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Propagating intrinsic localized mode in a cyclic, dissipative, self-dual
one-dimensional nonlinear transmission line
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A well-known feature of a propagating localized excitation in a discrete lattice is the generation of a backwave
in the extended normal mode spectrum. To quantify the parameter-dependent amplitude of such a backwave, the
properties of a running intrinsic localized mode (ILM) in electric, cyclic, dissipative, nonlinear 1D transmission
lines, containing balanced nonlinear capacitive and inductive terms, are studied via simulations. Both balanced
and unbalanced damping and driving conditions are treated. The introduction of a unit cell duplex driver, with a
voltage source driving the nonlinear capacitor and a synchronized current source, the nonlinear inductor, provides
an opportunity to design a cyclic, dissipative self-dual nonlinear transmission line. When the self-dual conditions
are satisfied, the dynamical voltage and current equations of motion within a cell become the same, the strength
of the fundamental, resonant coupling between the ILM and the lattice modes collapses, and the associated
fundamental backwave is no longer observed.
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I. INTRODUCTION

Although a dissipative nonlinear transmission line (NLTL)
is necessarily a nonconservative system, it is often used to
compare experimental findings [1–17] with lattice solitons
[18–21], discrete breathers [22–24], or intrinsic localized
mode (ILM) [25–30] expectations. The properties of such
strongly localized excitations in NLTLs have been described
in a number of reviews [31–40]. A desired solitonlike prop-
erty, such as the distortionless, free motion of a running
energy pulse, is an important goal, but one impediment for the
running ILM is the seemingly intrinsic backwave generated
in the discrete nonlinear lattice [41–44]. For a mechanical
one-dimensional (1D) NLTL, it is well-known that the ILM
site-centered and bond-centered locations in the unit cell
have different energies and this imbalance associated with a
traveling ILM excites NLTL modes [45–48]. The fundamen-
tal challenge is how best to uncouple a running ILM from
the NLTL extended-wave excitations in a dissipative lattice,
where a driver is required to maintain the nonlinear ILM in
the steady state. For NLTLs without damping, a few ways
have been suggested to decrease the lattice-ILM interaction:
a saturable nonlinearity [49,50], the balance of two different
kinds of lattice nonlinearities [44], by including odd sym-
metry potential terms [51], or with a symmetrically designed
set of long-range potentials [52]. But without accounting for
intrinsic loss, such NLTL proposals remain conjectural. For
ILMs in driven-dissipative NLTLs, there have been some
studies [39,53–56] but the focus has not been on how to
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control the magnitude of the NLTL backwave generated by a
running ILM.

In this paper, using simulations with cell drivers, damping,
and building on our earlier experimental ILM-NLTL studies
[17], we examine the representative properties of a running
ILM in a 32 element, electric-cyclic, driven-damped, non-
linear transmission line. Here we demonstrate, first with a
traveling-wave (voltage) driver (model 1) and then with a bal-
anced, traveling wave, duplex (voltage, current) driver (model
2), the different ILM-lattice coupling properties for equalized
nonlinearities in NLTLs. Each of these models is tested with
balanced and unbalanced damping. Particularly interesting in
our paper is model (2), for the case where all components in
such a basically realistic nonlinear unit cell are balanced, the
result is a damped, self-dual NLTL. It is demonstrated here
that unlike for a single cell (voltage) driver, the balanced-
duplex (voltage, current) driver makes possible the removal
of the backward NLTL wave associated with the fundamental
resonant coupling between the ILM and the lattice. The result
is a nearly free running ILM.

In the next section, we provide some background details
based on earlier works [17,44] to set the stage for the findings
to follow. The self-dual NLTL equations are developed in
Sec. III. A number of steps are involved. First, the balanced
nonlinearities are presented, then the unit cell duplex driver
characterized, and, finally, the dynamic equations of motion
for the NLTL quantified. In Sec. IV, the running ILM sim-
ulation results are presented. They detail exactly how best
to suppress a specific fundamental backwave resonance, both
for a single driver and for a duplex driver. As a final point,
it is demonstrated that there is no fundamental backwave
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FIG. 1. Ideal cyclic nonlinear transmission line. The unit cell
consists of a single hard nonlinear capacitor, a single hard nonlinear
inductor, and no dissipation.

resonance for a running ILM in such a self-dual NLTL. The
summary and conclusions follow in Sec. V.

