs as a result of random-walk jumps along
the coordinate n with a distribution of waiting times be-
tween consecutive steps of the motion. Combining (60) with
a simplifying assumption (to be revisited below) that there
is a characteristic jump length of the random process, one
arrives at a non-Markovian generalization of the diffusion
equation [61,62]

∂

∂t
f (n, t ) = 0D1−α

t

(
Kα

∂2

∂n2
f (n, t )

)
. (62)

Here f = f (n, t ) is the probability density to find the random
walker at time t at the distance n away from the origin, Kα

is the transport coefficient and carries the dimension cm2 s−α ,
and

0D1−α
t f (n, t ) = 1

�(α)

∂

∂t

∫ t

0

f (n, t ′)
(t − t ′)1−α

dt ′ (63)

is the so-called Riemann-Liouville fractional derivative
[41,42] of order 1 − α, which incorporates the trapping effect
of the clusters consistently with the waiting-time distribution
in Eq. (60). Note that we directly associate the non-Markovian
character of Eq. (62) with the divergence of mean waiting
time in Eq. (61). Based on the kinetic Eq. (62), one finds

the asymptotic (t → +∞) mean-square displacement of the
random walker to be

〈(�n)2(t )〉 ∝ tα, (64)

where α = s/(s + 1). Because α < 1, the spreading process
is subdiffusive. Comparing to Eq. (50), one sees that the
two processes are consistent if (and only if) s = 1, while for
s < 1 there is a discrepancy to be repaired in some way. This
observation suggests that the non-Markovian kinetic Eq. (62)
is good for the NLSE (1), with quadratic power nonlinearity,
though not for the generalized model in Eq. (8), with s < 1.

To remedy, let us assume that the trapping process in
Eq. (60) competes with the possibility for the random walker
to perform long-distance jumps along the coordinate n, with a
power-law distribution of jump lengths

χμ(|�n|) ∝ |�n|−(1+μ), (65)

where μ is a power exponent. We associate the distribution in
Eq. (65) with occasional jumps between the different clusters
in wave number space.

From a kinetic perspective, the effect such jumps would
have on the transport Eq. (62) is that the Laplacian operator
∂2/∂n2 must be replaced by the integro-differential operator

∂μ

∂|n|μ f (n, t ) = 1

�μ

∂2

∂n2

∫ +∞

−∞

f (n′, t )

|n − n′|μ−1
dn′, (66)

leading to a generalized kinetic equation of the form [61,66]

∂

∂t
f (n, t ) = 0D1−α

t

(
Kμ

α

∂μ

∂|n|μ f (n, t )

)
. (67)

In the above, �μ = −2 cos(πμ/2)�(2 − μ) is a normal-
ization parameter, which is introduced to ensure smooth
crossover to the Laplacian operator in the limit μ → 2; Kμ

α

is the generalized transport coefficient, which, in the present
case, carries the dimension cmμ s−α; and we have tacitly
assumed that the exponent μ lies within 1 < μ < 2. The lat-
ter assumption guarantees that the power-law distribution in
Eq. (65) belongs to a class of Lévy stable distributions [65,67].
The interval 0 < μ < 1, although similar, is not considered
here (not relevant for our purposes).

Mathematical (as well as statistical-mechanical) foun-
dations of the transport Eq. (67) are spelled out in
Refs. [61,62,66]. Briefly, this equation describes a random-
walk process with competition between trappings (α < 1) and
jumps (μ < 2) and has been found in a number of dispersive
systems with disorder (see, e.g., Refs. [61,66] for reviews
and references therein). We should stress that the inclusion
of long-haul jumps via the power-law distribution in Eq. (65)
leads to a very special form of the spatial derivative, Eq. (66),
which includes a nonlocal integration over n′ [via the convo-
lution with the probability density f (n′, t )]. That nonlocality
would naturally arise in our model might be expected from
the NLSE (3) with distributed nonlinearity, where the long-
range dependence is introduced via a convolution of the order
parameter |ψn′ |2 with a slowly decaying response function
χ (n − n′) ∝ 1/|n − n′|s. In a basic theory of random pro-
cesses, the nonlocal operator in Eq. (66) is referred to as the
Riesz fractional derivative [61,66]. As is well known [61,68],
this type of derivative generates Lévy flights. For α → 1 and
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μ → 2, the transport process in Eq. (67) transforms into a
normal (Gaussian) diffusion along n (because ∂μ/∂|n|μ →
∂2/∂n2 in that case). For μ → 1, the exact analytical repre-
sentation of ∂μ/∂|n|μ is obtained via a reduction of Eq. (66) to
the Hilbert transform operator [69], yielding, instead of (66),

∂μ

∂|n|μ f (n, t ) = − 1

π

∂

∂n

∫ +∞

−∞

f (n′, t )

n − n′ dn′, μ = 1. (68)

Using (67), one obtains the fractional moments [61] of
the f = f (n, t ) distribution, from which the scaling of the
pseudo-mean-square displacement may be deduced for t →
+∞, leading to

〈(�n)2(t )〉 = lim
δ→2

(�n)δ ∝ t2α/μ. (69)

An exact calculation of the fractional moments of f (n, t )
uses the formalism of the Fox H functions [41,42] and is
articulated in Refs. [61,66,68]. Comparing to Eq. (50), one
infers 2α/μ = 1/(1 + s), from which μ = 2s < 2, where the
general relation α = s/(s + 1) stemming from Eq. (60) was
applied.

One sees that the generalized kinetic Eq. (67) is the right
tool to describe the complex transport processes pertaining to
the NLSE (8). Perhaps of greater importance is the fact that
the exponent s being smaller than 1 implies μ < 2, showing
that the transport is always nonlocal, with Lévy flights, if
the power s is sublinear (i.e., nonlinearity at the NLSE is
subquadratic).

From a topological perspective, the fact that we have en-
countered Lévy flights for s < 1 is clear from the iteration
procedure of Sec. V, according to which the inclusion of
subquadratic power results in the occurrence of multiple de-
generate states in wave number space. In that interpretation,
nonlocality arises as a consequence of improper embedding of
the higher-order Cayley trees into the primary order mapping
space, giving rise to Lévy flights along the shared (degener-
ate) bonds. In the limit of quadratic power nonlinearity, i.e.,
s → 1, the iteration procedure of Sec. V is exact in the first
order. That means that nonlocality is lost for s → 1, implying
that the asymptotic spreading of the nonlinear field goes on
nearest-neighbor transitions between adjacent states, with a
subdiffusive dispersion

〈(�n)2(t )〉 ∝ t1/2. (70)

This type of subdiffusive process with long-time trapping
phenomena has been observed numerically in Ref. [57] in the
regime of strong chaos. Exactly the same behavior was found
in Ref. [70] for quantum nonlinear Schrödinger lattices with
randomness, where it was associated with the binding effect
of the Lennard-Jones potential W (�n) = −(A2/2)/(�n)6. In
that regard, we note that the dynamical picture of quantum
chaos may be much different from the classical one in that it
is based on Fermi’s golden rule for transitions between states
[32], with a greater emphasis on nonlocal features through the
transport.

VIII. WHY QUADRATIC NONLINEARITY IS SPECIAL

If s = 1, then instead of the NLSE (8) one relies on a
simplified model in Eq. (1), with the quadratic nonlinearity

proportional to β|ψn|2. In that case, the Chirikov overlap
parameter K = �ωNL/δω � β does not depend on the width
of field distribution: If for some β the field is chaotic satisfying
K � 1 at time t = 0, then the actual K value will be preserved
while spreading. Therefore, no self-reinforcing of chaos is
expected for s = 1 (which according to the above excludes
Lévy flights), suggesting that the asymptotic transport goes on
random transitions between adjacent (i.e., nearest-neighbor)
states. With these implications in mind, one reinstalls the
Laplacian operator ∂2/∂n2 in the kinetic Eq. (67), leading
to the local Eq. (62) despite that the chaos could be strong.
If, however, the β value is so small that the overlap param-
eter K � 1 for t = 0, then the transition to chaos does not
occur and the field remains localized for all t > 0. Separat-
ing the two regimes (chaotic vs localized) is the borderline
regime, characterized by K ∼ 1, which might be expected
for s = 1 (for a suitably chosen β), but not really for s <

1 (because the dynamical chaos being self-reinforcing for
s < 1 naturally destroys the borderline behavior in the long
run).

A priori one might predict that the borderline regime
(which we associate with weak chaos considered in
Refs. [71–73]) is characterized by the non-Markovian trans-
port Eq. (62), though with a different α value [it is because
the result α = s/(s + 1) = 1

2 has used that the chaos is strong,
i.e., the condition K � 1 holds]. In what follows, we obtain a
proper value of α for K ∼ 1.