II. BACKGROUND

A. Unit cell for cyclic NLTL

Electrical experiments, using a cyclic 32-element NLTL
with hard nearest neighbor nonlinearity and a voltage
traveling-wave driver in each cell, already have been used
to generate and observe running ILMs over a wide range
of driver frequency and wavenumber. The basic cyclic elec-
trical configuration is shown in Fig. 1, where the particular
case of interest is for the unit cell capacitor and inductor to
have different nonlinearities. At small excitation amplitude
the well-known linear dispersion curve of the NLTL is given
by

ω(k) = 2√
L0C0

sin

∣∣∣∣k

2

∣∣∣∣, (1)

where ω is the frequency, k is the wave number, L0 is the linear
inductance, and C0, the linear capacitance. The propagating,
wave-driving pattern is

Vd,n = Vd cos (kd n − ωdt ), (2)

where n is the lattice index and Vd , kd and ωd are the driving
amplitude, wave number, and frequency, respectively.

An illustration, presenting the dispersion properties of
NLTL and an ILM, is given in Fig. 2. The linear dispersion
curve for the NLTL is shown by the solid red curve. For the
case of hard nearest-neighbor nonlinearity, with neighboring

π π π

FIG. 2. 2D-FT schematic drawing of stationary and traveling
ILMs superimposed on the solid NLTL dispersion curve. Solid and
open circles indicate driving points for stationary and traveling ILMs,
respectively. An ILM is expressed as a dispersion line (DL) in k space
because it is a localized wave packet in physical space. The solid
horizontal line is for a stationary ILM, while the dashed sloped line
is for an ILM traveling to the right.

FIG. 3. One unit cell of the experimental cyclic NLTL with dif-
ferent Ce(V ) and Le(I ) nonlinearities. Rp is the parallel resistor of the
capacitor, RL is the series resistor of the inductor, and Vd,n the voltage
driver with driving capacitor Cd .

cells excited π out of phase with each other, a stationary ILM
can be generated above the NLTL dispersion curve maximum.
In Fig. 2, the solid black dot identifies the frequency and wave
number driver of such an ILM. The horizontal line represents
the range of the two-dimensional (2D) Fourier transform (FT)
of (time, site) for the ILM amplitude distribution in k space.
(See Appendix for FT details.) The sharper this stationary
ILM in physical space, the broader the 2D-FT representation
of the mode in k space. For the range where 0 < k < π , the
open circle in Fig. 2 identifies the frequency and wave num-
ber driver of a traveling ILM, and the dotted dispersion line
(DL) of the ILM, its distribution in k space. This particular
ILM is traveling to the right and the slope shown is directly
related to the ILM speed around the ring. From this picture, it
should be evident that for a running ILM its DL will always
intersect the NLTL dispersion curve. This intersection point
of the dotted curve and the red curve identifies the resonance
location between the wing of the ILM FT amplitude and the
NLTL dispersion curve. It was found that the ILM velocity
depends on the amplitude of this resonance, among other
parameters, and that the ILM-induced NLTL backwave can
be easily recognized in the spectrum [17].

The schematic electrical design of an actual NLTL unit cell
for the case of a traveling-wave voltage driver is presented
in Fig. 3. Here Ce is the differential nonlinear capacitance,
Le is the differential nonlinear inductance, Rp is the parallel
resistor, representing dissipation in the nonlinear capacitor,
and RL is the series resistor representing loss in the nonlinear
inductor. Both resistance terms are included to account for
damping in the circuit. To capacitively drive the unit cell, one
end of the nonlinear capacitor (voltage node Vn) is connected
to the unit cell, driving oscillator through a linear capacitor
Cd , which increases the total capacitance of the nonlinear
capacitance from Ce to Ce + Cd .

B. Experimental ILM-NLTL resonance observation

We now have all the components necessary to determine
experimentally the resonance feature from a running ILM
2-D FT (time, site) data set. An experimentally measured
example of the position versus time of a running ILM is
shown in Fig. 4(a). The blue (maximum), white (zero), and red
(minimum) track versus time identifies the measured voltage
pattern of a running ILM for a particular cyclic NLTL. As
mentioned above, by taking the 2D FT of these voltage data
(see Appendix), one obtains the DL for the ILM, as shown
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FIG. 4. Comparison of experimental and simulation ILM reso-
nance properties. (a) Experimental voltage pattern versus time for
a traveling ILM in a capacitor driven nonlinear transmission line.
(b) 2D-FT result of the voltage pattern in (a) gives the ILM disper-
sion line strength (DLS). Solid red curve indicates the NLTL linear
dispersion curve. Cross identifies driver waven umber 14π/16 and
driver frequency 43 kHz. The ILM DL intersects the NLTL disper-
sion curve at the solid arrow. (Signal at middle, dashed arrow, is an
experimental ghost.) (c) Solid curve: ILM DLS versus wave number.
Dashed curve is obtained from a simulation with the same conditions
as the experiment. Long dashed curves beneath the resonances give
approximate baselines.

in Fig. 4(b). The cross identifies the particular traveling-wave
driver settings (frequency and wave number). The frequency
versus wave number DL density plot identifies the modulus
voltage amplitude (V) of the ILM, the darker the gray scale,
the larger the DL modulus amplitude. The slope of the ILM
DL is the ILM velocity per unit lattice constant divided by
2π . The continuation of the DL modulus amplitude into the
next zone is shown on the left-hand side of this figure. It is
clear that the voltage density extends all the way to the NLTL
dispersion curve (see solid arrow) and beyond.