A. Threshold percolation on a Cayley tree

The main idea here [8] is that the transport with K ∼ 1
occurs in the form of nearest-neighbor jumps along a sys-
tem of dephased oscillators, thought of as conducting (wave
transmitting) sites for the spreading process. Of interest here
is a situation when such a system could stretch to infinitely
long scales, so it supports unlimited spreading of the nonlinear
field in wave number space. The existence of such a system is
not at all obvious. If, however, the concentration of dephased
oscillators exceeds a certain threshold value, then a connected
cluster of dephased oscillators occurs with the probability
1, thus offering a substrate for unlimited spreading. As is
shown in a basic theory of random processes, this substrate
corresponds to the infinite percolation cluster at the edge of
percolation [21,74,75].

More explicitly, we divide all oscillators in Eq. (13) into
two categories, i.e., those dephased for which the local K
value is large enough to enable random transitions between
adjacent states and those in a “regular” state for which the
local K value is so small that no transition to a neigh-
boring state may occur. Next let us assume, following the
approach of Refs. [8,50], that each nonlinear oscillator re-
sides in a dephased state with the probability p and in a
regular state with the probability 1 − p. In this fashion, one
mimics the formulation of the random percolation prob-
lem on a lattice [74,75], the result being that there exists
a critical value of p for which an infinite connected clus-
ter of dephased oscillators occurs for the first time. This
value, which depends [21,52] on the topology of the lat-
tice on which the percolation transition is analyzed, is none
other than the percolation threshold in the system of coupled
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FIG. 5. Nearest-neighbor random walk on a percolating system
of dephased oscillators (closed circles). The trajectory of the random
walk is represented by a piecewise black curve. The oscillators in
a regular state (not available for the random walk) are shown as
open circles. It is assumed that dephased oscillators are organized
in connected infinite (i.e., percolating) clusters lying on a Cayley
graph with coordination number z = 3. The onset of unlimited trans-
port corresponds to a critical concentration of dephased oscillators,
which depends on the coordination number z and is given by pc =
1/(z − 1). The dispersion of the random walk corresponds to the
scaling 〈(�n)2(t )〉 ∝ t1/3 for t → +∞.

nonlinear oscillators in Eq. (13). We associate this critical
value with the onset of unlimited transport in the weak chaos
regime.

Next we need to discuss what a suitable lattice for the
percolation transport would be in the framework of the NLSE
(1). This is clear from the mapping procedure articulated in
the beginning of Sec. V and the fact that the multinomial
expansion of quadratic nonlinearity is exact in the first order.
At this point, one is led to conclude that the percolation occurs
on a very specific lattice, which is provided by a Cayley graph
with the coordination number z = 3 (see Fig. 5). We note in
passing that this type of lattice offers a convenient model of
mean-field percolation [21,51].

Finally, let us consider that the transitions between
dephased oscillators are entirely random and follow nearest-
neighbor communications between the adjacent states. The
random character of the transitions is motivated by the fact
that the nonlinear field is chaotic along the percolation clus-
ters (and is regular otherwise). Note, however, that the phase
space available for random dynamics may be actually quite
narrow at the edge of percolation, being reduced to a set of
networklike structures [59] that are geometrically complex
and strongly shaped. Note also that the percolation clusters,
whether finite or infinite, occupy only a fraction of the ambient
space and not the entire space. The implication is that the
distribution of domains of chaotic motions is highly inhomo-
geneous for K ∼ 1, in contrast to the strong chaos regime,
with K � 1, for which the formation of a wide stochastic sea
of chaotic dynamics is the case [55,56,71].

B. Random-walk model

Based on the discussion above, we might arguably propose
that a suitable kinetic model to characterize the onset spread-
ing of the nonlinear field could be obtained as a random-walk
model on a mean-field percolation cluster (by which one
means an infinite percolation cluster on the Cayley graph
[21,51]) (see Fig. 5). This transport problem has been well
and widely studied in the literature (see, e.g., Refs. [21,76]
for reviews and references therein) and is shown to result in
a subdiffusive dispersion of the random walker in accordance
with [77]

〈(�n)2(t )〉 ∝ t2/(2+θ ), (71)

where θ is the so-called connectivity index, which is a
topological invariant of the cluster [22,78]. The latter index
characterizes the deviation from normal diffusion in fractal
geometry due to the presence of cycles, voids, and dead ends
throughout the fractal distribution. For mean-field percolation
on trees, θ = 4 (see Ref. [21] and references therein; a deriva-
tion using the graph theory is presented in Ref. [48]), leading,
in view of Eq. (71), to the scaling behavior

〈(�n)2(t )〉 ∝ t1/3. (72)

The scaling law in Eq. (72) will be consistent with the kinetic
Eq. (62) if α = 1

3 . Note that the result α = s/(s + 1) pertain-
ing to strong chaos does not apply here.2 One sees that the
borderline transport, with K ∼ 1, leads to a slower spreading
process compared to the strong chaos regime, characterized
by α = 1

2 . These theory predictions find support in computer
simulations of Ref. [57], where both the strong and weak
chaos regimes have been recognized numerically, with the
respective transport exponents α = 1

2 and 1
3 .

C. Critical β value

Here we obtain the critical value of β, for which an un-
limited transport along the lattice occurs for the first time,
provided just that the nonlinearity is quadratic, i.e., s = 1. As
is already clear, this critical value corresponds to the onset
of percolation on a Cayley tree with the coordination number
z = 3. In a basic theory of threshold percolation on trees it is
shown [21,51] that the onset point arises for a critical prob-
ability of site occupancy, which depends on the coordination
number z (and only on this number). This critical probability
is given by [51]

pc = 1/(z − 1). (73)

Setting z = 3, one readily gets pc = 1
2 . In the framework

of the NLSE (1), the threshold probability in Eq. (73)
corresponds to a critical concentration of dephased oscillators,
along which a weakly chaotic nonlinear field can propagate to

2Setting α = s/(s + 1) to 1
3 , one gets s = 1

2 , which recovers the
lower bound on s in Eq. (44). However, the onset transport at s = 1

2
corresponds to subquadratic nonlinearity and as such must involve
Lévy flights. This is at odds with percolation transport, considered
here, which is built on random transitions between nearest-neighbor
states and does not involve the flights.
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long distances. Writing the concentration as the Boltzmann
factor

p = exp(−δω/�ωNL) = exp(−1/β ), (74)

we have, at the percolation point, pc = exp(−1/βc), where βc

denotes the critical β value, and we have considered that the
nonlinear frequency shift �ωNL = β|ψn|2 plays the role of the
effective “temperature” of nonlinear interaction [8,50]. Note
that the behavior in Eq. (74) is nonperturbative (as in fact it
must be in the vicinity of a critical point [34]). Applying (73),
one finds, with z = 3,

βc = 1/ln(z − 1) = 1/ln 2 ≈ 1.442 695 . . . . (75)

The latter value, which is an exact result of the percolation
model, defines the critical strength of nonlinear interaction
such that above this strength the nonlinear field in Eq. (1)
can propagate along the lattice to unlimited distances and is
Anderson localized similarly to a linear field otherwise. Note
that the onset of unlimited spreading is a thresholded (i.e.,
critical) phenomenon, as it requires the strength of nonlinear
interaction to exceed a certain finite value. We should stress
that the existence of such a value is a property of quadratic
nonlinearity, with s = 1. If s < 1, then the respective proba-
bility of site occupancy

p = exp(−δω/�ωNL) = exp[−1/βs(�n)1−s] (76)

depends on �n and for �n → ∞ will be (promptly) con-
verging to 1, implying that the field is chaotic. Thus, no
percolationlike transport could be expected for s < 1, sug-
gesting that the quadratic nonlinearity is special in that it is
the only type of nonlinearity which supports both the strong
and weak transport regimes consistently with the conclusion
of Ref. [50].

IX. SUMMARY

Our analysis indicates that the nonlinear Schrödinger
models with random potential and subquadratic power non-
linearity might constitute an efficient and powerful tool when
describing dynamical systems with competition between non-
linearity, disorder, and long-range dependence. In this respect,
a very convenient issue is that the subquadratic nonlinear-
ity in the NLSE (8) arises as a reduction of the distributed
nonlinearity with a power-law response function χ (n − n′) ∝
1/|n − n′|s. This observation suggests that the NLSE (8) may
be directly applied to complex systems at or near their critical
states [34–36]. Mathematically, our approach is different from
the alternative approach articulated in Refs. [27–29], where
the long-range dependence is introduced into the linear (dis-
persion) term, leading to a Lévy-fractional NLSE [19,22].

In this paper the main emphasis has been on the analyt-
ical methods pertaining to subquadratic power nonlinearity
and a way to tackle this type of nonlinearity in the con-
text of the NLSE (8). In that regard, we have devised an
iteration procedure based on Diophantine equations and the
multinomial theorem, according to which one can represent
the subquadratic power as a sequence of the Cayley graphs,
with the coordination numbers being the odd function of the
iteration order. We have found, using this procedure, that the

discrete equation permits a transition to chaotic dynamics un-
der a set of nonrestrictive initial conditions involving both the
nonlinearity parameter and the width of the field distribution.
A peculiar feature concerning this equation is that the chaos is
self-reinforcing (in view of the dependence of the Chirikov
overlap parameter on the number of states) and leads to a
chaotic spreading of the nonlinear field to long distances under
the action of the nonlinear term.