To examine the resonance crossing in more details, the
procedure is to obtain a measure of the magnitude of ILM-
DL density as it varies across the Brillouin zone. To obtain
the dispersion line strength (DLS) at a specific k value the

magnitude is summed over a small frequency range. See Ap-
pendix, Eq. (A3). This DLS (V) is shown as a function of wave
number in Fig. 4(c) where the log of the resulting strength
is graphed versus wave number. As expected, the maximum
value occurs at the position of the driving location cross in
the previous panel. Initially, the DLS drops off as one moves
away from this k-space location until the resonance location
between the ILM and the NLTL appears. Superimposed on
the same panel, the blue dotted curve gives the corresponding
simulation results for the same set of NLTL parameters. No-
tice that the curves are similar but the resonance interaction is
even stronger than observed in experiments. This observation
is consistent with the fact that the simulated ILM travels at
a slower speed than does the experimentally observed ILM. It
has also been found that by setting equal the magnitudes of the
nonlinear inductor and the nonlinear capacitor in simulations
the resonant interaction can be greatly reduced, although a
significant component remains. In the next section, basically
starting from this last observation, we continue the exploration
of how best to minimize this resonant interaction between
a running-localized excitation and the extended waves in a
NLTL.

III. DEVELOPMENT OF SELF-DUAL NLTL

A. Model 1, balanced nonlinearities

To study with simulations the properties of the NLTL lead-
ing to the self-dual case, the first step along this path is to
balance the two nonlinearities in the unit cell. For the studies
described in this paper, the unit cell nonlinear capacitor is set
equal to the nonlinear inductor, so

Le(V/Z0)

L0
= Ce(V )

C0
, (3)

where Z0 = √
L0/C0. Equation (3) is now applied throughout

our paper. The differential capacitance Ce is the same inverse
hyperbolic function of the voltage as in Ref. [17], namely,

Ce(V ) = C0√
1 + V 2/V 2

0

, (4)

where C0 and V0 are constants. For the inductor, the differen-
tial inductance Le is taken to have the same structure, so

Le(I ) = L0√
1 + I2/I2

0

, (5)

where L0 and I0 are constants. Note, although most nonlin-
ear inductors show a parabolic current dependence for 1/Le

instead of hyperbolic, it is not hard to generate Eq. (5) since
the desired model dependence can be synthesized by adding
together several inductors with different current dependencies.
When these parameters satisfy the energy relation

C0V
2

0 = L0I2
0 , (6)

the nonlinear capacitor and nonlinear inductor are defined as
balanced [17].
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FIG. 5. Unit cell of the NLTL with duplex (V, I) driving and
identical Ce and Le nonlinearities. See Eq. (3). Rp is the parallel
resistor of the capacitor, RL is the series resistor of the inductor.
The two driving terms for the duplex driver are balanced with the
additional condition on the mutual inductance Md given by Eq. (17).

B. Model 2, balanced duplex driver

The schematic electrical unit cell configuration that makes
possible a duplex driver is presented in Fig. 5. As we shall
see, this driving feature, when properly designed, can make
the dissipative unit cell self-dual. For nonlinear balance, both
Ce(V ) and Le(I ) are to be balanced, so a linear Ladj is added
in series to Le as shown in Fig. 5. This allows one to maintain
the unit cell balance via Eq. (3). Next we add to that condition
the complex balancing possibility shown in Fig 5. This duplex
driving involves both voltage driving via a capacitor and,
simultaneously, current driving of the inductor in the unit cell
via a separate driver and transformer. Now Ladj is used as
the secondary winding, and the second oscillator is connected
to the primary winding of the transformer, where Md is the
mutual inductance between those coils.

C. Self-dual NLTL

The dynamic equations of motion for the NLTL described
by the unit cell in Fig. 5 are now

(Le(In) + Ladj )
dIn

dt
= Vn − Vn+1 − InRL + Md

d

dt
Id,n, (7)

(Ce(Vn) + Cd )
dVn

dt
= In−1 − In − Vn

Rp
+ Cd

d

dt
Vd,n, (8)

where the parameters are identified in Fig. 5. Note the coef-
ficient Md in the driving term of the current, Eq. (7), can be
different from Ladj.

Since the laboratory equations of motion include a driving
capacitor Cd and adjustment inductor Ladj in Eqs. (7) and
(8) the Eq. (3) balance condition including Cd and Ladj now
becomes

Ladj

L0
= Cd

C0
. (9)

From Eq. (6), we note the useful equalities with dimensions
of (impedance)2, namely,

Z2
0 = V 2

0

I2
0

= L0

C0
= L0 + Ladj

C0 + Cd
. (10)

For self-dual network lattices, one can introduce, without loss
of generality, a new set of variables at half integer sites to
replace the current variables [1], so

Vn+0.5 = Z0In. (11)

By this convention, these Vn+0.5 variables are essentially cur-
rent data, but have the same variable name and dimension as
the voltage variable. Similarly, with these two set of variables,
the two synchronous drivers should have 1/2 position shift
dependence given by

Id,n = Id cos (kd (n + 0.5) − ωdt ) (12)

and

Vd,n = Vd cos (kd n − ωdt ), (13)

where Id , Vd , are real number driving amplitudes. Note the
duplex driver configuration, represented by Eqs. (12) and (13),
requires two times the number of drivers previously used for
the single driver cyclic experiments described in Sec. II.

The two equations of motion, Eqs. (7) and (8), become,
respectively,

Z0

(
C0√

1 + V 2
n+0.5/V 2

0

+ Cd

)
dVn+0.5

dt
= Vn − Vn+1 − RL

Z0
Vn+0.5 + Md Id

d

dt
cos(kd (n + 0.5) − ωdt ), (14)

Z0

(
C0√

1 + V 2
n /V 2

0

+ Cd

)
dVn

dt
= Vn−0.5 − Vn+0.5 − Z0

Rp
Vn + Z0CdVd

d

dt
cos (kd n − ωdt ), (15)

where the damping terms are now balanced by the added
condition that

RLRp = Z2
0 . (16)

The driving terms are balanced for the duplex driver described
by Eqs. (14) and (15) with the additional condition that

Md Id = Z0CdVd . (17)

With the damping and drivers all balanced, Eqs. (14) and (15)
become one. The result is a driven-damped, running ILM self-
dual lattice problem.

IV. SIMULATIONS AND RESULTS

A. Simulation details

It has already been demonstrated in Sec. II with ex-
periments and simulations that for a running ILM in an
unbalanced NLTL, a characteristic, strong resonant interaction
signature between the ILM and NLTL modes can be clearly
identified. The strength of this resonant interaction between
the running ILM and the lattice modes determines the magni-
tude of the NLTL backwave, hence the localized mode-lattice
mode coupling.

Table I(A) identifies the common parameters used in the
present simulations. The nonlinear capacitor values are the
same as described in Ref. [17]. Cd is set at an appropriate
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TABLE I. Simulation parameters for balanced nonlinearities.

(A) Common values for the two models

C0=117nF V0=4.24V L0=1.00mH Z0 = 92.4�

I0=0.0459A Cd=10.0nF Ladj = 85.5μH

(B) Model numbers and parameter sets for Figs. 8 and 9
Model 1 = single driver; model 2 = duplex driver
No. Panel Drive Rp(�) RL (�) Vd (V) Md Id (μHA)

1, (a) Eq. (16)
Balanced R V 776 11.0 30.0
1, (b)
Unbalanced R V 1.55k 16.5 30.0
2, (c) Eq. (16) Eq. (17)
Balanced R V, I 776 11.0 15.0 13.9
2, (d) Eq. (17)
Unbalanced R V, I 1.55k 16.5 15.0 13.9

experimental value ∼1/10 of C0. L0 is chosen as the same as in
Ref. [17]. I0 and Ladj are calculated at the balanced condition.
Table I(B) summarizes the parameter sets for different driving
and damping conditions.

In these simulations, the fourth-order Runge-Kutta method
is used in Eqs. (7) and (8) with parameters listed in Tables I(A)
and I(B). Because of the driver dissipation conditions, ini-
tially, a single ILM is generated by chirping the driver
frequency up starting from near the top of the dispersion curve
(27.1kHz) to a higher frequency, typically 35 kHz, which
is lower than the high-frequency driving limit of 60 kHz. If
several traveling ILMs are obtained, then one uses zero filling
at unwanted locations to eliminate all but one. A clean stable
traveling ILM is generated after continuing the simulation be-
yond a couple of time constants. By increasing or decreasing
the driver frequency and waiting until the extended waves
have disappeared, we were able to investigate ILM amplitude,
velocity, and ILM-DL as a function of the driver frequency.