From a basic kinetic point of view, the spreading process
was found to be non-Gaussian and nondiffusive, with complex
microscopic organization revealing the presence of multiple
trapping phenomena in wave number space. Most interest-
ingly, the latter phenomena, which we have associated with
the attractive interaction between unstable modes, were found
to compete with some nonlocal features, consistent with Lévy
flights.

Theoretically, the origin of those features has constituted
exciting and a very nontrivial problem. It has been our pro-
posal that the nonlocality results from insufficient embedding
of the higher-order Cayley graphs into the primary-order
phase space, leading to the occurrence of degenerate states.
In this fashion, we could explain Lévy flights in the NLSE
system (8) from a purely topological perspective by associ-
ating them with instantaneous jumps along degenerate states
starting from the second iteration order.

Developing these viewpoints, we have shown that a kinetic
description of the asymptotic transport corresponds to a gener-
alized diffusion Eq. (67), with fractional-derivative operators
over both time (trappings, α < 1) and the position coordinate
in wave number space (flights, μ < 2). In that regard, it is
worthwhile to stress that the NLSE (8) with subquadratic
power nonlinearity offers an environment to generate Lévy
flights dynamically through the dependence of the Chirikov
overlap parameter on the number of states (that is, without
introducing the nonlocal features from the outset, conversely
to the approaches of Refs. [22,29]). To this end, we have
shown, based on the jump-length distribution in Eq. (65),
that the Lévy index μ is directly related to the exponent of
subquadratic power s via μ = 2s.

If s → 1, then the multinomial expansion in Eq. (21) is ex-
act in the first order. That means that no degenerate states are
to be expected for the NLSE (1) [in contrast to its subquadratic
generalization in Eq. (8)]. As a consequence, we found, for
s → 1, that Lévy flights transform into the familiar nearest-
neighbor random walk, leading to a pure non-Markovian
dynamics with a distribution of trapping times [i.e., Eq. (60)
with either α = 1

2 or 1
3 ]. A remarkable feature here is that

quadratic nonlinearity, with s = 1, proves to be special in that
it allows for both the strong (α = 1

2 ) and weak (α = 1
3 ) chaos

regimes depending on the strength of nonlinear interaction.
This is different from the subquadratic power case, with s < 1,
where the dependence of the nonlinear frequency shift on the
width of field distribution suppresses the weak chaos regime,
leading to strong chaos in the limit t → +∞.

Concerning the onset of chaotic spreading in the NLSE
(1), we have seen that the phenomenon is critical (i.e.,
thresholded), corresponding to the very special value of
the nonlinearity parameter βc = 1/ln 2 ≈ 1.442 695 . . . . This
value, which is a hard result of the transport model, is a
characteristic of mean-field percolation on trees and pertains

034203-12



DYNAMICAL CHAOS IN NONLINEAR SCHRÖDINGER … PHYSICAL REVIEW E 107, 034203 (2023)

(strictly) to the nonlinear Schrödinger lattices with s = 1 (not
s < 1). At the same time, the dependence of the probability
of site occupancy on β in Eq. (74) indicates that the behavior
is nonperturbative, as it has to be in the vicinity of criticality
[34].

If s = 1 exactly, then in the weak chaos regime we pre-
dicted a subdiffusive spreading of the nonlinear field in
accordance with the scaling law 〈(�n)2(t )〉 ∝ t1/3 for t →
+∞. The latter scaling is different (both mathematically and
dynamically) from the alternative scaling 〈(�n)2(t )〉 ∝ t1/2

(t → +∞), when the chaos is strong. No percolationlike
transport has been found for s < 1, while in the strong chaos
regime we have, for all 1

2 � s � 1, 〈(�n)2(t )〉 ∝ t1/(s+1) (t →
+∞).

Finally, we note that our results agree well with known
numerical estimates, e.g., those reported in Ref. [57] for
both the strong (α = 1

2 ) and weak (α = 1
3 ) chaos regimes.

Further agreement might be concluded from the computer
work of Ref. [14] (see Sec. V therein), where the plasma

analog of the Anderson problem has been studied numeri-
cally on the basis of a gyrokinetic approach. The results of
that work suggest that systems of strongly coupled transport
barriers in the tokamak L mode might decay via a subdiffu-
sive spreading in the radial direction following the scaling
law in Eq. (50). In this respect, we should stress that the
distinction between the chaotic and weakly chaotic dynamics
remains an important and delicate problem, if only due to
the borderline character of weak chaos [71,72] as well as
the natural difficulties in studying the asymptotic transport
laws.
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