The modulus amplitudes of the DL are calculated from
the complex 2D-FT result for a fixed k by summing square
amplitudes along the frequency axis across the DL with a fixed
width (2 kHz) of data points, then taking the square root of
the sum. The result is the DLS. The reason for taking a sum is
because the DL is not exactly on the data points of discrete 2D
data. Since the FT signal decays quickly moving away from
the DL, the integrated width is not sensitive to the final results.
See Appendix for more details.

B. Time-dependent properties of self-dual ILM

Particularly instructive are the numerical properties of
the traveling, balanced self-dual ILM within a cell and we
present some of these observations in Fig. 6, where identical
ILM envelope shapes are observed at capacitively centered
and inductively centered lattice locations. This example of
simulation results, for a self-dual case, at kd = 13π/16 and
ωd/2π = 50 kHz with the balanced conditions for the damp-
ing resistors and drivers included, gives a single traveling
ILM moving at a constant speed around the ring. The time
dependence of the ILM voltage pattern in Fig. 6(a) is dis-
played in blue-white-red colors with the same definitions as
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FIG. 6. A traveling, balanced self-dual ILM showing its identical
envelope shape at capacitively centered and inductively centered
lattice locations in a 32-element NLTL ring. (a) Simulated voltage
pattern versus time for a traveling ILM, driven at 50 kHz. Voltage
pattern is shown in blue-white-red scale. (b) Time dependence of
voltage and current for sites from 15 to 17. (c) Voltage and current
as a function of lattice site at time = 0.5125 ms, identified by left
dashed line in (b). Solid circles identify voltage at integer sites, and
open circles identify current at half-integer sites. (d) Voltage and
current as a function of lattice site at time identified by right vertical
dashed line in (b). Peak is now at the current site. Peak distance
between (c) and (d) is 1.5 lattice sites. See text for more details.

for Fig. 4(a). But, because of the new balance conditions, we
want to examine the voltage and current pattern in more detail.
(The vertical dotted line identifies the time = 0.5125 ms, to be
referred to in the next two panels.)

Figure 6(b) illustrates the equivalency of Z0In and Vn+0.5

expressed by Eq. (11) with the voltage and current excitation
passing through neighboring cells, labeled (in parentheses)
n = 15 to n = 17 versus time. Z0In is the current in voltage
units. Curves are shifted up for clarity with the lattice order as
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indicated by Eq. (11). A near identical wave form is observed
for both voltage Vn and current In multiplied by Z0. In addition,
the center of the ILM shifts to the right uniformly across
both voltage and current sites. The right vertical dashed line
identifies the time of the particular ILM current maximum in
cell (17), while the left vertical dashed line [also identified
in panel (a)] identifies the time of the particular ILM voltage
maximum in cell (16).

To better characterize the envelope shapes at capacitively
centered and inductively centered lattice locations, the voltage
and current signals in Figs. 6(c) and 6(d) are now plotted
versus lattice site for two different times. These time points
are chosen so voltage and current peaks are at different lat-
tice points. Figure 6(c) (time = 0.5125 ms): Solid circles at
integer sites are for voltages and open circles at half-integer
sites are for currents multiplied by Z0. The voltage shows a
maximum at site (16), while the current does not. Figure 6(d)
(time = 0.54375 ms): Voltage and current as a function of
lattice site at slightly later time than Fig. 6(c), identified by
right vertical dashed line in Fig. 6(b). Here the peak is at the
current site while in Fig. 6(c), the peak is at a voltage site. The
time difference is about 1.56 cycles of vibration, and distance
between the peaks in Figs. 6(c) and 6(d) is 1.5 lattice sites.
Because the phase velocity and ILM velocity are not the same,
the time difference between those two panels is not a multiple
of the vibration period. Outside the ILM eigenpeak region,
the extended background wave is observed, which is due to
the drivers.

For completeness, we include an extended view of the 2D-
FT of the running, balanced self-dual voltage pattern time-
dependent results shown in Fig. 6(a). The resulting ILM DLS
for the fundamental, the third harmonic, and fifth harmonic are
presented in Fig. 7. The fundamental shows the intersection
with the NLTL dispersion curve (see arrow). The intersections
for the third and fifth harmonics with the NLTL are not shown.
Like the experimental ILM-DL in Fig. 4(b), the cross indicates
the driver wave number and frequency at the fundamental. The
third harmonic and fifth harmonic DLs for the reduced zone
are obtained from the simulation data in the standard way. The
equation relating the fundamental dispersion line, DL(1) to its
harmonic DL(2m + 1), where m = 0, 1, 2, 3..., is given by

f(2m+1)(k) = v

2π
(k − (2m + 1)kd − Gm) + (2m + 1) fd ,

(18)

where v is the ILM velocity, Gm = 2πm the reciprocal lattice
wave number, and fd = ωd/(2π ). Note the third-harmonic
DL passes the point (3kd , 3 fd ) (dotted cross) with the same
slope as the fundamental DL. Since the wave number of
the 2D-FT result in Fig. 7 is limited from −π to π , by
Eq. (18), the wave number of 3kd = 39π/16 in Fig. 7 appears
at 3kd = 39π/16 − 2π = 7π/16. By the same reasoning,
5kd = 65π/16 for the fifth-harmonic DL appears at 5kd =
65π/16 − 4π = π/16. As expected, these harmonic DLs are
much weaker than the fundamental one. This simulation of
the fundamental ILM DL result (without a ghost) appears
similar to the earlier experimental work, but as we shall show
the resonant backwave results for the ILM fundamental are
quantitatively different. The resonances associated with each
of these harmonics is expected to be progressively weaker
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FIG. 7. 2D-FT of running, balanced self-dual ILM voltage pat-
tern presented in Fig. 6(a). ILM DLS versus k and frequency is
expressed by a gray scale. Solid cross identifies driving wave number
kd = 13π/16, frequency ( fd = 50 kHz) point. Dashed curve: NLTL
linear dispersion curve. Arrow: Intersection point of the ILM DL and
the NLTL dispersion curve. Running ILM to the right, NLTL back-
wave to the left. In this extended frequency figure, third harmonic and
fifth harmonic ILM DLSs are also seen. Dashed crosses are guides to
eye, indicating third and fifth harmonic points of the (kd , fd )-driven
ILM.

because of the much weaker harmonic DL signal compared
to the fundamental. In addition, the wave number distance
to the corresponding NLTL DL intersecting point is much
farther removed. For these reasons, only the fundamental DL
resonance is examined in what follows.

C. Simulation results for models 1 and 2

Following the same procedure as in experiments, the ILM-
DL simulation results for models 1 and 2, at 50 kHz are
now described. Because of the relatively weak backwave
resonances for these Table I parameter sets, the observed
ILM velocities are essentially the same, differing by less than
0.42%. Figure 8(a) presents model 1, log ILM-DL strength,
over four orders of magnitude, versus wave number for ca-
pacitive driving. Balanced damping indicates that the circuit
resistances satisfy the Eq. (16) condition. The up arrow iden-
tifies the driving point kd = 13π/16 and the down arrow
the ILM&NLTL resonance point. The solid curve V (red)
is the ILM-DL voltage modulus and the dashed curve Z0I
(blue) is the follower current modulus response. Figure 8(b),
model 1, displays a similar example for capacitive driving
but now for unbalanced dissipation. In these two panels,
asymmetric resonance signatures are clearly observed. The
distortion is due to interference between the large amplitude
ILM DL component and the small amplitude NLTL signal at
the same frequency, a characteristic feature of a Fano reso-
nance. Related Fano signatures already have been described
for a stationary ILM interacting with small amplitude running
waves [57,58].
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FIG. 8. ILM DLS of V (red) and Z0I (blue) data for the sin-
gle driven (model 1) and duplex driven (model 2) cases. Driving
frequency 50 kHz. Up arrow, driving point: k ↑= 13π/16. Down
arrows k ↓= −1.39, same location in the four frames, identify
the intersection point of ILM DL and the NLTL dispersion curve.
(a) Model 1, damping balanced. (b) Model (1), damping unbalanced.
Nearby red and blue features show the actual resonance responses.
(c) Model 2, damping balanced. (d) Model 2, damping unbalanced.
No resonance features are observed for (c), the completely balanced
self-dual model.

The next step is to examine the ILM-DL simulation results
with a balanced duplex driver, i.e., when both V and I are
driven simultaneously. These results for model 2 with bal-
anced damping are present in Fig. 8(c). Here the running ILM
voltage and current DLSs become identical, because Eqs. (14)
and (15) are the same and the resonance strength is absent.
No evidence of a resonant interaction between the ILM and
the NLTL normal modes is evident at the crossing point,
identified by the down arrow. Figure 8(d) presents the ILM-
DL results for model 2 of Table I(B), where the unbalanced
damping feature for the V and I drivers is introduced. Now
the ILM-NLTL resonance interaction between the ILM and
the NLTL reappears, with a strength similar to that found for
the single driver cases. An important condition is the balanc-
ing of the dissipation. But clearly, it is Fig. 8(c) of model 2
that breaks new ground as the only configuration that removes
the backwave, and hence, appears to uncouple the ILM from
the NLTL modes.

To obtain a measure of the changes in the resonant behavior
for the cases described here, it is helpful to examine a DLS
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FIG. 9. Combined ILM DLS for the same eight sets of data
presented in Fig. 8. Results calculated from Eq. (19), with Fig. 8
data: |Ṽ (k)| and |Ĩ (k)|. A simple resonance feature now is evident in
three of the four panels.

function that incorporates both the voltage and current moduli,
namely,

DLS =
√

|Ṽ (k)|2 + Z2
0 |Ĩ (k)|2 (19)

These strength results are presented as a function of k in
Figs. 9(a)–9(d), where only single resonant peaks appear in
the final results.

To examine the relative strengths of the resonances for the
different cases, we expand the down-arrow sections of Fig. 9,
as now shown in Fig. 10, first in the panel (1) ordinate log
plot, and then in the panel (2) ordinate linear plot. The vertical
dashed lines in these two panels identify the region of interest.
In panel (1), the curves labeled (a)–(d) are the same as shown
in Fig. 9. Since the completely balanced self-dual case, dotted
curve (c) shows no resonance, we subtract curve (c) from
curves (b), (d), and (a) to obtain the resonance feature itself
first in panel (2), Fig. 10. It is helpful to remember that all
the simulation results are for a balanced nonlinear inductor
and nonlinear capacitor. Given that restriction, it is interesting
that although the completely balanced self-dual case appears
to remove the coupling between the ILM and the NLTL, the
next best case is for the single driver with balanced damping.

So far, only one driving frequency has been shown in
Fig. 8. Figure 11 displays the ILM-DL in blue-white-red color
scale, as a function of the driver frequency both for model
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FIG. 10. Three examples of resonance strength suppression for
balanced nonlinearities (data from Fig. 9). Panel (1), log ordinate.
The dashed trace, model 2(c), shows no indication of a resonance
and is used as the baseline in panel (2) to obtain the relative strengths
of curves (b), (d), (a). Model 1(b): Largest resonance strength, single
V driver with unbalanced damping. Model 2(d): Somewhat weaker,
duplex driver with damping unbalanced. Model 1(a): Weakest reso-
nance strength, single driver with balanced damping.

1 [unbalanced resistors and V driving, Fig. 8(b)]; and for
model 2 [completely balanced, Fig. 8(c)]. Comparing these
two panels demonstrates that over the entire ILM driving
range, no resonance is observed for the completely balanced
case, shown in Fig. 11(b), while a resonance response remains
over the entire driving frequency range for the unbalanced
case in Fig. 11(a).

Additional dissipation studies reveal that no resonance
feature for the balanced self-dual NLTL is observed over a
wide range of the damping, from a factor of 1/100 to 2.
(Note: The driving amplitude is changed in proportion to
the damping factor.) For the single driving NLTL case pre-
sented in Fig. 8(a), and for the unbalanced damping cases
in Figs. 8(b) and 8(d), the resonance strength increases with
increased damping. The exception in Figs. 8(b) and 8(d) is for
the lowest damping case of 1/100, where the NLTL cannot
support a traveling ILM.

V. SUMMARY AND CONCLUSIONS

In this study of backwave generation by a running ILM
in balanced cyclic 1D NLTL transmission lines, a number of
features have been studied for both balanced and unbalanced
dissipative and driving conditions in the discrete lattice limit.
They are listed here.

(1) The resonance generating the fundamental backwave
from the ILM is relatively large when a single unit cell

0

π
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3π

k

(a) 

0

π

2π

3π

k

656055504540
driver frequency (kHz)

(b) 

10
0

10
1

102

FIG. 11. ILM-DL strength as a function of wave number and
driver frequency. Logarithmic strength is displayed by red-white-
blue color. For the unbalanced resistors and capacitive driving case
(model 1) panel (a), resonance response (horizontal arrow) is ob-
served at all frequencies. For the all balanced duplex (V, I) driver
case (model 2) shown in (b), no resonance signal is observed over
the same wide driving frequency range.

driver is used together with either a nonlinear capacitor
NLTL, a nonlinear inductor NLTL, or an unbalanced non-
linear capacitor or nonlinear inductor NLTL in a dissipative
system.

(2) With the single cell driver, the fundamental backwave
resonance is greatly reduced, but still observable, when the
nonlinear capacitor and nonlinear inductor are balanced in the
NLTL, according to Eq. (3). Given this condition, additional
ways have been discovered with which to suppress the remain-
ing fundamental resonance feature.

(3) Adding to (2) the balancing of the dissipation between
the capacitive and inductive parts of the cell, Eq. (16), pro-
duces the next large decrease in the fundamental resonance
behavior.

(4) The key to completely removing the fundamental back-
wave is the introduction of the balanced Eq. (17) duplex
driver. The important findings, presented in Figs. 8(c) and 9(c)
occur when all terms, including the traveling wave duplex (V,
I) driver, are balanced, so the dynamical voltage and current
equations of motion become the same, resulting in a damped,
driven self-dual NLTL.

(5) The absence of an ILM-generated fundamental back-
wave for the damped, driven self-dual NLTL is independent
of the steady-state driving frequency.

(6) Although the fundamental resonance is eliminated, it is
important to remember that the much weaker higher harmonic
resonances still exist and have not been characterized in this
paper. We emphasize that this elimination of the fundamental
backwave resonance is only possible in the NLTL with a
balanced duplex driver, not a balanced single driver.

A different way to visualize this interesting study of back-
wave control is to contrast the result with that of a running
ILM for the customary traveling-wave (V) driver presented
in Fig. 4 for an unbalanced NLTL. In the unbalanced case,
the traveling ILM periodically changes its shape between
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capacitive-centered and inductive-centered locations in the
unit cell. On the other hand, with the necessary balanced
duplex driver, as demonstrated in Fig. 6, the resulting identical
capacitive-centered and inductive-centered equations devel-
oped here demonstrate no difference between the fundamental
ILM envelope shapes at these two locations. The result is
that the traveling ILM is uncoupled from the NLTL modes
so no fundamental resonance or associated backwave is to be
expected or observed. Only the very weak higher harmonic
resonances between the ILM and the NLTL remain.

Our recipe for the production of a nearly distortion-free,
running, localized energy pulse in a dissipative, 1D NLTL
has been demonstrated. The result is the elimination of the
fundamental backwave, a characteristic feature of a periodic
1D lattice. As long as the discrete, site and bond (intersite)
dissipative, dynamical, nonlinear equations can be made self-
dual, which necessarily requires a duplex driver, the exact
nonlinear functional form of the NLTL does not appear to

matter. This degree of uncoupling of the localized excitation
from the extended waves is not possible with a single unit cell
driver, which has been used in all previous NLTL studies.
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APPENDIX: DEVELOPMENT OF THE DISPERSION LINE
STRENGTH (DLS) FROM THE ILM VOLTAGE

MEASUREMENT

For a voltage pattern V (t = m�t, z = n) = V ′(m, n),
where m and n are integer numbers for the data and �t is a
sampling time, 2D-FT is calculated as

Ṽ ′(p, q) =
M−1,N−1∑
m=0,n=0

V ′(m, n) exp
(
2π i

p

M�t
m�t

)
exp

(
−2π i

nq

N

)

=
M−1,N−1∑
m=0,n=0

V ′(m, n) exp (ip�ω × m�t − iq�k × n), (A1)

where p and q are integers corresponding to frequency and
wave number. The frequency step and wave-number step are
�ω = 2π

M�t and �k = 2π
N . Lattice size N = 32 and time data

number M = 8192 for experiments and 320 000 for simula-
tions. The sampling frequency is 250 kHz for experiments and
800 kHz for simulations. These values are proportional to the
number of data points for time M. However, it doesn’t depend
on lattice size N , as long as the ILM number is one, because
the ILM width doesn’t depend on the lattice size. Thus, we
define

Ṽ (ω = �ωp, k = �kq) = Ṽ ′(p, q)

M
(A2)

for the dispersion voltage for one ILM.
To calculate FT strength along the DL, we sum the

modulus amplitude along the frequency axis because the

DL doesn’t pass exactly on the frequency points ω =
�ω × p. The summing is made from pDL − δ to pDL + δ,
where pDL = floor( ωDL

�ω
), ωDL = v(k − kd ) + ωd , and 2δ =

(2π fr )/�ω, where fr is the frequency range. This frequency
range is wider than the line width to accumulate the DLS and
narrow enough to avoid detecting other signals. It is 3 kHz
for experiments and 2 to 3 kHz for simulations. The final
expression for the DLS is

∣∣Ṽ (k = �kq)
∣∣ =

√∑pDL+δ

p=pDL−δ |Ṽ ′(p, q)|2
M

. (A3)

Equation (A3) corresponds to a 1D FT of the envelope func-
tion in real space. The unit is volts for both Ṽ (ω, k) and |Ṽ (k)|.
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